Safety, Efficacy, and Visual Performance of an Orthokeratology Lens with Increased Compression Factor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Orthokeratology Fitting
2.3. Visual Performance Evaluation
2.4. Corneal Morphology and Anterior Segment Integrity Evaluation
2.5. Statistical Analysis
3. Results
3.1. Study Population
3.2. Visual Performance Outcomes
3.3. Corneal Morphology and Anterior Segment Integrity Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vincent, S.J.; Cho, P.; Chan, K.Y.; Fadel, D.; Ghorbani-Mojarrad, N.; González-Méijome, J.M.; Johnson, L.; Kang, P.; Michaud, L.; Simard, P.; et al. CLEAR—Orthokeratology. Contact Lens Anterior Eye 2021, 44, 240–269. [Google Scholar] [CrossRef] [PubMed]
- Nichols, J.J.; Jones, L.; Morgan, P.B.; Efron, N. Bibliometric analysis of the orthokeratology literature. Contact Lens Anterior Eye 2021, 44, 101390. [Google Scholar] [CrossRef] [PubMed]
- Holden, B.A.; Fricke, T.R.; Wilson, D.A.; Jong, M.; Naidoo, K.S.; Sankaridurg, P.; Wong, T.Y.; Naduvilath, T.J.; Resnikoff, S. Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology 2016, 123, 1036–1042. [Google Scholar] [CrossRef] [PubMed]
- Mountford, J. Retention and regression of orthokeratology with time. Contact Lens Anterior Eye 1998, 25, 59–64. [Google Scholar] [CrossRef]
- Jessen, G. Orthofocus techniques. Contacto 1962, 6, 200–204. [Google Scholar]
- Chan, B.; Cho, P.; Mountford, J. The validity of the Jessen formula in overnight orthokeratology: A retrospective study. Ophthalmic Physiol. Opt. 2008, 28, 265–268. [Google Scholar] [CrossRef] [PubMed]
- Wan, K.; Lau, J.K.; Cheung, S.W.; Cho, P. Refractive and corneal responses of young myopic children to short-term orthokeratology treatment with different compression factors. Contact Lens Anterior Eye 2020, 43, 65–72. [Google Scholar] [CrossRef]
- Rah, M.J.; Jackson, J.M.; Jones, L.A.; Marsden, H.J.; Bailey, M.D.; Barr, J.T. Overnight orthokeratology: Preliminary results of the Lenses and Overnight Orthokeratology (LOOK) study. Optom. Vis. Sci. 2002, 79, 598–605. [Google Scholar] [CrossRef]
- Tang, W.T.; Zhang, L.; Zhang, H.D.; Li, S.B.; Liang, H. Orthokeratology with increased compression factor in adolescent myopia control: A 2-year prospective randomized clinical trial. Int. J. Ophthalmol. 2023, 16, 770–777. [Google Scholar] [CrossRef]
- Lau, J.K.; Vincent, S.J.; Cheung, S.W.; Cho, P. The influence of orthokeratology compression factor on ocular higher-order aberrations. Clin. Exp. Optom. 2020, 103, 123–128. [Google Scholar] [CrossRef]
- Bron, A.J.; Evans, V.E.; Smith, J.A. Grading of corneal and conjunctival staining in the context of other dry eye tests. Cornea 2003, 22, 640–650. [Google Scholar] [CrossRef] [PubMed]
- Efron, N.; Morgan, P.B.; Katsara, S.S. Validation of grading scales for contact lens complications. Ophthalmic Physiol. Opt. 2001, 21, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Plaza, E.; Molina-Martín, A.; Piñero, D.P. Agreement of Tear Break-Up Time and Meniscus Height between Medmont E300 and Visionix VX120+. Appl. Sci. 2022, 12, 4589. [Google Scholar] [CrossRef]
- Tahhan, N.; Du Toit, R.; Papas, E.; Chung, H.; La Hood, D.; Holden, A.B. Comparison of reverse-geometry lens designs for overnight orthokeratology. Optom. Vis. Sci. 2003, 80, 796–804. [Google Scholar] [CrossRef] [PubMed]
- Ren, Q.; Yang, B.; Liu, L.; Cho, P. Orthokeratology in adults and factors affecting success: Study design and preliminary results. Contact Lens Anterior Eye 2020, 43, 595–601. [Google Scholar] [CrossRef] [PubMed]
