Sedentary Lifestyle Is a Modifiable Risk Factor for Cognitive Impairment in Patients on Dialysis and after Kidney Transplantation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cognitive Function Assessment
2.2. Statistical Analysis
3. Results
3.1. Baseline Characteristics of the Study Population
3.2. Modifiable Risk Factors for Dementia and ACE III Test Results
3.3. Predictors of Cognitive Impairment in KT and Dialysis Patients
4. Discussion
5. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kamide, K. CKD could be a new risk factor of dementia. Hypertens. Res. 2024, 47, 1090–1091. [Google Scholar] [CrossRef] [PubMed]
- Pépin, M.; Klimkowicz-Mrowiec, A.; Godefroy, O.; Delgado, P.; Carriazo, S.; Ferreira, A.C.; Golenia, A.; Malyszko, J.; Grodzicki, T.; Giannakou, K.; et al. Cognitive disorders in patients with chronic kidney disease: Approaches to prevention and treatment. Eur. J. Neurol. 2023, 30, 2899–2911. [Google Scholar] [CrossRef] [PubMed]
- Bugnicourt, J.-M.; Godefroy, O.; Chillon, J.-M.; Choukroun, G.; Massy, Z.A. Cognitive disorders and dementia in CKD: The neglected kidney-brain axis. J. Am. Soc. Nephrol. 2013, 24, 353–363. [Google Scholar] [CrossRef]
- Golenia, A.; Olejnik, P.; Żołek, N.; Wojtaszek, E.; Małyszko, J. Cognitive Impairment and Anxiety Are Prevalent in Kidney Transplant Recipients. Kidney Blood Press. Res. 2023, 48, 587–595. [Google Scholar] [CrossRef]
- Golenia, A.; Zolek, N.; Olejnik, P.; Wojtaszek, E.; Glogowski, T.; Malyszko, J. Prevalence of Cognitive Impairment in Peritoneal Dialysis Patients and Associated Factors. Kidney Blood Press. Res. 2023, 48, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Golenia, A.; Żołek, N.; Olejnik, P.; Żebrowski, P.; Małyszko, J. Patterns of Cognitive Impairment in Hemodialysis Patients and Related Factors including Depression and Anxiety. J. Clin. Med. 2023, 12, 3119. [Google Scholar] [CrossRef]
- Jurgensen, A.; Qannus, A.A.; Gupta, A. Cognitive Function in Kidney Transplantation. Curr. Transplant. Rep. 2020, 7, 145–153. [Google Scholar] [CrossRef]
- Rapa, S.F.; Di Iorio, B.R.; Campiglia, P.; Heidland, A.; Marzocco, S. Inflammation and Oxidative Stress in Chronic Kidney Disease—Potential Therapeutic Role of Minerals, Vitamins and Plant-Derived Metabolites. Int. J. Mol. Sci. 2020, 21, 263. [Google Scholar] [CrossRef]
- Tamura, M.K.; Tam, K.; Vittinghoff, E.; Raj, D.; Sozio, S.M.; Rosas, S.E.; Makos, G.; Lora, C.; He, J.; Go, A.S.; et al. Inflammatory Markers and Risk for Cognitive Decline in Chronic Kidney Disease: The CRIC Study. Kidney Int. Rep. 2016, 2, 192–200. [Google Scholar] [CrossRef]
- Zimmermann, S.; Mathew, A.; Bondareva, O.; Elwakiel, A.; Waldmann, K.; Jiang, S.; Rana, R.; Singh, K.; Kohli, S.; Shahzad, K.; et al. Chronic kidney disease leads to microglial potassium efflux and inflammasome activation in the brain. Kidney Int. 2024; in press. [Google Scholar] [CrossRef]
- Rotondi, S.; Tartaglione, L.; Pasquali, M.; Ceravolo, M.J.; Mitterhofer, A.P.; Noce, A.; Tavilla, M.; Lai, S.; Tinti, F.; Muci, M.L.; et al. Association between Cognitive Impairment and Malnutrition in Hemodialysis Patients: Two Sides of the Same Coin. Nutrients 2023, 15, 813. [Google Scholar] [CrossRef] [PubMed]
- Baumgart, M.; Snyder, H.M.; Carrillo, M.C.; Fazio, S.; Kim, H.; Johns, H. Summary of the evidence on modifiable risk factors for cognitive decline and dementia: A population-based perspective. Alzheimer’s Dement. 2015, 11, 718–726. [Google Scholar] [CrossRef] [PubMed]
