The Gut Microbiome in Sepsis: From Dysbiosis to Personalized Therapy
Abstract
:1. Introduction
2. The Role of Microbiota
3. The Impact of Antibiotics on Microbiota
4. Microbiota as a Predictive Indicator of Sepsis
5. Biomarkers of Intestinal Dysbiosis
6. Therapeutic Opportunities
7. Materials and Methods
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ianiro, G.; Iorio, A.; Porcari, S.; Masucci, L.; Sanguinetti, M.; Perno, C.F.; Gasbarrini, A.; Putignani, L.; Cammarota, G. How the gut parasitome affects human health. Ther. Adv. Gastroenterol. 2022, 15, 175628482210915. [Google Scholar] [CrossRef] [PubMed]
- De Siena, M.; Laterza, L.; Matteo, M.V.; Mignini, I.; Schepis, T.; Rizzatti, G.; Ianiro, G.; Rinninella, E.; Cintoni, M.; Gasbarrini, A. Gut and Reproductive Tract Microbiota Adaptation during Pregnancy: New Insights for Pregnancy-Related Complications and Therapy. Microorganisms 2021, 9, 473. [Google Scholar] [CrossRef] [PubMed]
- Rinninella, E.; Raoul, P.; Cintoni, M.; Franceschi, F.; Miggiano, G.A.D.; Gasbarrini, A.; Mele, M.C. What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms 2019, 7, 14. [Google Scholar] [CrossRef]
- Hiippala, K.; Jouhten, H.; Ronkainen, A.; Hartikainen, A.; Kainulainen, V.; Jalanka, J.; Satokari, R. The Potential of Gut Commensals in Reinforcing Intestinal Barrier Function and Alleviating Inflammation. Nutrients 2018, 10, 988. [Google Scholar] [CrossRef] [PubMed]
- Portincasa, P.; Bonfrate, L.; Vacca, M.; De Angelis, M.; Farella, I.; Lanza, E.; Khalil, M.; Wang, D.Q.-H.; Sperandio, M.; Di Ciaula, A. Gut Microbiota and Short Chain Fatty Acids: Implications in Glucose Homeostasis. Int. J. Mol. Sci. 2022, 23, 1105. [Google Scholar] [CrossRef]
- Jian, Z.; Zeng, L.; Xu, T.; Sun, S.; Yan, S.; Zhao, S.; Su, Z.; Ge, C.; Zhang, Y.; Jia, J.; et al. The intestinal microbiome associated with lipid metabolism and obesity in humans and animals. J. Appl. Microbiol. 2022, 133, 2915–2930. [Google Scholar] [CrossRef]
- Bibbò, S.; Ianiro, G.; Giorgio, V.; Scaldaferri, F.; Masucci, L.; Gasbarrini, A.; Cammarota, G. The role of diet on gut microbiota composition. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 4742–4749. [Google Scholar]
- Porcari, S.; Fusco, W.; Spivak, I.; Fiorani, M.; Gasbarrini, A.; Elinav, E.; Cammarota, G.; Ianiro, G. Fine-tuning the gut ecosystem: The current landscape and outlook of artificial microbiome therapeutics. Lancet Gastroenterol. Hepatol. 2024, 9, 460–475. [Google Scholar] [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801. [Google Scholar] [CrossRef]
- Purcarea, A.; Sovaila, S. Sepsis, a 2020 review for the internist. Rom. J. Intern. Med. 2020, 58, 129–137. [Google Scholar] [CrossRef]
- Cecconi, M.; Evans, L.; Levy, M.; Rhodes, A. Sepsis and septic shock. Lancet 2018, 392, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Fleischmann-Struzek, C.; Mellhammar, L.; Rose, N.; Cassini, A.; Rudd, K.E.; Schlattmann, P.; Allegranzi, B.; Reinhart, K. Incidence and mortality of hospital- and ICU-treated sepsis: Results from an updated and expanded systematic review and meta-analysis. Intensive Care Med. 2020, 46, 1552–1562. [Google Scholar] [CrossRef] [PubMed]
- Rudd, K.E.; Johnson, S.C.; Agesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R.; Colombara, D.V.; Ikuta, K.S.; Kissoon, N.; Finfer, S.; et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the Global Burden of Disease Study. Lancet 2020, 395, 200–211. [Google Scholar] [CrossRef] [PubMed]
- Mohamed Elfadil, O.; Mundi, M.S.; Abdelmagid, M.G.; Patel, A.; Patel, N.; Martindale, R. Butyrate: More Than a Short Chain Fatty Acid. Curr. Nutr. Rep. 2023, 12, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Haak, B.W.; Argelaguet, R.; Kinsella, C.M.; Kullberg, R.F.J.; Lankelma, J.M.; Deijs, M.; Klein, M.; Jebbink, M.F.; Hugenholtz, F.; Kostidis, S.; et al. Integrative Transkingdom Analysis of the Gut Microbiome in Antibiotic Perturbation and Critical Illness. MSystems 2021, 6, 10-1128. [Google Scholar] [CrossRef] [PubMed]
- Zaborin, A.; Smith, D.; Garfield, K.; Quensen, J.; Shakhsheer, B.; Kade, M.; Tirrell, M.; Tiedje, J.; Gilbert, J.A.; Zaborina, O.; et al. Membership and Behavior of Ultra-Low-Diversity Pathogen Communities Present in the Gut of Humans during Prolonged Critical Illness. MBio 2014, 5, 10-1128. [Google Scholar] [CrossRef]
- Belkaid, Y.; Harrison, O.J. Homeostatic Immunity and the Microbiota. Immunity 2017, 46, 562–576. [Google Scholar] [CrossRef]
- Arpaia, N.; Campbell, C.; Fan, X.; Dikiy, S.; Van Der Veeken, J.; deRoos, P.; Liu, H.; Cross, J.R.; Pfeffer, K.; Coffer, P.J.; et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 2013, 504, 451–455. [Google Scholar] [CrossRef]
- Schulthess, J.; Pandey, S.; Capitani, M.; Rue-Albrecht, K.C.; Arnold, I.; Franchini, F.; Chomka, A.; Ilott, N.E.; Johnston, D.G.W.; Pires, E.; et al. The Short Chain Fatty Acid Butyrate Imprints an Antimicrobial Program in Macrophages. Immunity 2019, 50, 432–445.e7. [Google Scholar] [CrossRef]
- Piccioni, A.; Franza, L.; Brigida, M.; Zanza, C.; Torelli, E.; Petrucci, M.; Nicolò, R.; Covino, M.; Candelli, M.; Saviano, A.; et al. Gut Microbiota and Acute Diverticulitis: Role of Probiotics in Management of This Delicate Pathophysiological Balance. J. Pers. Med. 2021, 11, 298. [Google Scholar] [CrossRef]
- Wang, F.; Liu, J.; Weng, T.; Shen, K.; Chen, Z.; Yu, Y.; Huang, Q.; Wang, G.; Liu, Z.; Jin, S. The Inflammation Induced by Lipopolysaccharide can be Mitigated by Short-chain Fatty Acid, Butyrate, through Upregulation of IL-10 in Septic Shock. Scand. J. Immunol. 2017, 85, 258–263. [Google Scholar] [CrossRef] [PubMed]
- Yamada, T.; Shimizu, K.; Ogura, H.; Asahara, T.; Nomoto, K.; Yamakawa, K.; Hamasaki, T.; Nakahori, Y.; Ohnishi, M.; Kuwagata, Y.; et al. Rapid and Sustained Long-Term Decrease of Fecal Short-Chain Fatty Acids in Critically Ill Patients With Systemic Inflammatory Response Syndrome. JPEN J. Parenter. Enteral Nutr. 2015, 39, 569–577. [Google Scholar] [CrossRef]
- Martin-Gallausiaux, C.; Marinelli, L.; Blottière, H.M.; Larraufie, P.; Lapaque, N. SCFA: Mechanisms and functional importance in the gut. Proc. Nutr. Soc. 2021, 80, 37–49. [Google Scholar] [CrossRef] [PubMed]
- McDonald, B.; Zucoloto, A.Z.; Yu, I.-L.; Burkhard, R.; Brown, K.; Geuking, M.B.; McCoy, K.D. Programing of an Intravascular Immune Firewall by the Gut Microbiota Protects against Pathogen Dissemination during Infection. Cell Host Microbe 2020, 28, 660–668.e4. [Google Scholar] [CrossRef]
