From Cells to Plaques: The Molecular Pathways of Coronary Artery Calcification and Disease
Abstract
:1. Introduction
2. Methods
3. Cellular and Molecular Mechanisms of Coronary Artery Calcification
4. Inflammation and Coronary Artery Calcification
5. Lipid Accumulation and Smooth Muscle Cell Proliferation
6. Genetic and Environmental Factors in CAC and CAD
7. Clinical Implications and Diagnostic Approaches
7.1. Imaging Modalities for the Detection of CAC
7.2. Biomarkers for the Detection of CAC
8. Therapeutic Strategies Targeting CAC
Therapeutic Approach | Target Pathway | Mechanism of Action | Potential Clinical Impact |
---|---|---|---|
Statins [170,171,172,173,174,175] | Lipid metabolism | Reduces cholesterol and inflammation, indirectly inhibiting calcification | Lower cardiovascular event risk |
PCSK9 Inhibitors [180,181] | Lipid metabolism | Lowers LDL cholesterol, potentially influencing calcification | Reduces plaque progression and improves outcomes |
Vitamin K [184,185] | Calcium metabolism | Activates MGP to inhibit vascular calcification | Prevents progression of calcified plaques |
RANKL Inhibitors [81] | Osteogenic pathway | Blocks osteoclast differentiation, limiting calcification | May reduce the progression of coronary artery calcification |
Omega-3 Fatty Acids (EPA) [186,187] | Inflammation | Suppresses inflammatory pathways and inhibits calcification | Potential role in reducing coronary artery calcification |
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GBD 2017 Causes of Death Collaborators. Global, Regional, and National Age-Sex-Specific Mortality for 282 Causes of Death in 195 Countries and Territories, 1980–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1736–1788. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhang, Y.; Yu, C.-M.; Ji, Q.-W.; Cai, M.; Zhao, Y.-X.; Zhou, Y.-J. Current Understanding of Coronary Artery Calcification. J. Geriatr. Cardiol. 2015, 12, 668–675. [Google Scholar] [CrossRef] [PubMed]
- Mitsis, A.; Gragnano, F. Myocardial Infarction with and without ST-Segment Elevation: A Contemporary Reappraisal of Similarities and Differences. Curr. Cardiol. Rev. 2021, 17, e230421189013. [Google Scholar] [CrossRef] [PubMed]
- Onnis, C.; Virmani, R.; Kawai, K.; Nardi, V.; Lerman, A.; Cademartiri, F.; Scicolone, R.; Boi, A.; Congiu, T.; Faa, G.; et al. Coronary Artery Calcification: Current Concepts and Clinical Implications. Circulation 2024, 149, 251–266. [Google Scholar] [CrossRef] [PubMed]
- Rattazzi, M.; Bertacco, E.; Puato, M.; Faggin, E.; Pauletto, P. Hypertension and Vascular Calcification: A Vicious Cycle? J. Hypertens. 2012, 30, 1885–1893. [Google Scholar] [CrossRef]
- Nicoll, R.; Zhao, Y.; Ibrahimi, P.; Olivecrona, G.; Henein, M. Diabetes and Hypertension Consistently Predict the Presence and Extent of Coronary Artery Calcification in Symptomatic Patients: A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2016, 17, 1481. [Google Scholar] [CrossRef]
- Dai, Z.; Zhang, X. Pathophysiology and Clinical Impacts of Chronic Kidney Disease on Coronary Artery Calcification. J. Cardiovasc. Dev. Dis. 2023, 10, 207. [Google Scholar] [CrossRef]