- Litke, R.; Garcharna, L.C.; Jiwani, S.; Neugroschl, J. Modifiable Risk Factors in Alzheimer Disease and Related Dementias: A Review. Clin. Ther. 2021, 43, 953–965. [Google Scholar] [CrossRef] [PubMed]
- Livingston, G.; Huntley, J.; Sommerlad, A.; Ames, D.; Ballard, C.; Banerjee, S.; Brayne, C.; Burns, A.; Cohen-Mansfield, J.; Cooper, C.; et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 2020, 396, 413–446. [Google Scholar] [CrossRef] [PubMed]
- Ngandu, T.; Lehtisalo, J.; Solomon, A.; Levälahti, E.; Ahtiluoto, S.; Antikainen, R.; Bäckman, L.; Hänninen, T.; Jula, A.; Laatikainen, T.; et al. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): A randomised controlled trial. Lancet 2015, 385, 2255–2263. [Google Scholar] [CrossRef]
- Rosenberg, A.; Mangialasche, F.; Ngandu, T.; Solomon, A.; Kivipelto, M. Multidomain Interventions to Prevent Cognitive Impairment, Alzheimer’s Disease, and Dementia: From FINGER to World-Wide FINGERS. J. Prev. Alzheimer’s Dis. 2020, 7, 29–36. [Google Scholar] [CrossRef]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.-P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Kaczmarek, B.; Ilkowska, Z.; Kropinska, S.; Tobis, S.; Krzyminska-Siemaszko, R.; Kaluzniak-Szymanowska, A.; Wieczorowska-Tobis, K. Applying ACE-III, M-ACE and MMSE to Diagnostic Screening Assessment of Cognitive Functions within the Polish Population. Int. J. Environ. Res. Public Health 2022, 19, 12257. [Google Scholar] [CrossRef]
- Lautenschlager, N.T.; Cox, K.L.; Flicker, L.; Foster, J.K.; Van Bockxmeer, F.M.; Xiao, J.; Greenop, K.R.; Almeida, O.P. Effect of Physical Activity on Cognitive Function in Older Adults at Risk for Alzheimer Disease: A randomized trial. JAMA 2008, 300, 1027–1037. [Google Scholar] [CrossRef]
- Ratey, J.J.; Loehr, J.E. The positive impact of physical activity on cognition during adulthood: A review of underlying mechanisms, evidence and recommendations. Prog. Neurobiol. 2011, 22, 171–185. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Li, G.; Hua, S.; Liu, Y.; Chen, L. Effect of exercise on cognitive function in chronic disease patients: A meta-analysis and systematic review of randomized controlled trials. Clin. Interv. Aging 2017, 12, 773–783. [Google Scholar] [CrossRef]
- Chu, N.M.; Hong, J.; Harasemiw, O.; Chen, X.; Fowler, K.J.; Dasgupta, I.; Bohm, C.; Segev, D.L.; McAdams-DeMarco, M.A.; The Global Renal Exercise Network. Chronic kidney disease, physical activity and cognitive function in older adults—Results from the National Health and Nutrition Examination Survey (2011–2014). Nephrol. Dial. Transplant. 2021, 37, 2180–2189. [Google Scholar] [CrossRef]
- Bogataj, Š.; Mesarič, K.K.; Pajek, M.; Petrušič, T.; Pajek, J. Physical exercise and cognitive training interventions to improve cognition in hemodialysis patients: A systematic review. Front. Public Health 2022, 10, 1032076. [Google Scholar] [CrossRef] [PubMed]
- Wallace, L.M.K.; Wallace, L.M.K.; Theou, O.; Theou, O.; Godin, J.; Godin, J.; Andrew, M.K.; Andrew, M.K.; A Bennett, D.; Bennett, D.A.; et al. Investigation of frailty as a moderator of the relationship between neuropathology and dementia in Alzheimer’s disease: A cross-sectional analysis of data from the Rush Memory and Aging Project. Lancet Neurol. 2019, 18, 177–184. [Google Scholar] [CrossRef]