- Van Der Hee, B.; Wells, J.M. Microbial Regulation of Host Physiology by Short-chain Fatty Acids. Trends Microbiol. 2021, 29, 700–712. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Deng, H.; Xiao, L.; Pan, Y. Escherichia coli Nissle 1917 Protects against Sepsis-Induced Intestinal Damage by Regulating the SCFA/GPRs Signaling Pathway. Microorganisms 2024, 12, 1622. [Google Scholar] [CrossRef]
- David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014, 505, 559–563. [Google Scholar] [CrossRef] [PubMed]
- Hill, A.; Elke, G.; Weimann, A. Nutrition in the Intensive Care Unit—A Narrative Review. Nutrients 2021, 13, 2851. [Google Scholar] [CrossRef]
- Grillo-Ardila, C.F.; Tibavizco-Palacios, D.; Triana, L.C.; Rugeles, S.J.; Vallejo-Ortega, M.T.; Calderón-Franco, C.H.; Ramírez-Mosquera, J.J. Early Enteral Nutrition (within 48 h) for Patients with Sepsis or Septic Shock: A Systematic Review and Meta-Analysis. Nutrients 2024, 16, 1560. [Google Scholar] [CrossRef]
- Moon, S.J.; Ko, R.-E.; Park, C.-M.; Suh, G.Y.; Hwang, J.; Chung, C.R. The Effectiveness of Early Enteral Nutrition on Clinical Outcomes in Critically Ill Sepsis Patients: A Systematic Review. Nutrients 2023, 15, 3201. [Google Scholar] [CrossRef]
- Kaewdech, A.; Sripongpun, P.; Wetwittayakhlang, P.; Churuangsuk, C. The effect of fiber supplementation on the prevention of diarrhea in hospitalized patients receiving enteral nutrition: A meta-analysis of randomized controlled trials with the GRADE assessment. Front. Nutr. 2022, 9, 1008464. [Google Scholar] [CrossRef] [PubMed]
- Huwiler, V.V.; Scalise, M.; Schönenberger, K.A.; Mühlebach, S.; Stanga, Z.; Balmer, M.L. The Role of Dietary Fibre in Enteral Nutrition in Sepsis Prevention and Therapy: A Narrative Review. Nutrients 2023, 15, 2489. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Delgado, J.C.; Grau-Carmona, T.; Trujillano-Cabello, J.; García-Fuentes, C.; Mor-Marco, E.; Bordeje-Laguna, M.L.; Portugal-Rodriguez, E.; Lorencio-Cardenas, C.; Vera-Artazcoz, P.; Macaya-Redin, L.; et al. The Effect of Enteral Immunonutrition in the Intensive Care Unit: Does It Impact on Outcomes? Nutrients 2022, 14, 1904. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, F.; Balas, I.; Robinson, M.J.; Bakdash, G. Border Control: The Role of the Microbiome in Regulating Epithelial Barrier Function. Cells 2024, 13, 477. [Google Scholar] [CrossRef]
- McArthur, S. Regulation of Physiological Barrier Function by the Commensal Microbiota. Life 2023, 13, 396. [Google Scholar] [CrossRef]
- Saleri, R.; Borghetti, P.; Ravanetti, F.; Cavalli, V.; Ferrari, L.; De Angelis, E.; Andrani, M.; Martelli, P. Effects of different short-chain fatty acids (SCFA) on gene expression of proteins involved in barrier function in IPEC-J2. Porc. Health Manag. 2022, 8, 21. [Google Scholar] [CrossRef]
- Ghosh, S.; Whitley, C.S.; Haribabu, B.; Jala, V.R. Regulation of Intestinal Barrier Function by Microbial Metabolites. Cell. Mol. Gastroenterol. Hepatol. 2021, 11, 1463–1482. [Google Scholar] [CrossRef]
- Rao, J.N.; Xiao, L.; Wang, J.-Y. Polyamines in Gut Epithelial Renewal and Barrier Function. Physiology 2020, 35, 328–337. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, H.; Ding, J.; Stanton, C.; Ross, R.P.; Zhao, J.; Zhang, H.; Yang, B.; Chen, W. Bifidobacterium longum Ameliorates Dextran Sulfate Sodium-Induced Colitis by Producing Conjugated Linoleic Acid, Protecting Intestinal Mechanical Barrier, Restoring Unbalanced Gut Microbiota, and Regulating the Toll-Like Receptor-4/Nuclear Factor-κB Signaling Pathway. J. Agric. Food Chem. 2021, 69, 14593–14608. [Google Scholar] [CrossRef]
- Ren, Q.; Yang, B.; Zhang, H.; Ross, R.P.; Stanton, C.; Chen, H.; Chen, W. c9, t11, c15-CLNA and t9, t11, c15-CLNA from Lactobacillus plantarum ZS2058 Ameliorate Dextran Sodium Sulfate-Induced Colitis in Mice. J. Agric. Food Chem. 2020, 68, 3758–3769. [Google Scholar] [CrossRef]
- Zhan, L.; Zheng, J.; Meng, J.; Fu, D.; Pang, L.; Ji, C. Toll-like receptor 4 deficiency alleviates lipopolysaccharide-induced intestinal barrier dysfunction. Biomed. Pharmacother. 2022, 155, 113778. [Google Scholar] [CrossRef] [PubMed]
- Gu, M.J.; Song, S.K.; Lee, I.K.; Ko, S.; Han, S.E.; Bae, S.; Ji, S.Y.; Park, B.-C.; Song, K.-D.; Lee, H.-K.; et al. Barrier protection via Toll-like receptor 2 signaling in porcine intestinal epithelial cells damaged by deoxynivalnol. Vet. Res. 2016, 47, 25. [Google Scholar] [CrossRef] [PubMed]
- Yoseph, B.P.; Klingensmith, N.J.; Liang, Z.; Breed, E.R.; Burd, E.M.; Mittal, R.; Dominguez, J.A.; Petrie, B.; Ford, M.L.; Coopersmith, C.M. Mechanisms of Intestinal Barrier Dysfunction in Sepsis. Shock 2016, 46, 52–59. [Google Scholar] [CrossRef]
- Jung, C.; Meinzer, U.; Montcuquet, N.; Thachil, E.; Château, D.; Thiébaut, R.; Roy, M.; Alnabhani, Z.; Berrebi, D.; Dussaillant, M.; et al. Yersinia pseudotuberculosis disrupts intestinal barrier integrity through hematopoietic TLR-2 signaling. J. Clin. Investig. 2012, 122, 2239–2251. [Google Scholar] [CrossRef]
- Lorentz, C.A.; Liang, Z.; Meng, M.; Chen, C.-W.; Yoseph, B.P.; Breed, E.R.; Mittal, R.; Klingensmith, N.J.; Farris, A.B.; Burd, E.M.; et al. Myosin light chain kinase knockout improves gut barrier function and confers a survival advantage in polymicrobial sepsis. Mol. Med. Camb. Mass 2017, 23, 155–165. [Google Scholar] [CrossRef]
- Schirmer, M.; Smeekens, S.P.; Vlamakis, H.; Jaeger, M.; Oosting, M.; Franzosa, E.A.; Ter Horst, R.; Jansen, T.; Jacobs, L.; Bonder, M.J.; et al. Linking the Human Gut Microbiome to Inflammatory Cytokine Production Capacity. Cell 2016, 167, 1125–1136.e8. [Google Scholar] [CrossRef]
- Khosravi, A.; Yáñez, A.; Price, J.G.; Chow, A.; Merad, M.; Goodridge, H.S.; Mazmanian, S.K. Gut microbiota promote hematopoiesis to control bacterial infection. Cell Host Microbe 2014, 15, 374–381. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Chen, G.; Manwani, D.; Mortha, A.; Xu, C.; Faith, J.J.; Burk, R.D.; Kunisaki, Y.; Jang, J.-E.; Scheiermann, C.; et al. Neutrophil ageing is regulated by the microbiome. Nature 2015, 525, 528–532. [Google Scholar] [CrossRef] [PubMed]
- Wilmore, J.R.; Gaudette, B.T.; Gomez Atria, D.; Hashemi, T.; Jones, D.D.; Gardner, C.A.; Cole, S.D.; Misic, A.M.; Beiting, D.P.; Allman, D. Commensal Microbes Induce Serum IgA Responses that Protect against Polymicrobial Sepsis. Cell Host Microbe 2018, 23, 302–311.e3. [Google Scholar] [CrossRef]