- Fantus, D.; Awan, Z.; Seidah, N.G.; Genest, J. Aortic Calcification: Novel Insights from Familial Hypercholesterolemia and Potential Role for the Low-Density Lipoprotein Receptor. Atherosclerosis 2013, 226, 9–15. [Google Scholar] [CrossRef]
- Nakahara, T.; Dweck, M.R.; Narula, N.; Pisapia, D.; Narula, J.; Strauss, H.W. Coronary Artery Calcification. JACC Cardiovasc. Imaging 2017, 10, 582–593. [Google Scholar] [CrossRef]
- Proudfoot, D.; Shanahan, C.M. Biology of Calcification in Vascular Cells: Intima versus Media. Herz 2001, 26, 245–251. [Google Scholar] [CrossRef]
- Zhou, X.; Xu, S.-N.; Yuan, S.-T.; Lei, X.; Sun, X.; Xing, L.; Li, H.-J.; He, C.-X.; Qin, W.; Zhao, D.; et al. Multiple Functions of Autophagy in Vascular Calcification. Cell Biosci. 2021, 11, 159. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhu, Y.; Jaiswal, S.K.; Liu, N.-F. Mitochondria Homeostasis and Vascular Medial Calcification. Calcif. Tissue Int. 2021, 109, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro-Silva, J.C.; Nolasco, P.; Krieger, J.E.; Miyakawa, A.A. Dynamic Crosstalk between Vascular Smooth Muscle Cells and the Aged Extracellular Matrix. Int. J. Mol. Sci. 2021, 22, 10175. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Lee, I.-K.; Jeon, J.-H. Vascular Calcification—New Insights into Its Mechanism. Int. J. Mol. Sci. 2020, 21, 2685. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.-Q.; Xiong, D.; Lin, X.; Cui, R.-R.; Xu, F.; Zhong, J.-Y.; Zhu, T.; Wu, F.; Mao, M.-Z.; Liao, X.-B.; et al. Oestrogen Inhibits Arterial Calcification by Promoting Autophagy. Sci. Rep. 2017, 7, 3549. [Google Scholar] [CrossRef]
- Durham, A.L.; Speer, M.Y.; Scatena, M.; Giachelli, C.M.; Shanahan, C.M. Role of Smooth Muscle Cells in Vascular Calcification: Implications in Atherosclerosis and Arterial Stiffness. Cardiovasc. Res. 2018, 114, 590–600. [Google Scholar] [CrossRef]
- Yang, R.; Zhu, Y.; Wang, Y.; Ma, W.; Han, X.; Wang, X.; Liu, N. HIF-1α/PDK4/Autophagy Pathway Protects against Advanced Glycation End-Products Induced Vascular Smooth Muscle Cell Calcification. Biochem. Biophys. Res. Commun. 2019, 517, 470–476. [Google Scholar] [CrossRef]
- Chen, K.; Zhou, X.; Sun, Z. Haplodeficiency of Klotho Gene Causes Arterial Stiffening via Upregulation of Scleraxis Expression and Induction of Autophagy. Hypertension 2015, 66, 1006–1013. [Google Scholar] [CrossRef]
- Lanzer, P.; Boehm, M.; Sorribas, V.; Thiriet, M.; Janzen, J.; Zeller, T.; St Hilaire, C.; Shanahan, C. Medial Vascular Calcification Revisited: Review and Perspectives. Eur. Heart J. 2014, 35, 1515–1525. [Google Scholar] [CrossRef]
- Lee, K.; Kim, H.; Jeong, D. Microtubule Stabilization Attenuates Vascular Calcification through the Inhibition of Osteogenic Signaling and Matrix Vesicle Release. Biochem. Biophys. Res. Commun. 2014, 451, 436–441. [Google Scholar] [CrossRef]