- Ren, Q.; Yang, B.; Liu, L.; Cho, P. Orthokeratology in adults and effect on quality of life. Contact Lens Anterior Eye 2023, 46, 101824. [Google Scholar] [CrossRef]
- He, Y.; Liu, L.; Vincent, S.J. Compression Factor and Visual Performance in Adults Treated With Orthokeratology. Eye Contact Lens 2021, 47, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Lau, J.K.; Wan, K.; Cheung, S.W.; Vincent, S.J.; Cho, P. Weekly Changes in Axial Length and Choroidal Thickness in Children During and Following Orthokeratology Treatment With Different Compression Factors. Transl. Vis. Sci. Technol. 2019, 8, 9. [Google Scholar] [CrossRef]
- Lau, J.K.; Wan, K.; Cho, P. Orthokeratology lenses with increased compression factor (OKIC): A 2-year longitudinal clinical trial for myopia control. Contact Lens Anterior Eye 2023, 46, 101745. [Google Scholar] [CrossRef]
- Swarbrick, H.A. Orthokeratology review and update. Clin. Exp. Optom. 2006, 89, 124–143. [Google Scholar] [CrossRef]
- Wan, K.; Lau, J.K.; Cheung, S.W.; Cho, P. Orthokeratology with increased compression factor (OKIC): Study design and preliminary results. BMJ Open Ophthalmol. 2020, 5, e000345. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Jiang, Z.X.; Hao, P.; Li, X. A Meta-analysis of Central Corneal Thickness Changes With Overnight Orthokeratology. Eye Contact Lens 2016, 42, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Maldonado, M.J.; López-Miguel, A.; Nieto, J.C.; Cano-Parra, J.; Calvo, B.; Alió, J.L. Reliability of noncontact pachymetry after laser in situ keratomileusis. Investig. Ophthalmol. Vis. Sci. 2009, 50, 4135–4141. [Google Scholar] [CrossRef] [PubMed]
- Piñero, D.P.; Cabezos, I.; López-Navarro, A.; de Fez, D.; Caballero, M.T.; Camps, V.J. Intrasession repeatability of ocular anatomical measurements obtained with a multidiagnostic device in healthy eyes. BMC Ophthalmol. 2017, 17, 193. [Google Scholar] [CrossRef] [PubMed]
- Gordon-Shaag, A.; Piñero, D.P.; Kahloun, C.; Markov, D.; Parnes, T.; Gantz, L.; Shneor, E. Validation of refraction and anterior segment parameters by a new multi-diagnostic platform (VX120). J. Optom. 2018, 11, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Plaza, E.; López-de la Rosa, A.; Molina-Martín, A.; Piñero, D.P. Orthokeratology effect on the corneoscleral profile: Beyond the bull’s eye. Ophthalmic Physiol. Opt. 2023; submitted for publication. [Google Scholar]
- Hiraoka, T.; Mihashi, T.; Okamoto, C.; Okamoto, F.; Hirohara, Y.; Oshika, T. Influence of induced decentered orthokeratology lens on ocular higher-order wavefront aberrations and contrast sensitivity function. J. Cataract. Refract. Surg. 2009, 35, 1918–1926. [Google Scholar] [CrossRef] [PubMed]
- Maseedupally, V.K.; Gifford, P.; Lum, E.; Naidu, R.; Sidawi, D.; Wang, B.; Swarbrick, H.A. Treatment Zone Decentration During Orthokeratology on Eyes with Corneal Toricity. Optom. Vis. Sci. 2016, 93, 1101–1111. [Google Scholar] [CrossRef]
- Liu, Y.M.; Xie, P. The Safety of Orthokeratology—A Systematic Review. Eye Contact Lens 2016, 42, 35–42. [Google Scholar] [CrossRef]
- Morgan, P.B.; Efron, N.; Maldonado-Codina, C.; Efron, S. Adverse events and discontinuations with rigid and soft hyper Dk contact lenses used for continuous wear. Optom. Vis. Sci. 2005, 82, 528–535. [Google Scholar] [CrossRef]
Parameters | Basal (n = 36) | 1 Night (n = 36) | 1 Week (n = 34) | 1 Month (n = 27) | 3 Months (n = 20) |