- Zeng, M.Y.; Cisalpino, D.; Varadarajan, S.; Hellman, J.; Warren, H.S.; Cascalho, M.; Inohara, N.; Núñez, G. Gut Microbiota-Induced Immunoglobulin G Controls Systemic Infection by Symbiotic Bacteria and Pathogens. Immunity 2016, 44, 647–658. [Google Scholar] [CrossRef]
- Heilbronner, S.; Krismer, B.; Brötz-Oesterhelt, H.; Peschel, A. The microbiome-shaping roles of bacteriocins. Nat. Rev. Microbiol. 2021, 19, 726–739. [Google Scholar] [CrossRef] [PubMed]
- Behrens, H.M.; Six, A.; Walker, D.; Kleanthous, C. The therapeutic potential of bacteriocins as protein antibiotics. Emerg. Top. Life Sci. 2017, 1, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Schuijt, T.J.; Lankelma, J.M.; Scicluna, B.P.; De Sousa E Melo, F.; Roelofs, J.J.T.H.; De Boer, J.D.; Hoogendijk, A.J.; De Beer, R.; De Vos, A.; Belzer, C.; et al. The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia. Gut 2016, 65, 575–583. [Google Scholar] [CrossRef]
- Lou, X.; Xue, J.; Shao, R.; Yang, Y.; Ning, D.; Mo, C.; Wang, F.; Chen, G. Fecal microbiota transplantation and short-chain fatty acids reduce sepsis mortality by remodeling antibiotic-induced gut microbiota disturbances. Front. Immunol. 2023, 13, 1063543. [Google Scholar] [CrossRef]
- Livanos, A.E.; Snider, E.J.; Whittier, S.; Chong, D.H.; Wang, T.C.; Abrams, J.A.; Freedberg, D.E. Rapid gastrointestinal loss of Clostridial Clusters IV and XIVa in the ICU associates with an expansion of gut pathogens. PLoS ONE 2018, 13, e0200322. [Google Scholar] [CrossRef]
- Wolff, N.S.; Hugenholtz, F.; Wiersinga, W.J. The emerging role of the microbiota in the ICU. Crit. Care Lond. Engl. 2018, 22, 78. [Google Scholar] [CrossRef]
- Lankelma, J.M.; van Vught, L.A.; Belzer, C.; Schultz, M.J.; van der Poll, T.; de Vos, W.M.; Wiersinga, W.J. Critically ill patients demonstrate large interpersonal variation in intestinal microbiota dysregulation: A pilot study. Intensive Care Med. 2017, 43, 59–68. [Google Scholar] [CrossRef]
- Ubeda, C.; Taur, Y.; Jenq, R.R.; Equinda, M.J.; Son, T.; Samstein, M.; Viale, A.; Socci, N.D.; Van Den Brink, M.R.M.; Kamboj, M.; et al. Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J. Clin. Investig. 2010, 120, 4332–4341. [Google Scholar] [CrossRef] [PubMed]
- Patrier, J.; Villageois-Tran, K.; Szychowiak, P.; Ruckly, S.; Gschwind, R.; Wicky, P.-H.; Gueye, S.; Armand-Lefevre, L.; Marzouk, M.; Sonneville, R.; et al. Oropharyngeal and intestinal concentrations of opportunistic pathogens are independently associated with death of SARS-CoV-2 critically ill adults. Crit. Care 2022, 26, 300. [Google Scholar] [CrossRef]
- Hayakawa, M.; Asahara, T.; Henzan, N.; Murakami, H.; Yamamoto, H.; Mukai, N.; Minami, Y.; Sugano, M.; Kubota, N.; Uegaki, S.; et al. Dramatic Changes of the Gut Flora Immediately After Severe and Sudden Insults. Dig. Dis. Sci. 2011, 56, 2361–2365. [Google Scholar] [CrossRef]
- Zanza, C.; Romenskaya, T.; Thangathurai, D.; Ojetti, V.; Saviano, A.; Abenavoli, L.; Robba, C.; Cammarota, G.; Franceschi, F.; Piccioni, A.; et al. Microbiome in Critical Care: An Unconventional and Unknown Ally. Curr. Med. Chem. 2022, 29, 3179–3188. [Google Scholar] [CrossRef] [PubMed]
- Perrone, E.E.; Jung, E.; Breed, E.; Dominguez, J.A.; Liang, Z.; Clark, A.T.; Dunne, W.M.; Burd, E.M.; Coopersmith, C.M. Mechanisms of methicillin-resistant Staphylococcus aureus pneumonia-induced intestinal epithelial apoptosis. Shock 2012, 38, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Taur, Y.; Xavier, J.B.; Lipuma, L.; Ubeda, C.; Goldberg, J.; Gobourne, A.; Lee, Y.J.; Dubin, K.A.; Socci, N.D.; Viale, A.; et al. Intestinal Domination and the Risk of Bacteremia in Patients Undergoing Allogeneic Hematopoietic Stem Cell Transplantation. Clin. Infect. Dis. 2012, 55, 905–914. [Google Scholar] [CrossRef]
- Niu, X.; Daniel, S.; Kumar, D.; Ding, E.Y.; Savani, R.C.; Koh, A.Y.; Mirpuri, J. Transient neonatal antibiotic exposure increases susceptibility to late-onset sepsis driven by microbiota-dependent suppression of type 3 innate lymphoid cells. Sci. Rep. 2020, 10, 12974. [Google Scholar] [CrossRef]
- Prescott, H.C.; Dickson, R.P.; Rogers, M.A.M.; Langa, K.M.; Iwashyna, T.J. Hospitalization Type and Subsequent Severe Sepsis. Am. J. Respir. Crit. Care Med. 2015, 192, 581–588. [Google Scholar] [CrossRef] [PubMed]
- Dickson, R.P.; Singer, B.H.; Newstead, M.W.; Falkowski, N.R.; Erb-Downward, J.R.; Standiford, T.J.; Huffnagle, G.B. Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome. Nat. Microbiol. 2016, 1, 16113. [Google Scholar] [CrossRef]
- Singer, J.R.; Blosser, E.G.; Zindl, C.L.; Silberger, D.J.; Conlan, S.; Laufer, V.A.; DiToro, D.; Deming, C.; Kumar, R.; Morrow, C.D.; et al. Preventing dysbiosis of the neonatal mouse intestinal microbiome protects against late-onset sepsis. Nat. Med. 2019, 25, 1772–1782. [Google Scholar] [CrossRef]
- De Lastours, V.; Goulenok, T.; Guérin, F.; Jacquier, H.; Eyma, C.; Chau, F.; Cattoir, V.; Fantin, B. Ceftriaxone promotes the emergence of AmpC-overproducing Enterobacteriaceae in gut microbiota from hospitalized patients. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 417–421. [Google Scholar] [CrossRef]
- Smits, W.K.; Lyras, D.; Lacy, D.B.; Wilcox, M.H.; Kuijper, E.J. Clostridium difficile infection. Nat. Rev. Dis. Primer 2016, 2, 16020. [Google Scholar] [CrossRef]
- Zimmermann, P.; Curtis, N. The effect of antibiotics on the composition of the intestinal microbiota—A systematic review. J. Infect. 2019, 79, 471–489. [Google Scholar] [CrossRef]
- Freedberg, D.E.; Zhou, M.J.; Cohen, M.E.; Annavajhala, M.K.; Khan, S.; Moscoso, D.I.; Brooks, C.; Whittier, S.; Chong, D.H.; Uhlemann, A.-C.; et al. Pathogen colonization of the gastrointestinal microbiome at intensive care unit admission and risk for subsequent death or infection. Intensive Care Med. 2018, 44, 1203–1211. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Jiang, Z.; Yang, F.; Wang, Y.; Gao, X.; Wang, Y.; Chai, X.; Pan, G.; Zhu, Y. Sensitive and Simplified Detection of Antibiotic Influence on the Dynamic and Versatile Changes of Fecal Short-Chain Fatty Acids. PLoS ONE 2016, 11, e0167032. [Google Scholar] [CrossRef] [PubMed]
- Suez, J.; Zmora, N.; Zilberman-Schapira, G.; Mor, U.; Dori-Bachash, M.; Bashiardes, S.; Zur, M.; Regev-Lehavi, D.; Ben-Zeev Brik, R.; Federici, S.; et al. Post-Antibiotic Gut Mucosal Microbiome Reconstitution Is Impaired by Probiotics and Improved by Autologous FMT. Cell 2018, 174, 1406–1423.e16. [Google Scholar] [CrossRef] [PubMed]