- Zou, Y.; Li, D.; Guan, G.; Liu, W. Phosphoglycerate Dehydrogenase Overexpression Inhibits Ferroptosis to Repress Calcification of Human Coronary Artery Vascular Smooth Muscle Cells via the P53/SLC7A11 Pathway. Int. J. Gen. Med. 2024, 17, 3673–3687. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, L.; Yu, C.; Xie, Z.; Su, X.; Xu, Z.; Song, P.; Li, J.; Huang, H.; Ding, Y.; Zou, M.-H. Indoleamine 2,3-Dioxygenase 1 Deletion-Mediated Kynurenine Insufficiency in Vascular Smooth Muscle Cells Exacerbates Arterial Calcification. Circulation 2022, 145, 1784–1798. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Cui, X.; Lu, R.; Hu, H.; Gu, G. CTRP3 Is a Coronary Artery Calcification Biomarker and Protects against Vascular Calcification by Inhibiting β-Catenin Nuclear Translocation to Prevent Vascular Smooth Muscle Cell Osteogenic Differentiation. J. Cardiol. 2022, 79, 551–558. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.-N.; Zhou, X.; Zhu, C.-J.; Qin, W.; Zhu, J.; Zhang, K.-L.; Li, H.-J.; Xing, L.; Lian, K.; Li, C.-X.; et al. Nϵ-Carboxymethyl-Lysine Deteriorates Vascular Calcification in Diabetic Atherosclerosis Induced by Vascular Smooth Muscle Cell-Derived Foam Cells. Front. Pharmacol. 2020, 11, 626. [Google Scholar] [CrossRef] [PubMed]
- Guzman, R.J. Clinical, Cellular, and Molecular Aspects of Arterial Calcification. J. Vasc. Surg. 2007, 45 (Suppl. SA), A57–A63. [Google Scholar] [CrossRef]
- Kadoglou, N.P.; Stasinopoulou, M.; Velidakis, N.; Khattab, E.; Christodoulou, E.; Gkougkoudi, E.; Valsami, G. The Complex Mechanisms and the Potential Effects of Statins on Vascular Calcification: A Narrative Review. Rev. Cardiovasc. Med. 2024, 25, 51. [Google Scholar] [CrossRef]
- Dekker, M.; Waissi, F.; Silvis, M.J.M.; Bennekom, J.V.; Schoneveld, A.H.; de Winter, R.J.; Isgum, I.; Lessmann, N.; Velthuis, B.K.; Pasterkamp, G.; et al. High Levels of Osteoprotegerin Are Associated with Coronary Artery Calcification in Patients Suspected of a Chronic Coronary Syndrome. Sci. Rep. 2021, 11, 18946. [Google Scholar] [CrossRef]
- Bakhshian Nik, A.; Ng, H.H.; Ashbrook, S.K.; Sun, P.; Iacoviello, F.; Shearing, P.R.; Bertazzo, S.; Mero, D.; Khomtchouk, B.B.; Hutcheson, J.D. Epidermal Growth Factor Receptor Inhibition Prevents Vascular Calcifying Extracellular Vesicle Biogenesis. Am. J. Physiol. Heart Circ. Physiol. 2023, 324, H553–H570. [Google Scholar] [CrossRef]
- Kadoglou, N.P.E.; Khattab, E.; Velidakis, N.; Gkougkoudi, E. The Role of Osteopontin in Atherosclerosis and Its Clinical Manifestations (Atherosclerotic Cardiovascular Diseases)-A Narrative Review. Biomedicines 2023, 11, 3178. [Google Scholar] [CrossRef]
- Wang, Z.; Li, L.; Du, R.; Yan, J.; Liu, N.; Yuan, W.; Jiang, Y.; Xu, S.; Ye, F.; Yuan, G.; et al. CML/RAGE Signal Induces Calcification Cascade in Diabetes. Diabetol. Metab. Syndr. 2016, 8, 83. [Google Scholar] [CrossRef]
- Qin, Z.; Li, Y.; Li, J.; Jiang, L.; Zhang, Z.; Chang, K.; Yang, Q.; Chen, S.; Liao, R.; Su, B. Exosomal STAT1 Derived from High Phosphorus-stimulated Vascular Endothelial Cells Induces Vascular Smooth Muscle Cell Calcification via the Wnt/Β-catenin Signaling Pathway. Int. J. Mol. Med. 2022, 50, 139. [Google Scholar] [CrossRef] [PubMed]
- Khan, K.; Yu, B.; Tardif, J.-C.; Rhéaume, E.; Al-Kindi, H.; Filimon, S.; Pop, C.; Genest, J.; Cecere, R.; Schwertani, A. Significance of the Wnt Signaling Pathway in Coronary Artery Atherosclerosis. Front. Cardiovasc. Med. 2024, 11, 1360380. [Google Scholar] [CrossRef] [PubMed]