---|---|---|---|---|---|
Corneal (µm) | 0.09 ± 0.04 a,b,c,d | 0.25 ± 0.14 a,e,f | 0.37 ± 0.22 b,e | 0.33 ± 0.20 c,f | 0.35 ± 0.24 d |
Internal (µm) | −0.07 ± 0.06 | −0.04 ± 0.09 | −0.03 ± 0.09 | −0.02 ± 0.09 | −0.02 ± 0.09 |
Ocular (µm) | 0.02 ± 0.06 a,b,c,d | 0.21 ± 0.15 a,e,f | 0.33 ± 0.25 b,e | 0.30 ± 0.21 c,f | 0.33 ± 0.30 d |
Corneal (µm) | 0.11 (0.02/0.22) b,d | 0.20 (0.03/0.73) | 0.20 (0.03/0.98) b | 0.23 (0.02/1.42) | 0.27 (0.07/1.06) d |
Internal (µm) | 0.13 (0.03/0.20) d | 0.11 (0.02/0.39) | 0.14 (0.03/0.71) | 0.13 (0.02/0.51) | 0.17 (0.04/0.53) d |
Ocular (µm) | 0.08 (0.01/0.22) b,c,d | 0.20 (0.05/0.52) | 0.32 (0.06/1.13) b | 0.27 (0.08/1.10) c | 0.39 (0.02/0.16) d |
Parameters | Basal (n = 36) | 1 Night (n = 36) | 1 Week (n = 34) | 1 Month (n = 27) | 3 Months (n = 20) |
---|---|---|---|---|---|
SimKf (D) | 43.56 ± 1.74 a,b,c,d | 42.92 ± 1.69 a,e,f,g | 42.05 ± 1.95 b,e | 41.83 ± 1.70 c,f | 41.86 ± 1.69 d,g |
SimKs (D) | 44.44 ± 1.74 a,b,c,d | 43.86 ± 1.68 a,e,f,g | 42.98 ± 1.89 b,e | 42.74 ± 1.78 c,f | 43.07 ± 1.67 d,g |
Mean-K (D) | 44.00 ± 1.72 a,b,c,d | 43.39 ± 1.67 a,e,f,g | 42.46 ± 1.90 b,e | 42.29 ± 1.71 c,f | 42.47 ± 1.64 d,g |
Central pachymetry (µm) | 544.75 ± 37.70 | 552.12 ± 45.22 | 538.39 ± 40.14 | 542.56 ± 40.22 | 534.35 ± 33.01 |
Parameters | Basal (n = 36) | 1 Night (n = 36) | 1 Week (n = 34) | 1 Month (n = 27) | 3 Months (n = 20) |
---|---|---|---|---|---|
Conjunctival hyperemia | 1.00 (0/3.00) | 1.00 (0/2.00) | 1.00 (0/2.00) | 1.00 (0/3.00) | 1.50 (0/2.00) |
Limbal hyperemia | 1.00 (0/2.00) | 1.00 (0/2.00) | 1.00 (0/2.00) | 1.00 (0/2.00) | 1.00 (0/2.00) |
Blepharitis | 0 (0/1.00) | 0 (0/1.00) | 0 (0/1.00) | 0 (0/1.00) | 0.50 (0/1.00) |
MGD | 0 (0/1.00) | 0 (0/1.00) | 0 (0/2.00) | 0 (0/1.00) | 0 (0/0) |
First NIBUT | 4.05 (2.80/13.80) | 2.90 (2.80/13.60) | 3.60 (2.80/13.60) | 3.00 (2.80/13.60) | 2.90 (2.20/17.00) |
NIBUT 50% | 7.60 (3.50/15.50) | 7.05 (1.70/13.60) | 6.90 (3.20/15.20) | 7.70 (3.20/14.70) | 7.25 (3.20/13.60) |
TMH | 0.17 ± 0.05 | 0.19 ± 0.06 | 0.19 ± 0.05 | 0.17 ± 0.05 | 0.16 ± 0.04 |
Corneal staining | 0 (0/1.00) | 0 (0/1.00) | 0 (0/4.00) | 0 (0/2.00) | 0 (0/2.00) |
Nasal conjunctival staining | 0 (0/1.00) | 0 (0/2.00) | 0 (0/2.00) | 0 (0/3.00) | 0 (0/1.00) |
Temporal conjunctival staining | 0 (0/0) | 0 (0/1.00) | 0 (0/2.00) | 0 (0/1.00) | 0 (0/1.00) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Plaza, E.; Zamora Castro, C.; Molina-Martín, A.; Piñero, D.P. Safety, Efficacy, and Visual Performance of an Orthokeratology Lens with Increased Compression Factor. J. Clin. Med. 2024, 13, 587. https://doi.org/10.3390/jcm13020587
Martínez-Plaza E, Zamora Castro C, Molina-Martín A, Piñero DP. Safety, Efficacy, and Visual Performance of an Orthokeratology Lens with Increased Compression Factor. Journal of Clinical Medicine. 2024; 13(2):587. https://doi.org/10.3390/jcm13020587
Chicago/Turabian StyleMartínez-Plaza, Elena, Cecilia Zamora Castro, Ainhoa Molina-Martín, and David P. Piñero. 2024. "Safety, Efficacy, and Visual Performance of an Orthokeratology Lens with Increased Compression Factor" Journal of Clinical Medicine 13, no. 2: 587. https://doi.org/10.3390/jcm13020587
APA StyleMartínez-Plaza, E., Zamora Castro, C., Molina-Martín, A., & Piñero, D. P. (2024). Safety, Efficacy, and Visual Performance of an Orthokeratology Lens with Increased Compression Factor. Journal of Clinical Medicine, 13(2), 587. https://doi.org/10.3390/jcm13020587