- Stein-Thoeringer, C.K.; Nichols, K.B.; Lazrak, A.; Docampo, M.D.; Slingerland, A.E.; Slingerland, J.B.; Clurman, A.G.; Armijo, G.; Gomes, A.L.C.; Shono, Y.; et al. Lactose drives Enterococcus expansion to promote graft-versus-host disease. Science 2019, 366, 1143–1149. [Google Scholar] [CrossRef]
- Shimizu, K.; Ogura, H.; Asahara, T.; Nomoto, K.; Morotomi, M.; Nakahori, Y.; Osuka, A.; Yamano, S.; Goto, M.; Matsushima, A.; et al. Gastrointestinal dysmotility is associated with altered gut flora and septic mortality in patients with severe systemic inflammatory response syndrome: A preliminary study: Dysmotility and altered gut flora in SIRS. Neurogastroenterol. Motil. 2011, 23, 330-e157. [Google Scholar] [CrossRef]
- El Manouni El Hassani, S.; Niemarkt, H.J.; Berkhout, D.J.C.; Peeters, C.F.W.; Hulzebos, C.V.; Van Kaam, A.H.; Kramer, B.W.; Van Lingen, R.A.; Jenken, F.; De Boode, W.P.; et al. Profound Pathogen-Specific Alterations in Intestinal Microbiota Composition Precede Late-Onset Sepsis in Preterm Infants: A Longitudinal, Multicenter, Case-Control Study. Clin. Infect. Dis. 2021, 73, e224–e232. [Google Scholar] [CrossRef] [PubMed]
- Marascio, N.; Scarlata, G.G.M.; Romeo, F.; Cicino, C.; Trecarichi, E.M.; Quirino, A.; Torti, C.; Matera, G.; Russo, A. The Role of Gut Microbiota in the Clinical Outcome of Septic Patients: State of the Art and Future Perspectives. Int. J. Mol. Sci. 2023, 24, 9307. [Google Scholar] [CrossRef]
- Graspeuntner, S.; Waschina, S.; Künzel, S.; Twisselmann, N.; Rausch, T.K.; Cloppenborg-Schmidt, K.; Zimmermann, J.; Viemann, D.; Herting, E.; Göpel, W.; et al. Gut Dysbiosis With Bacilli Dominance and Accumulation of Fermentation Products Precedes Late-onset Sepsis in Preterm Infants. Clin. Infect. Dis. 2019, 69, 268–277. [Google Scholar] [CrossRef]
- Stoma, I.; Littmann, E.R.; Peled, J.U.; Giralt, S.; Van Den Brink, M.R.M.; Pamer, E.G.; Taur, Y. Compositional Flux Within the Intestinal Microbiota and Risk for Bloodstream Infection With Gram-negative Bacteria. Clin. Infect. Dis. 2021, 73, e4627–e4635. [Google Scholar] [CrossRef]
- Liu, W.; Cheng, M.; Li, J.; Zhang, P.; Fan, H.; Hu, Q.; Han, M.; Su, L.; He, H.; Tong, Y.; et al. Classification of the Gut Microbiota of Patients in Intensive Care Units During Development of Sepsis and Septic Shock. Genom. Proteom. Bioinform. 2020, 18, 696–707. [Google Scholar] [CrossRef]
- Shoji, F.; Yamashita, T.; Kinoshita, F.; Takamori, S.; Fujishita, T.; Toyozawa, R.; Ito, K.; Yamazaki, K.; Nakashima, N.; Okamoto, T. Artificial intelligence-derived gut microbiome as a predictive biomarker for therapeutic response to immunotherapy in lung cancer: Protocol for a multicentre, prospective, observational study. BMJ Open 2022, 12, e061674. [Google Scholar] [CrossRef] [PubMed]
- Alam, A.; Neish, A. Role of gut microbiota in intestinal wound healing and barrier function. Tissue Barriers 2018, 6, 1539595. [Google Scholar] [CrossRef] [PubMed]
- Chakaroun, R.M.; Massier, L.; Kovacs, P. Gut Microbiome, Intestinal Permeability, and Tissue Bacteria in Metabolic Disease: Perpetrators or Bystanders? Nutrients 2020, 12, 1082. [Google Scholar] [CrossRef]
- Ohland, C.L.; Macnaughton, W.K. Probiotic bacteria and intestinal epithelial barrier function. Am. J. Physiol. Gastrointest. Liver Physiol. 2010, 298, G807–G819. [Google Scholar] [CrossRef]
- Bischoff, S.C.; Barbara, G.; Buurman, W.; Ockhuizen, T.; Schulzke, J.-D.; Serino, M.; Tilg, H.; Watson, A.; Wells, J.M. Intestinal permeability--a new target for disease prevention and therapy. BMC Gastroenterol. 2014, 14, 189. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, B.O.; Bäckhed, F. Signals from the gut microbiota to distant organs in physiology and disease. Nat. Med. 2016, 22, 1079–1089. [Google Scholar] [CrossRef] [PubMed]
- Longhitano, Y.; Zanza, C.; Thangathurai, D.; Taurone, S.; Kozel, D.; Racca, F.; Audo, A.; Ravera, E.; Migneco, A.; Piccioni, A.; et al. Gut Alterations in Septic Patients: A Biochemical Literature Review. Rev. Recent Clin. Trials 2021, 15, 289–297. [Google Scholar] [CrossRef]
- Luiking, Y.C.; Poeze, M.; Ramsay, G.; Deutz, N.E. Reduced citrulline production in sepsis is related to diminished de novo arginine and nitric oxide production. Am. J. Clin. Nutr. 2009, 89, 142–152. [Google Scholar] [CrossRef]
- Fragkos, K.C.; Forbes, A. Citrulline as a marker of intestinal function and absorption in clinical settings: A systematic review and meta-analysis. United Eur. Gastroenterol. J. 2018, 6, 181–191. [Google Scholar] [CrossRef]
- Kong, C.; Li, S.-M.; Yang, H.; Xiao, W.-D.; Cen, Y.-Y.; Wu, Y.; Li, W.-M.; Sun, D.-L.; Xu, P.-Y. Screening and combining serum biomarkers to improve their diagnostic performance in the detection of intestinal barrier dysfunction in patients after major abdominal surgery. Ann. Transl. Med. 2019, 7, 388. [Google Scholar] [CrossRef]
- Cai, Y.; Gong, D.; Xiang, T.; Zhang, X.; Pan, J. Markers of intestinal barrier damage in patients with chronic insomnia disorder. Front. Psychiatry 2024, 15, 1373462. [Google Scholar] [CrossRef] [PubMed]
- Efremova, I.; Maslennikov, R.; Medvedev, O.; Kudryavtseva, A.; Avdeeva, A.; Krasnov, G.; Romanikhin, F.; Diatroptov, M.; Fedorova, M.; Poluektova, E.; et al. Gut Microbiota and Biomarkers of Intestinal Barrier Damage in Cirrhosis. Microorganisms 2024, 12, 463. [Google Scholar] [CrossRef] [PubMed]
- Guerville, M.; Leroy, A.; Sinquin, A.; Laugerette, F.; Michalski, M.-C.; Boudry, G. Western-diet consumption induces alteration of barrier function mechanisms in the ileum that correlates with metabolic endotoxemia in rats. Am. J. Physiol. Endocrinol. Metab. 2017, 313, E107–E120. [Google Scholar] [CrossRef] [PubMed]
- Rezaie, A.; Buresi, M.; Lembo, A.; Lin, H.; McCallum, R.; Rao, S.; Schmulson, M.; Valdovinos, M.; Zakko, S.; Pimentel, M. Hydrogen and Methane-Based Breath Testing in Gastrointestinal Disorders: The North American Consensus. Am. J. Gastroenterol. 2017, 112, 775–784. [Google Scholar] [CrossRef] [PubMed]
- Wittekamp, B.H.J.; Oostdijk, E.A.N.; Cuthbertson, B.H.; Brun-Buisson, C.; Bonten, M.J.M. Selective decontamination of the digestive tract (SDD) in critically ill patients: A narrative review. Intensive Care Med. 2020, 46, 343–349. [Google Scholar] [CrossRef]
- Plantinga, N.L.; Wittekamp, B.H.J.; Brun-Buisson, C.; Bonten, M.J.M.; Cooper, B.S.; Coll, P.; Lopez-Contreras, J.; Mancebo, J.; Wise, M.P.; Morgan, M.P.G.; et al. The effects of topical antibiotics on eradication and acquisition of third-generation cephalosporin and carbapenem-resistant Gram-negative bacteria in ICU patients; a post hoc analysis from a multicentre cluster-randomized trial. Clin. Microbiol. Infect. 2020, 26, 485–491. [Google Scholar] [CrossRef] [PubMed]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef]