- Voelkl, J.; Tuffaha, R.; Luong, T.T.D.; Zickler, D.; Masyout, J.; Feger, M.; Verheyen, N.; Blaschke, F.; Kuro-O, M.; Tomaschitz, A.; et al. Zinc Inhibits Phosphate-Induced Vascular Calcification through TNFAIP3-Mediated Suppression of NF-κB. J. Am. Soc. Nephrol. 2018, 29, 1636–1648. [Google Scholar] [CrossRef] [PubMed]
- Leopold, J.A. Vascular Calcification: Mechanisms of Vascular Smooth Muscle Cell Calcification. Trends Cardiovasc. Med. 2015, 25, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Bi, X.; Liu, Y.; Huang, Y.; Xiong, J.; Xu, X.; Xiao, T.; Yu, Y.; Jiang, W.; Huang, Y.; et al. High Phosphate-Induced Calcification of Vascular Smooth Muscle Cells Is Associated with the TLR4/NF-Κb Signaling Pathway. Kidney Blood Press. Res. 2017, 42, 1205–1215. [Google Scholar] [CrossRef]
- Woldt, E.; Terrand, J.; Mlih, M.; Matz, R.L.; Bruban, V.; Coudane, F.; Foppolo, S.; El Asmar, Z.; Chollet, M.E.; Ninio, E.; et al. The Nuclear Hormone Receptor PPARγ Counteracts Vascular Calcification by Inhibiting Wnt5a Signalling in Vascular Smooth Muscle Cells. Nat. Commun. 2012, 3, 1077. [Google Scholar] [CrossRef]
- Rashdan, N.A.; Sim, A.M.; Cui, L.; Phadwal, K.; Roberts, F.L.; Carter, R.; Ozdemir, D.D.; Hohenstein, P.; Hung, J.; Kaczynski, J.; et al. Osteocalcin Regulates Arterial Calcification Via Altered Wnt Signaling and Glucose Metabolism. J. Bone Miner. Res. 2020, 35, 357–367. [Google Scholar] [CrossRef]
- Peng, J.; Liu, M.-M.; Liu, H.-H.; Xu, R.-X.; Zhu, C.-G.; Guo, Y.-L.; Wu, N.-Q.; Dong, Q.; Cui, C.-J.; Li, J.-J. Lipoprotein (a)-Mediated Vascular Calcification: Population-Based and in Vitro Studies. Metabolism 2022, 127, 154960. [Google Scholar] [CrossRef]
- Hsu, J.J.; Tintut, Y.; Demer, L.L. Regulation of Cardiovascular Calcification by Lipids and Lipoproteins. Curr. Opin. Lipidol. 2022, 33, 289–294. [Google Scholar] [CrossRef]
- Shimizu, T.; Tanaka, T.; Iso, T.; Matsui, H.; Ooyama, Y.; Kawai-Kowase, K.; Arai, M.; Kurabayashi, M. Notch Signaling Pathway Enhances Bone Morphogenetic Protein 2 (BMP2) Responsiveness of Msx2 Gene to Induce Osteogenic Differentiation and Mineralization of Vascular Smooth Muscle Cells. J. Biol. Chem. 2011, 286, 19138–19148. [Google Scholar] [CrossRef]
- Ong, K.L.; McClelland, R.L.; Allison, M.A.; Cushman, M.; Garg, P.K.; Tsai, M.Y.; Rye, K.-A.; Tabet, F. Lipoprotein (a) and Coronary Artery Calcification: Prospective Study Assessing Interactions with Other Risk Factors. Metabolism 2021, 116, 154706. [Google Scholar] [CrossRef] [PubMed]
- Greif, M.; Arnoldt, T.; von Ziegler, F.; Ruemmler, J.; Becker, C.; Wakili, R.; D’Anastasi, M.; Schenzle, J.; Leber, A.W.; Becker, A. Lipoprotein (a) Is Independently Correlated with Coronary Artery Calcification. Eur. J. Intern. Med. 2013, 24, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Zhan, J.-K.; Wang, Y.-J.; Wang, Y.; Tang, Z.-Y.; Tan, P.; Huang, W.; Liu, Y.-S. Adiponectin Attenuates the Osteoblastic Differentiation of Vascular Smooth Muscle Cells through the AMPK/mTOR Pathway. Exp. Cell Res. 2014, 323, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, A.M.; Jones, A.M.; Sidgwick, G.P.; Arafat, A.M.; Alexander, Y.M.; Wilkinson, F.L. Small Molecule Glycomimetics Inhibit Vascular Calcification via C-Met/Notch3/HES1 Signalling. Cell Physiol. Biochem. 2019, 53, 323–336. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, T.; Tanaka, T.; Iso, T.; Doi, H.; Sato, H.; Kawai-Kowase, K.; Arai, M.; Kurabayashi, M. Notch Signaling Induces Osteogenic Differentiation and Mineralization of Vascular Smooth Muscle Cells: Role of Msx2 Gene Induction via Notch-RBP-Jk Signaling. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 1104–1111. [Google Scholar] [CrossRef]