- Manfredini, F.; Mallamaci, F.; D’arrigo, G.; Baggetta, R.; Bolignano, D.; Torino, C.; Lamberti, N.; Bertoli, S.; Ciurlino, D.; Rocca-Rey, L.; et al. Exercise in Patients on Dialysis: A Multicenter, Randomized Clinical Trial. J. Am. Soc. Nephrol. 2016, 28, 1259–1268. [Google Scholar] [CrossRef] [PubMed]
- Baggetta, R.; on behalf of the EXCITE Working group; D’arrigo, G.; Torino, C.; ElHafeez, S.A.; Manfredini, F.; Mallamaci, F.; Zoccali, C.; Tripepi, G. Effect of a home based, low intensity, physical exercise program in older adults dialysis patients: A secondary analysis of the EXCITE trial. BMC Geriatr. 2018, 18, 248. [Google Scholar] [CrossRef]
- Belik, F.S.; Silva, V.R.O.E.; Braga, G.P.; Bazan, R.; Vogt, B.P.; Caramori, J.C.T.; Barretti, P.; Gonçalves, R.d.S.; Bôas, P.J.F.V.; Hueb, J.C.; et al. Influence of Intradialytic Aerobic Training in Cerebral Blood Flow and Cognitive Function in Patients with Chronic Kidney Disease: A Pilot Randomized Controlled Trial. Nephron 2018, 140, 9–17. [Google Scholar] [CrossRef]
- McAdams-DeMarco, M.A.; Konel, J.; Warsame, F.; Ying, H.; Fernández, M.G.; Carlson, M.C.; Fine, D.M.; Appel, L.J.; Segev, D.L. Intradialytic Cognitive and Exercise Training May Preserve Cognitive Function. Kidney Int. Rep. 2018, 3, 81–88. [Google Scholar] [CrossRef]
- Chu, N.M.; Segev, D.; McAdams-DeMarco, M.A. Interventions to Preserve Cognitive Functioning among Older Kidney Transplant Recipients. Curr. Transplant. Rep. 2020, 7, 346–354. [Google Scholar] [CrossRef]
- Mortamais, M.; Portet, F.; Brickman, A.M.; Provenzano, F.A.; Muraskin, J.; Akbaraly, T.N.; Berr, C.; Touchon, J.; Bonafé, A.; le Bars, E.; et al. Education Modulates the Impact of White Matter Lesions on the Risk of Mild Cognitive Impairment and Dementia. Am. J. Geriatr. Psychiatry 2013, 22, 1336–1345. [Google Scholar] [CrossRef] [PubMed]
- Pettigrew, C.; Soldan, A. Defining Cognitive Reserve and Implications for Cognitive Aging. Curr. Neurol. Neurosci. Rep. 2019, 19, 1. [Google Scholar] [CrossRef]
- Stern, Y.; Arenaza-Urquiljo, E.M.; Bartrés-Faz, D.; Belleville, S.; Cantillon, M.; Chetelat, G.; Ewers, M.; Franzmeier, N.; Kempermann, G.; Kremen, W.S.; et al. Whitepaper: Defining and investigating cognitive reserve, brain reserve, and brain maintenance. Alzheimer’s Dement. 2020, 16, 1305–1311. [Google Scholar] [CrossRef]
- Prakash, J.; Ryali, V.; Srivastava, K.; Bhat, P.; Shashikumar, R. Cognitive reserve: The warehouse within. Ind. Psychiatry J. 2011, 20, 79–82. [Google Scholar] [CrossRef] [PubMed]
- Håkansson, K.; Rovio, S.; Helkala, E.-L.; Vilska, A.-R.; Winblad, B.; Soininen, H.; Nissinen, A.; Mohammed, A.H.; Kivipelto, M. Association between mid-life marital status and cognitive function in later life: Population based cohort study. BMJ 2009, 339, b2462. [Google Scholar] [CrossRef] [PubMed]
- Kimmel, P.L. Psychosocial factors in dialysis patients. Kidney Int. 2001, 59, 1599–1613. [Google Scholar] [CrossRef]
- Agrawaal, K.K.; Chhetri, P.K.; Singh, P.M.; Manandhar, D.N.; Poudel, P.; Chhetri, A. Prevalence of Depression in Patients with CKD 5 on Hemodialysis at A Tertiary Care Center in Nepal. J. Nepal Med. Assoc. 2019, 57, 172–175. [Google Scholar] [CrossRef]