- Rao, S.C.; Athalye-Jape, G.K.; Deshpande, G.C.; Simmer, K.N.; Patole, S.K. Probiotic Supplementation and Late-Onset Sepsis in Preterm Infants: A Meta-analysis. Pediatrics 2016, 137, e20153684. [Google Scholar] [CrossRef]
- Bassetti, M.; Bandera, A.; Gori, A. Therapeutic Potential of the Gut Microbiota in the Management of Sepsis. Crit. Care 2020, 24, 105. [Google Scholar] [CrossRef]
- Besselink, M.G.; Van Santvoort, H.C.; Renooij, W.; De Smet, M.B.; Boermeester, M.A.; Fischer, K.; Timmerman, H.M.; Ahmed Ali, U.; Cirkel, G.A.; Bollen, T.L.; et al. Intestinal Barrier Dysfunction in a Randomized Trial of a Specific Probiotic Composition in Acute Pancreatitis. Ann. Surg. 2009, 250, 712–719. [Google Scholar] [CrossRef]
- Johnstone, J.; Meade, M.; Lauzier, F.; Marshall, J.; Duan, E.; Dionne, J.; Arabi, Y.M.; Heels-Ansdell, D.; Thabane, L.; Lamarche, D.; et al. Effect of Probiotics on Incident Ventilator-Associated Pneumonia in Critically Ill Patients: A Randomized Clinical Trial. JAMA 2021, 326, 1024. [Google Scholar] [CrossRef] [PubMed]
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef]
- Davani-Davari, D.; Negahdaripour, M.; Karimzadeh, I.; Seifan, M.; Mohkam, M.; Masoumi, S.; Berenjian, A.; Ghasemi, Y. Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications. Foods 2019, 8, 92. [Google Scholar] [CrossRef] [PubMed]
- Krga, I. Therapeutics and microbiota. Microbiota Health Dis. 2022, 4, e762. [Google Scholar] [CrossRef]
- Swanson, K.S.; Gibson, G.R.; Hutkins, R.; Reimer, R.A.; Reid, G.; Verbeke, K.; Scott, K.P.; Holscher, H.D.; Azad, M.B.; Delzenne, N.M.; et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 687–701. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zeng, Q.; Li, K.; Wang, Y.; Wang, L.; Sun, M.; Zeng, J.; Jiang, H. Efficacy of probiotics or synbiotics for critically ill adult patients: A systematic review and meta-analysis of randomized controlled trials. Burns Trauma 2022, 10, tkac004. [Google Scholar] [CrossRef]
- Salminen, S.; Collado, M.C.; Endo, A.; Hill, C.; Lebeer, S.; Quigley, E.M.M.; Sanders, M.E.; Shamir, R.; Swann, J.R.; Szajewska, H.; et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 649–667. [Google Scholar] [CrossRef]
- Nataraj, B.H.; Ali, S.A.; Behare, P.V.; Yadav, H. Postbiotics-parabiotics: The new horizons in microbial biotherapy and functional foods. Microb. Cell Factories 2020, 19, 168. [Google Scholar] [CrossRef]
- Patel, R.M.; Denning, P.W. Therapeutic use of prebiotics, probiotics, and postbiotics to prevent necrotizing enterocolitis: What is the current evidence? Clin. Perinatol. 2013, 40, 11–25. [Google Scholar] [CrossRef]
- Lou, X.; Xue, J.; Shao, R.; Mo, C.; Wang, F.; Chen, G. Postbiotics as potential new therapeutic agents for sepsis. Burns Trauma 2023, 11, tkad022. [Google Scholar] [CrossRef]
- Wei, Y.; Yang, J.; Wang, J.; Yang, Y.; Huang, J.; Gong, H.; Cui, H.; Chen, D. Successful treatment with fecal microbiota transplantation in patients with multiple organ dysfunction syndrome and diarrhea following severe sepsis. Crit. Care 2016, 20, 332. [Google Scholar] [CrossRef] [PubMed]
- Piccioni, A.; Rosa, F.; Manca, F.; Pignataro, G.; Zanza, C.; Savioli, G.; Covino, M.; Ojetti, V.; Gasbarrini, A.; Franceschi, F.; et al. Gut Microbiota and Clostridium difficile: What We Know and the New Frontiers. Int. J. Mol. Sci. 2022, 23, 13323. [Google Scholar] [CrossRef]
- Jang, H.R.; Gandolfo, M.T.; Ko, G.J.; Satpute, S.; Racusen, L.; Rabb, H. Early exposure to germs modifies kidney damage and inflammation after experimental ischemia-reperfusion injury. Am. J. Physiol.-Ren. Physiol. 2009, 297, F1457–F1465. [Google Scholar] [CrossRef] [PubMed]
- Andrade-Oliveira, V.; Amano, M.T.; Correa-Costa, M.; Castoldi, A.; Felizardo, R.J.F.; De Almeida, D.C.; Bassi, E.J.; Moraes-Vieira, P.M.; Hiyane, M.I.; Rodas, A.C.D.; et al. Gut Bacteria Products Prevent AKI Induced by Ischemia-Reperfusion. J. Am. Soc. Nephrol. 2015, 26, 1877–1888. [Google Scholar] [CrossRef] [PubMed]
- Rabb, H.; Pluznick, J.; Noel, S. The Microbiome and Acute Kidney Injury. Nephron 2018, 140, 120–123. [Google Scholar] [CrossRef] [PubMed]
- Ianiro, G.; Masucci, L.; Quaranta, G.; Simonelli, C.; Lopetuso, L.R.; Sanguinetti, M.; Gasbarrini, A.; Cammarota, G. Randomised clinical trial: Faecal microbiota transplantation by colonoscopy plus vancomycin for the treatment of severe refractory Clostridium difficile infection—Single versus multiple infusions. Aliment. Pharmacol. Ther. 2018, 48, 152–159. [Google Scholar] [CrossRef]
- DeFilipp, Z.; Bloom, P.P.; Torres Soto, M.; Mansour, M.K.; Sater, M.R.A.; Huntley, M.H.; Turbett, S.; Chung, R.T.; Chen, Y.-B.; Hohmann, E.L. Drug-Resistant E. coli Bacteremia Transmitted by Fecal Microbiota Transplant. N. Engl. J. Med. 2019, 381, 2043–2050. [Google Scholar] [CrossRef]
- Mullish, B.H.; Alexander, J.L.; Segal, J.P. Microbiota and faecal microbiota transplant. Microbiota Health Dis. 2021, 3, e586. [Google Scholar] [CrossRef]
Authors | Type | Year | Subjects | Findings |
---|---|---|---|---|
Arpaia et al. [18] | Single-center case-control study | 2021 | Five mice in each group. Pathogen-free mice (SPF), others treated with broad-spectrum antibiotics (AVNM), and still others germ-free (GF). | After the administration of butyrate, an increase in extrathymic Treg cell levels was observed. |
Schulthess et al. [19] | Observational study | 2019 | Intestinal macrophages in vivo. | Butyrate induced a reduction in mTOR kinase activity and the production of antimicrobial peptides without an increased inflammatory cytokine response. Butyrate drove the differentiation from monocytes to macrophages through the inhibition of histone deacetylase 3 (HDAC3). |
Wang et al. [21] | Single-center case-control study | 2017 | Male mice were randomly divided into the following groups: septic model group (M), normal control group (NC), and SCFA pretreatment groups. | Butyrate, a short-chain fatty acid (SCFA), significantly reduced inflammation in response to sepsis by enhancing the expression of the anti-inflammatory cytokine IL-10 (p < 0.01). |