- Choi, S.R.; Lee, Y.-K.; Cho, A.J.; Park, H.C.; Han, C.H.; Choi, M.-J.; Koo, J.-R.; Yoon, J.-W.; Noh, J.W. Malnutrition, Inflammation, Progression of Vascular Calcification and Survival: Inter-Relationships in Hemodialysis Patients. PLoS ONE 2019, 14, e0216415. [Google Scholar] [CrossRef]
- Reilly, M.P.; Wolfe, M.L.; Localio, A.R.; Rader, D.J. Study of Inherited Risk of Coronary Atherosclerosis C-Reactive Protein and Coronary Artery Calcification: The Study of Inherited Risk of Coronary Atherosclerosis (SIRCA). Arterioscler. Thromb. Vasc. Biol. 2003, 23, 1851–1856. [Google Scholar] [CrossRef]
- Yu, K.; Min, X.; Lin, Y.; Huang, Y.; Huang, S.; Liu, L.; Peng, Y.; Meng, K.; Li, D.; Ji, Q.; et al. Increased IL-37 Concentrations in Patients with Arterial Calcification. Clin. Chim. Acta 2016, 461, 19–24. [Google Scholar] [CrossRef]
- Raaz-Schrauder, D.; Klinghammer, L.; Baum, C.; Frank, T.; Lewczuk, P.; Achenbach, S.; Cicha, I.; Stumpf, C.; Wiltfang, J.; Kornhuber, J.; et al. Association of Systemic Inflammation Markers with the Presence and Extent of Coronary Artery Calcification. Cytokine 2012, 57, 251–257. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, Y.; Feng, W.; Chen, R.; Chen, J.; Touyz, R.M.; Wang, J.; Huang, H. Interleukin-18 Enhances Vascular Calcification and Osteogenic Differentiation of Vascular Smooth Muscle Cells Through TRPM7 Activation. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 1933–1943. [Google Scholar] [CrossRef]
- Hao, N.; Zhou, Z.; Zhang, F.; Li, Y.; Hu, R.; Zou, J.; Zheng, R.; Wang, L.; Xu, L.; Tan, W.; et al. Interleukin-29 Accelerates Vascular Calcification via JAK2/STAT3/BMP2 Signaling. J. Am. Heart Assoc. 2023, 12, e027222. [Google Scholar] [CrossRef] [PubMed]
- Hamirani, Y.S.; Pandey, S.; Rivera, J.J.; Ndumele, C.; Budoff, M.J.; Blumenthal, R.S.; Nasir, K. Markers of Inflammation and Coronary Artery Calcification: A Systematic Review. Atherosclerosis 2008, 201, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Qu, J.; He, L.; Zhang, F.; Zhou, Z.; Yang, S.; Zhou, Y. Calcium in Vascular Smooth Muscle Cell Elasticity and Adhesion: Novel Insights Into the Mechanism of Action. Front. Physiol. 2019, 10, 852. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, J.C.; Martín, R.; Alonso, C.; Gutiérrez, B.; Nieto, M.L. Relation between Serum Levels of Chemotaxis-Related Factors and the Presence of Coronary Artery Calcification as Expression of Subclinical Atherosclerosis. Clin. Biochem. 2017, 50, 1048–1055. [Google Scholar] [CrossRef] [PubMed]
- Quercioli, A.; Luciano Viviani, G.; Dallegri, F.; Mach, F.; Montecucco, F. Receptor Activator of Nuclear Factor Kappa B Ligand/Osteoprotegerin Pathway Is a Promising Target to Reduce Atherosclerotic Plaque Calcification. Crit. Pathw. Cardiol. 2010, 9, 227–230. [Google Scholar] [CrossRef]