- Goh, Z.S.; Griva, K. Anxiety and depression in patients with end-stage renal disease: Impact and management challenges—A narrative review. Int. J. Nephrol. Renov. Dis. 2018, 11, 93–102. [Google Scholar] [CrossRef]
- Wong, M.; Kiss, A.; Herrmann, N.; Lanctôt, K.L.; Gallagher, D. Modifiable Risk Factors Associated With Cognitive Decline in Late Life Depression: Findings From the Canadian Longitudinal Study on Aging: Facteurs de risque modifiables associés au déclin cognitif dans la dépression en fin de vie: Constatations de l’Étude longitudinale canadienne sur le vieillissement. Can. J. Psychiatry 2024, 69, 708–716. [Google Scholar] [CrossRef]
- Papakostas, G.I. Cognitive Symptoms in Patients With Major Depressive Disorder and Their Implications for Clinical Practice. J. Clin. Psychiatry 2013, 75, 8–14. [Google Scholar] [CrossRef]
- You, R.; Ho, Y.-S.; Chang, R.C.-C. The pathogenic effects of particulate matter on neurodegeneration: A review. J. Biomed. Sci. 2022, 29, 15. [Google Scholar] [CrossRef] [PubMed]
- Peters, R.; Ee, N.; Peters, J.; Booth, A.; Mudway, I.; Anstey, K.J. Air Pollution and Dementia: A Systematic Review. J. Alzheimer’s Dis. 2019, 70, S145–S163. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Kwong, J.C.; Copes, R.; Hystad, P.; van Donkelaar, A.; Tu, K.; Brook, J.R.; Goldberg, M.S.; Martin, R.V.; Murray, B.J.; et al. Exposure to ambient air pollution and the incidence of dementia: A population-based cohort study. Environ. Int. 2017, 108, 271–277. [Google Scholar] [CrossRef] [PubMed]
KT (N = 117) | PD and HD (N = 108) | p-Value * | |
---|---|---|---|
Age (years) mean ± SD [Q1; Q3] | 50.9 ± 12.24 [44.5; 60.5] | 61.59 ± 16.33] [51; 72] | 0.001 a,* |
CCI mean ± SD [Q1; Q3] | 3.60 ± 1,67 [2; 4] | 5.43 ± 2.37 [4; 7.8] | 0.001 a,* |
Modifiable risk factors for dementia | |||
Hypertension (N) | 107 | 94 | 0.207 b |
Years of education mean ± SD | 14.5 ± 3.38 | 14 ± 3,36 | 0.500 a |
[Q1; Q3] | [12; 17] | [12; 17] | |
Diabetes mellitus (N) | 29 | 35 | 0.284 b |
Living place (N)
| 0.001 b,* | ||
42 | 85 | ||
75 | 23 | ||
Occupation (N) | 109 | 99 | 0.671 b |
Cohabitant (N) | 96 | 84 | 0.423 b |
Excessive alcohol consumption (N) | 4 | 7 | 0.287 b |
Hearing impairment (N) | 7 | 12 | 0.167 b |
Smoking (N) | 10 | 21 | 0.062 b |
Physical activity (N)
| 87 | 31 | 0.001 b,* |
Traumatic brain injury (N) | 12 | 14 | 0.526 b |
Depression (N) | 13 | 23 | 0.037 b,* |
KT (N = 117) | PD and HD (N = 108) | |||||
---|---|---|---|---|---|---|
NonCI (N = 86) | CI (N = 31) | p-Value * | NonCI (N = 55) | CI (N = 53) | p-Value * | |
Age (years) mean ± SD [Q1; Q3] | 50.07 ± 11.99 [43.75; 59] | 53.19 ± 12.84 [46; 64] | 0.18 a | 55.38 ± 15.97 [43; 69] | 68.04 ± 14.16 [62; 77] | 0.001 a,* |
Time from KT to cognitive assessment (months) mean ± SD [Q1;Q3] | 10.75 ± 30.17 [1.13; 12.9] | 9.67 ± 11.61 [1.17; 18.43] | 0.39 a | - | - | - |
Duration of dialysis (months) mean ± SD [Q1; Q3] | - | - | - | 17.4 ± 18.62 [5; 20] | 39.71 ± 54 [7; 59] | 0.17 a |
CCI mean ± SD [Q1; Q3] | 3.44 ± 1.62 [2; 4] | 4.03 ± 1.74 [3; 5] | 0.06 a | 4.51 ± 1.96 [3; 6] | 6.38 ± 2.40 [4.5; 8] | 0.001 a,* |
Modifiable risk factors for dementia | ||||||
Hypertension (N) | 78 | 29 | 0.626 b | 50 | 44 | 0.22 b |
Years of education mean ± SD [Q1; Q3] | 14.86 ± 3.23 [12; 17] | 13.52 ± 3.6 [11; 16] | 0.027 a,* | 13.49 ± 3.02 [12; 16] | 14.55 ± 3,63 [12; 17.5] | 0.12 a |
Diabetes mellitus (N) | 22 | 7 | 0.74 b | 17 | 18 | 0.74 b |