Yamada et al. [22] | Single-center case-control study | 2015 | 140 ICU patients with SIRS criteria and PCR level >10 mg/dL. Fecal samples were used for the quantitative measurement of SCFA concentrations. | The levels of butyrate, propionate, and acetate in the feces of these patients were significantly lower than those in healthy volunteers and stayed low throughout the entire 6-week ICU stay. |
McDonald et al. [24] | Single-center case-control study | 2020 | Pathogen-free (SPF) and germ-free (GF) mice were infected with Staphylococcus aureus via intravenous injection. | The gut microbiota supports the removal of circulating pathogens by Kupffer cells in vivo through D-lactate produced by commensal bacteria, which travels to the liver through the portal vein (p < 0.05). |
Wang et al. [26] | Single-center case-control study | 2024 | Thirty-six healthy, 8-week-old male C57BL/6J mice, maintained in pathogen-free conditions, were randomly assigned to four groups: Control, LPS, EcN, and EcN + LPS. | Pretreatment with Escherichia coli Nissle (EcN) can significantly increase the abundance of Bacteroidetes (produce high levels of acetate) and Firmicutes (significant amounts of butyrate) in mice with septic shock. This intervention not only enhances intestinal barrier function but also positively modulates gut microbiota composition. |
Grillo-Ardila et al. [29] | Meta-analysis | 2024 | Five RCTs (n = 442 participants) and ten NRSs (n = 3724 participants) were included. | Limited evidence indicates that Exclusive Enteral Nutrition (EEN) may be a safe and potentially effective intervention for supporting gut microbiota in critically ill patients with sepsis or septic shock. |
Kaewdech et al. [31] | Meta-analysis | 2022 | Fiber supplementation for hospitalized adults on enteral nutrition was reviewed, including 16 randomized controlled trials (RCTs) from a total of 4469 studies found. | Fiber supplements help alleviate post-meal diarrhea in hospitalized patients who are receiving enteral nutrition (p = 0.005). This is likely due to the production of SCFAs following bacterial metabolism. |
Lopez-Delgado et al. [33] | Multicenter-observational study | 2022 | 406 patients were included in the analysis, of whom 61 received IMN. | Patients treated with IMN formulas received a higher mean caloric and protein intake, and better 28-day survival rates (p < 0.001). |
Saleri et al. [36] | Preclinical study | 2022 | Acetate stimulated cell viability and NO production in a dose-dependent manner (p < 0.05), activating a barrier response through claudin-4 and immunity via β-defensin 1 (p < 0.05). Propionate supplementation showed similar effects on these parameters. Additionally, SCFA supplementation significantly induced β-defensin 1 expression (p < 0.05). | |
Zhan et al. [41] | Single-center case-control study | 2022 | Twenty wild-type and ten TLR4 knockout (KO) mice were used to establish a sepsis-induced dysfunctional intestinal barrier model through intraperitoneal injection of lipopolysaccharide (LPS, 10 mg/kg). | The deficiency of TLR4 mitigated LPS-induced intestinal barrier dysfunction by reducing inflammatory responses (p < 0.01) and apoptosis (p < 0.01), preventing intestinal damage, and modulating gut microbiota dysbiosis. |
Gu et al. [42] | Preclinical study | 2016 | TLR2 signaling in intestinal epithelial cells can enhance barrier function and prevent DON-induced epithelial barrier dysfunction. | |
Yoseph et al. [43] | Randomized controlled trial | 2017 | Male and female FVB/N mice aged between six and twelve weeks. Randomized to undergo cecal ligation and puncture (CLP) or sham laparotomy. | Claudin-2 and JAM-A increased in sepsis, while claudin-5 and occludin decreased in response to sepsis (p < 0.005). In this case, the disruption of the intestinal barrier could be associated with the gut microbiota; however, there is also a component linked to pro-apoptotic stimuli in the intestinal epithelium due to mitochondrial dysfunction caused by sepsis [62]. |
Jung et al. [44] | Single-center case-control study | 2012 | Four groups of mice were used: WT (Wild-Type) as a control, Tlr2−/− mice, Tlr4−/− mice, and Myd88−/− mice. | Upon TLR-2 stimulation, Y. pseudotuberculosis-infected monocytes activated caspase-1 and produced IL-1β. Subsequently, IL-1β enhanced NF-κB activation and myosin light chain kinase (MLCK) expression in intestinal epithelial cells, thereby disrupting the intestinal barrier by opening tight junctions. |
Lorentz et al. [45] | Single-center case-control study | 2017 | Male and female mice, aged six to twelve weeks, with a genetic deletion of the long MLCK isoform, as well as wild-type (WT) mice. | Improved intestinal barrier function in MLCK−/− mice was associated with increased levels of the tight junction mediators ZO-1 and claudin-15. Survival was significantly increased in MLCK−/− mice (p < 0.0001). Infections can lead to the upregulation of MLCK, so the gut microbiome may regulate this process through competition with pathogens. |
Schirmer et al. [46] | Single-center cohort study | 2016 | Fecal samples from 500 healthy individuals were collected to generate microbial taxonomic and functional profiles, along with simultaneous blood samples to assess cytokine responses. | Coprococcus comes showed a specific association with IL-1β and IL-6 in response to C. albicans hyphae stimulation. Furthermore, C. comes was inversely related to IL-22 production triggered by S. aureus. |
Khosravi et al. [47] | Single-center case-control study | 2014 | Pathogen-free (SPF) and germ-free (GF) mice were infected with Listeria monocytogenes. | Germ-free mice lack myeloid cell populations in the spleen and bone marrow. The microbiota supports the restoration of myelopoiesis and enhances early resistance to systemic infection by Listeria monocytogenes (p < 0.05). |
Zhang et al. [48] | Single-center case-control study | 2015 | Neutrophil populations in germ-free (GF) mice compared to specific pathogen-free (SPF) animals. | The microbiota influences neutrophil aging via Toll-like receptor (TLR) signaling pathways and myeloid differentiation factor 88 (MyD88). |
Wilmore et al. [49] | Single-center case-control study | 2018 | C57BL/6 (B6) mice raised in PENN-SPF conditions compared to age-matched JAX-SPF B6 mice. | An increase in Proteobacteria in the microbiota led to IgA-mediated resistance to polymicrobial sepsis. Commensal microbes directly affect the serum IgA profile. |