- Rusanescu, G.; Weissleder, R.; Aikawa, E. Notch Signaling in Cardiovascular Disease and Calcification. Curr. Cardiol. Rev. 2008, 4, 148–156. [Google Scholar] [CrossRef]
- Guerrero-Hue, M.; García-Caballero, C.; Palomino-Antolín, A.; Rubio-Navarro, A.; Vázquez-Carballo, C.; Herencia, C.; Martín-Sanchez, D.; Farré-Alins, V.; Egea, J.; Cannata, P.; et al. Curcumin Reduces Renal Damage Associated with Rhabdomyolysis by Decreasing Ferroptosis-Mediated Cell Death. FASEB J. 2019, 33, 8961–8975. [Google Scholar] [CrossRef]
- Yang, H.; Xu, G.; Li, Q.; Zhu, L. Ligustrazine Alleviates the Progression of Coronary Artery Calcification by Inhibiting Caspase-3/GSDME Mediated Pyroptosis. Biosci. Trends 2024. [Google Scholar] [CrossRef]
- Kim, J.; Lee, D.Y.; Park, S.E.; Park, C.-Y.; Lee, W.-Y.; Oh, K.-W.; Park, S.-W.; Rhee, E.-J. Increased Risk for Development of Coronary Artery Calcification in Subjects with Non-Alcoholic Fatty Liver Disease and Systemic Inflammation. PLoS ONE 2017, 12, e0180118. [Google Scholar] [CrossRef]
- Wahlin, B.; Meedt, T.; Jonsson, F.; Henein, M.Y.; Wållberg-Jonsson, S. Coronary Artery Calcification Is Related to Inflammation in Rheumatoid Arthritis: A Long-Term Follow-Up Study. Biomed. Res. Int. 2016, 2016, 1261582. [Google Scholar] [CrossRef]
- Wang, C.; Liu, S.; Kamronbek, R.; Ni, S.; Yang, K.; Yang, Y.; Zhou, D.; Zhou, C.; Yin, C.; Zhang, M. Association between IL-2 Receptor and Severe Coronary Artery Calcification in Patients with Coronary Artery Disease. Rev. Cardiovasc. Med. 2024, 25, 186. [Google Scholar] [CrossRef] [PubMed]
- Kamińska, J.; Stopiński, M.; Mucha, K.; Jędrzejczak, A.; Gołębiowski, M.; Niewczas, M.A.; Pączek, L.; Foroncewicz, B. IL 6 but Not TNF Is Linked to Coronary Artery Calcification in Patients with Chronic Kidney Disease. Cytokine 2019, 120, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Ference, B.A.; Ginsberg, H.N.; Graham, I.; Ray, K.K.; Packard, C.J.; Bruckert, E.; Hegele, R.A.; Krauss, R.M.; Raal, F.J.; Schunkert, H.; et al. Low-Density Lipoproteins Cause Atherosclerotic Cardiovascular Disease. 1. Evidence from Genetic, Epidemiologic, and Clinical Studies. A Consensus Statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 2017, 38, 2459–2472. [Google Scholar] [CrossRef] [PubMed]
- Villa-Bellosta, R. Vascular Calcification: A Passive Process That Requires Active Inhibition. Biology 2024, 13, 111. [Google Scholar] [CrossRef] [PubMed]
- Sandesara, P.B.; Mehta, A.; O’Neal, W.T.; Mohamed Kelli, H.; Sathiyakumar, V.; Martin, S.S.; Blaha, M.J.; Blumenthal, R.S.; Sperling, L.S. Association of Elevated High-Density Lipoprotein Cholesterol and Particle Concentration with Coronary Artery Calcium: The Multi-Ethnic Study of Atherosclerosis. Circ. Cardiovasc. Imaging 2020, 13, e010473. [Google Scholar] [CrossRef]
- Chung, Y.H.; Lee, B.-K.; Kwon, H.M.; Min, P.-K.; Choi, E.-Y.; Yoon, Y.W.; Hong, B.-K.; Rim, S.-J.; Kim, J.-Y. Coronary Calcification Is Associated with Elevated Serum Lipoprotein (a) Levels in Asymptomatic Men over the Age of 45 Years: A Cross-Sectional Study of the Korean National Health Checkup Data. Medicine 2021, 100, e24962. [Google Scholar] [CrossRef]