Living place (N)
| 32 54 | 10 21 | 0.62 b | 38 7 | 47 6 | 0.013 b,* |
Occupation (N) | 81 | 28 | 0.475 b | 50 | 49 | 0.772 b |
Cohabitant (N) | 73 | 23 | 0.18 b | 48 | 36 | 0.016 b,* |
Excessive alcohol consumption (N) | 3 | 1 | 0.95 b | 3 | 4 | 0.66 b |
Hearing impairment (N) | 6 | 1 | 0.45 b | 5 | 7 | 0.49 b |
Smoking (N) | 8 | 2 | 0.63 b | 9 | 12 | 0.41 b |
Physical activity (N)
| 71 | 16 | 0.001 b,* | 26 | 5 | 0.001 b,* |
Traumatic brain injury (N) | 6 | 6 | 0.05 b | 4 | 10 | 0.07 b |
Depression (N) | 5 | 8 | 0.002 b,* | 10 | 13 | 0.42 b |
KT (N = 117) | PD and HD (N = 108) | |||||||
---|---|---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 1 | Model 2 | |||||
Modifiable Risk Factors for Dementia | ||||||||
β | p | β | p | β | p | β | p | |
Hypertension | −0.107 | 0.26 | −0.096 | 0.31 | −0.073 | 0.46 | −0.009 | 0.91 |
Years of education | 0.034 | 0.71 | 0.028 | 0.77 | −0.083 | 0.36 | −0.129 | 0.09 |
Diabetes mellitus | −0.047 | 0.61 | 0.040 | 0.70 | 0.015 | 0.87 | 0.111 | 0.23 |
Living place | 0.180 | 0.06 | 0.189 | 0.04 | −0.105 | 0.29 | 0.019 | 0.83 |
Occupation | 0.058 | 0.52 | 0.061 | 0.51 | 0.074 | 0.45 | 0.190 | 0.06 |
Cohabitant | 0.068 | 0.45 | 0.054 | 0.55 | 0.085 | 0.36 | −0.027 | 0.74 |
Excessive alcohol Consumption | −0.040 | 0.67 | −0.053 | 0.57 | −0.052 | 0.58 | −0.023 | 0.78 |
Hearing impairment | 0.092 | 0.33 | 0.09 | 0.34 | −0.119 | 0.19 | −0.119 | 0.12 |
Smoking | 0.085 | 0.36 | 0.112 | 0.23 | −0.120 | 0.21 | 0.035 | 0.68 |
Physical activity (N)
| 0.130 | 0.18 | 0.091 | 0.38 | 0.415 | 0.001 | 0.270 | 0.002 |
Traumatic brain injury | −0.148 | 0.12 | −0.123 | 0.2 | −0.105 | 0.25 | 0.028 | 0.74 |
Depression | −0.300 | 0.002 | −0.295 | 0.004 | 0.029 | 0.77 | −0.011 | 0.89 |
Age (years) | 0.027 | 0.77 | −0.432 | 0.002 | ||||
Time from KT to assessment (days)/Duration of dialysis (months) | 0.059 - | 0.53 - | - −0.021 | - 0.81 | ||||
CCI | −0.219 | 0.16 | −0.229 | 0.13 | ||||
R2 | 0.227 | 0.005 | 0.25 | 0.38 | 0.273 | 0.02 | 0.500 | 0.001 |
R2 change | 0.227 | 0.005 | 0.023 | 0.38 | 0.273 | 0.02 | 0.227 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golenia, A.; Olejnik, P.; Maciejewska, O.; Wojtaszek, E.; Żebrowski, P.; Małyszko, J. Sedentary Lifestyle Is a Modifiable Risk Factor for Cognitive Impairment in Patients on Dialysis and after Kidney Transplantation. J. Clin. Med. 2024, 13, 6083. https://doi.org/10.3390/jcm13206083
Golenia A, Olejnik P, Maciejewska O, Wojtaszek E, Żebrowski P, Małyszko J. Sedentary Lifestyle Is a Modifiable Risk Factor for Cognitive Impairment in Patients on Dialysis and after Kidney Transplantation. Journal of Clinical Medicine. 2024; 13(20):6083. https://doi.org/10.3390/jcm13206083
Chicago/Turabian StyleGolenia, Aleksandra, Piotr Olejnik, Oliwia Maciejewska, Ewa Wojtaszek, Paweł Żebrowski, and Jolanta Małyszko. 2024. "Sedentary Lifestyle Is a Modifiable Risk Factor for Cognitive Impairment in Patients on Dialysis and after Kidney Transplantation" Journal of Clinical Medicine 13, no. 20: 6083. https://doi.org/10.3390/jcm13206083
APA StyleGolenia, A., Olejnik, P., Maciejewska, O., Wojtaszek, E., Żebrowski, P., & Małyszko, J. (2024). Sedentary Lifestyle Is a Modifiable Risk Factor for Cognitive Impairment in Patients on Dialysis and after Kidney Transplantation. Journal of Clinical Medicine, 13(20), 6083. https://doi.org/10.3390/jcm13206083