Zeng et al. [50] | Single-center case-control study | 2016 | Naive wild-type (WT) mice that are either specific pathogen-free (SPF) or germ-free (GF), compared to J H−/− SPF mice with immunoglobulin and B cell deficiencies. | Symbiotic gram-negative bacteria induce an immunoglobulin G (IgG) response against gram-negative bacterial antigens, which provides protection against systemic infections by E. coli and Salmonella. T cells and Toll-like receptor 4 on B cells play a crucial role in generating microbiota-specific IgG. |
Schuijt et al. [53] | Single-center case-control study | 2016 | C57BL/6 mice with depleted microbiota were subsequently infected intranasally with S. pneumoniae and then subjected to fecal microbiota transplantation (FMT). | Fecal microbiota transplantation (FMT) in mice with an impaired gut microbiota restored normal lung bacterial counts and levels of tumor necrosis factor-alpha (TNF-α) and interleukin-10 (IL-10) six hours after pneumococcal infection. Whole-genome analysis of alveolar macrophages showed that metabolic pathways were upregulated without a healthy gut microbiota (p < 0.05). |
Lou et al. [54] | Single-center case-control study | 2023 | 16S rRNA sequencing of fecal samples from both healthy individuals and sepsis patients was conducted to explore whether alterations in gut bacteria are linked to sepsis. A mouse sepsis model was created using cecal ligation and puncture (CLP) to investigate the impact of fecal microbiota transplantation (FMT) and short-chain fatty acids (SCFAs). | Mice with gut microbiota disturbances (ANC group) exhibited a higher risk of death, inflammation, and organ failure compared to mice subjected to CLP (p < 0.05). |
Livanos et al. [55] | Single-center case-control study | 2018 | 93 patients in intensive care were evaluated 72 h after admission. | A significant decrease in the proportion of Clostridial Clusters IV/XIVa, taxa that produce short-chain fatty acids (SCFA), was observed. At the same time, a significant expansion of Enterococcus was noted, associated with antibiotic use (p < 0.01). |
Ubeda et al. [58] | Single-center case-control study | 2010 | Twelve mice were treated with antibiotics to assess changes in the microbiota. | In patients undergoing allogeneic hematopoietic stem-cell transplantation, intestinal dominance by vancomycin-resistant enterococci (VRE) often preceded bloodstream infection (p < 0.001). |
Patrier et al. [59] | Single-center cohort study | 2022 | A total of 95 patients were included, with 765 oropharyngeal and rectal samples. | Oropharyngeal and rectal concentrations of Enterococcus spp., Staphylococcus aureus, and Candida spp. were associated with a higher risk of death. This association remained significant after adjustment for prognostic covariates (age, chronic illness, daily use of antimicrobial agents, and daily SOFA score). |
Hayakawa et al. [60] | Single-center case-control study | 2011 | Fifteen patients who suffered a sudden and severe event, along with 12 healthy volunteers as a control group, had fecal samples collected using rectal swabs within 6 h of their emergency room arrival. | Obligate anaerobes and Lactobacillus significantly decreased, and the levels of major short-chain fatty acids in patients were notably lower than those in the control group. The gut microbiota and concentrations of key short-chain fatty acids did not return to normal levels. Conversely, Enterococcus and Pseudomonas increased over the study period. |
Taur et al. [63] | Dominant organisms typically included Enterococcus, Streptococcus, and various Proteobacteria. Metronidazole treatment led to a threefold increase in Enterococcus dominance, whereas fluoroquinolone treatment resulted in a tenfold reduction in Proteobacteria dominance. | 2012 | Fecal samples were gathered from 94 patients receiving allogeneic hematopoietic stem-cell transplantation (HSCT) at various times, from before the transplant through to 35 days post-transplant. | Dominant organisms typically included Enterococcus, Streptococcus, and various Proteobacteria. Metronidazole treatment led to a threefold increase in Enterococcus dominance, whereas fluoroquinolone treatment resulted in a tenfold reduction in Proteobacteria dominance. |
Authors | Type | Year | Antibiotics | Findings | Subjects |
---|---|---|---|---|---|
Taur et al. [63] | Single-center cohort study | 2012 | Metronidazole fluoroquinolones | 3-fold increase in the risk of enterococcal domination. 10-fold decrease in the risk of proteobacterial domination. | 94 patients |
Niu et al. [64] | Single-center case-control study | 2020 | Empirical broad-spectrum antibiotics | Expansion of Proteobacteria (p < 0.01) Translocation of E. coli into the liver and spleen with increased susceptibility to sepsis from K. pneumoniae. Decrease in type 3 innate lymphoid cells (ILC3). | |
Singer et al. [67] | Single-center cohort study | 2019 | Gentamicin Vancomycin | Relative abundance of Rodentibacter and Lactobacillus deficiency. Rodentibacter deficiency and normal presence of Lactobacillus. | |
De Lastours et al. [68] | Single-center case-control study | 2018 | Ceftriaxone | Colonization of AmpC-producing Enterobacteriaceae (p = 0.02). | 15 ceftriaxone and 22 control patients |
Smits et al. [69] | Review | 2016 | Clindamycin, cephalosporins, fluoroquinolones | Increase the risk of Clostridium difficile infection and development of MDR pathogens. | |
Zimmerman et al. [70] | Systematic review | 2019 | Cephalosporins, macrolides, clindamycin, amoxicillin, amoxcillin/clavulanate quinolones, lipopolyglycopeptides, ketolides, tigecycline, and fosfomycin. Cephalosporins, sulfonamides, macrolides, amoxcillin, clindamycin, quinolones Quinolones, piperacillin, macrolides, carbapenems, clindamycin Cephalosporins (except fifth-generation cephalosporins), Amoxicllin, carbapenems, piperacillin and ticarcillin, lipoglycopeptides Doxycycline and macrolides Amoxcillin/clavulant | Increase in abundance of Enterobacteriaea other than E. coli, such as Enterobacter spp. Klebsiella spp. and Citrobacter spp. E. coli deficiency. Deficiency of anaerobic bacteria. Increased abundance of Enterococcus spp. Enterecoccus deficiency. Increased E. coli. | 2076 participants and 301 controls |
Zhao et al. [72] | Single-center case-control study | 2016 | Cefdinir Azithromycin | Reduces the levels of acetic acid, propionic acid, and butyric acid. After the end of dosing, the levels of butyric acid and valeric acid remained low (p < 0.01). Reduces the concentrations of all SCFAs (except hexanoic acid). The gut microbiota recovered, but did not reach the normal level within 8 days of stopping azithromycin (p < 0.05). | 18 rats, randomly divided into three groups, two experimental groups and a control group |
Authors | Type | Year | Subjects | Findings |
---|---|---|---|---|
El Manouni El Hassani et al. [76] | Longitudinal, multicenter, case-control study | 2021 | There were forty LOS cases (preterm infants born under 30 weeks of gestation) and forty matched controls. | The causing pathogen in gram-negative LOS was found in at least one of the stool samples that were taken three days before the start of the illness. Gram-negative and gram-positive LOS (except CoNS) combined had at least 1 stool sample taken three days before the start of LOS that contained the causal patogen in 92% of the fecal samples. In general, it was possible to forecast LOS (expect CoNS) one day before clinical start. |
Graspeuntner et al. [78] | Single-center cohort study | 2019 | Faecal samples from 164 unaffected controls and 71 premature newborns with LOS. | Anaerobic bacteria are decreased and Bacilli and their fermentation products accumulate during the intestinal dysbiosis that precedes LOS. |
Stoma et al. [79] | Retrospective, observational study | 2021 | 708 allogeneic hematopoietic cell transplant (allo-HCT) subjects were studied with 4768 fecal samples for analysis. | In the context of allo-HCT, gram-negative intestinal colonization is a strong predictor of BSI. Fluoroquinolones seem to affect gut colonization, and suppress these infections. |
Liu et al. [80] | Multicenter cohort study | 2020 | Four sets of microbiome samples were obtained: 131 samples from a Chinese ICU cohort; 264 samples from a healthy Chinese cohort; 129 samples from an American ICU cohort; and 26 samples from a healthy American cohort. | While Enterococcus made up the majority of ICU-enterotype II (ICU E2), Bacteroides and an unknown strain of Enterobacteriaceae made up the majority of ICU-enterotype I (ICU E1). For ICU E1, septic shock was more likely to happen with APACHE II values greater than 18. |
Shoji et al. [81] | Multicenter, prospective, observational study | 2022 | 400 patients will be enrolled prospectively. | This study uses artificial intelligence to identify the precise makeup of the gut microbiome or combination of gut microbiome containing a real predictive biomarker of therapeutic response to immunotherapy in lung cancer patients. It is scheduled to conclude in September 2024, 12 months after the last person is recruited. |
Authors | Type | Year | Subjects | Findings |
---|---|---|---|---|
Plantinga et al. [96] | Randomized controlled trial | 2020 | In six European nations, thirteen intensive care units, and 8665 individuals. | In mechanically ventilated ICU patients, SDD correlated with more remission and less acquisition of 3GCR-E and CR-GNB in the rectum than SC. The adjusted cause-specific hazard ratios (CSHR) for eradication of rectal carriage for SDD were 1.76 (95% CI 1.31–2.36) for 3GCR-E and 3.17 (95% CI 1.60–6.29) for CR-GNB compared with SC. |
Rao et al. [98] | Meta-analysis | 2016 | Results of 37 RCTs (N = 9416). | Showed probiotics significantly decreased the risk of LOS (675/4852 [13.9%] vs. 744/4564 [16.3%]; p = 0.007). |
Besselink et al. [100] | Randomized controlled trial | 2009 | Urine samples were obtained from 141 patients 24 to 48 h following the initiation of probiotic or placebo medication, and 7 days later. | This combination of probiotic strains as a prophylactic treatment decreased bacterial translocation, but was related to higher bacterial translocation and enterocyte damage among individuals with organ failure. Probiotic prophylaxis was associated with an increase in I-FABP (median 362 vs. 199 pg/mL; p = 0.02), most evidently in patients with organ failure (p = 0.001). |
Johnstone et al. [101] | Randomized controlled trial | 2021 | In 44 ICUs in Canada, the United States, and Saudi Arabia enrolling 2653 adults predicted to require mechanical ventilation for at least 72 h. | In critically ill patients on mechanical ventilation, the use of the probiotic Lactobacillus rhamnosus GG did not show a relevant impact on the incidence of ventilator-associated pneumonia when compared to a placebo. VAP developed among 289 of 1318 patients (21.9%) receiving probiotics vs. 284 of 1332 controls (21.3%); (95% CI, 0.87–1.22; p = 0.73). |
Wei et al. [111] | Case Reports | 2016 | Upon admission, a 65-year-old man was diagnosed with cerebellar hemorrhage, while an 84-year-old man was diagnosed with cerebral infarction. Both patients subsequently developed multiple organ dysfunction syndrome (MODS), septic shock, and severe watery diarrhea. | The results from treating both with fecal microbiota transplantation (FMT) suggest that reestablishing the intestinal microbiota barrier can help resolve the infection. |
Ianiro et al. [116] | Randomized clinical trial | 2018 | A total of 56 participants were enrolled, with 28 assigned to each treatment group. | Twenty-one patients in the FMT-S group and 28 patients in the FMT-M group were cured (75% vs. 100%, respectively, p = 0.01). |
DeFilipp et al. [117] | Case reports | 2019 | Two patients linked to the same stool donor by means of genomic sequencing. | Following FMT in two separate clinical trials, bacteremia caused by extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli developed. One of the patients did not survive. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piccioni, A.; Spagnuolo, F.; Candelli, M.; Voza, A.; Covino, M.; Gasbarrini, A.; Franceschi, F. The Gut Microbiome in Sepsis: From Dysbiosis to Personalized Therapy. J. Clin. Med. 2024, 13, 6082. https://doi.org/10.3390/jcm13206082
Piccioni A, Spagnuolo F, Candelli M, Voza A, Covino M, Gasbarrini A, Franceschi F. The Gut Microbiome in Sepsis: From Dysbiosis to Personalized Therapy. Journal of Clinical Medicine. 2024; 13(20):6082. https://doi.org/10.3390/jcm13206082
Chicago/Turabian StylePiccioni, Andrea, Fabio Spagnuolo, Marcello Candelli, Antonio Voza, Marcello Covino, Antonio Gasbarrini, and Francesco Franceschi. 2024. "The Gut Microbiome in Sepsis: From Dysbiosis to Personalized Therapy" Journal of Clinical Medicine 13, no. 20: 6082. https://doi.org/10.3390/jcm13206082
APA StylePiccioni, A., Spagnuolo, F., Candelli, M., Voza, A., Covino, M., Gasbarrini, A., & Franceschi, F. (2024). The Gut Microbiome in Sepsis: From Dysbiosis to Personalized Therapy. Journal of Clinical Medicine, 13(20), 6082. https://doi.org/10.3390/jcm13206082