- Kronenberg, F.; Mora, S.; Stroes, E.S.G.; Ference, B.A.; Arsenault, B.J.; Berglund, L.; Dweck, M.R.; Koschinsky, M.; Lambert, G.; Mach, F.; et al. Lipoprotein(a) in Atherosclerotic Cardiovascular Disease and Aortic Stenosis: A European Atherosclerosis Society Consensus Statement. Eur. Heart J. 2022, 43, 3925–3946. [Google Scholar] [CrossRef]
- Goldstein, J.L.; Brown, M.S. A Century of Cholesterol and Coronaries: From Plaques to Genes to Statins. Cell 2015, 161, 161–172. [Google Scholar] [CrossRef]
- Sies, H.; Stahl, W.; Sevanian, A. Nutritional, Dietary and Postprandial Oxidative Stress. J. Nutr. 2005, 135, 969–972. [Google Scholar] [CrossRef]
- Malekmohammad, K.; Sewell, R.D.E.; Rafieian-Kopaei, M. Antioxidants and Atherosclerosis: Mechanistic Aspects. Biomolecules 2019, 9, 301. [Google Scholar] [CrossRef]
- Di Pietro, N.; Formoso, G.; Pandolfi, A. Physiology and Pathophysiology of oxLDL Uptake by Vascular Wall Cells in Atherosclerosis. Vascul. Pharmacol. 2016, 84, 1–7. [Google Scholar] [CrossRef]
- Malekmohammad, K.; Bezsonov, E.E.; Rafieian-Kopaei, M. Role of Lipid Accumulation and Inflammation in Atherosclerosis: Focus on Molecular and Cellular Mechanisms. Front. Cardiovasc. Med. 2021, 8, 707529. [Google Scholar] [CrossRef]
- Lind, L. Circulating Markers of Inflammation and Atherosclerosis. Atherosclerosis 2003, 169, 203–214. [Google Scholar] [CrossRef]
- Allahverdian, S.; Chehroudi, A.C.; McManus, B.M.; Abraham, T.; Francis, G.A. Contribution of Intimal Smooth Muscle Cells to Cholesterol Accumulation and Macrophage-like Cells in Human Atherosclerosis. Circulation 2014, 129, 1551–1559. [Google Scholar] [CrossRef]
- Wang, Y.; Dubland, J.A.; Allahverdian, S.; Asonye, E.; Sahin, B.; Jaw, J.E.; Sin, D.D.; Seidman, M.A.; Leeper, N.J.; Francis, G.A. Smooth Muscle Cells Contribute the Majority of Foam Cells in ApoE (Apolipoprotein E)-Deficient Mouse Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 876–887. [Google Scholar] [CrossRef]
- Libby, P. Inflammation in Atherosclerosis. Nature 2002, 420, 868–874. [Google Scholar] [CrossRef]
- Patel, S.; Celermajer, D.S.; Bao, S. Atherosclerosis-Underlying Inflammatory Mechanisms and Clinical Implications. Int. J. Biochem. Cell. Biol. 2008, 40, 576–580. [Google Scholar] [CrossRef]
- Ouweneel, A.B.; Van Eck, M. Lipoproteins as Modulators of Atherothrombosis: From Endothelial Function to Primary and Secondary Coagulation. Vascul. Pharmacol. 2016, 82, 1–10. [Google Scholar] [CrossRef]
- Yang, P.; Troncone, L.; Augur, Z.M.; Kim, S.S.J.; McNeil, M.E.; Yu, P.B. The Role of Bone Morphogenetic Protein Signaling in Vascular Calcification. Bone 2020, 141, 115542. [Google Scholar] [CrossRef]
- Luna-Luna, M.; Criales-Vera, S.; Medina-Leyte, D.; Díaz-Zamudio, M.; Flores-Zapata, A.; Cruz-Robles, D.; López-Meneses, M.; Olvera-Cruz, S.; Ramírez-Marroquín, S.; Flores-Castillo, C.; et al. Bone Morphogenetic Protein-2 and Osteopontin Gene Expression in Epicardial Adipose Tissue from Patients with Coronary Artery Disease Is Associated with the Presence of Calcified Atherosclerotic Plaques. Diabetes Metab. Syndr. Obes. 2020, 13, 1943–1951. [Google Scholar] [CrossRef]
- Vossen, L.M.; Kroon, A.A.; Schurgers, L.J.; de Leeuw, P.W. Pharmacological and Nutritional Modulation of Vascular Calcification. Nutrients 2019, 12, 100. [Google Scholar] [CrossRef] [PubMed]
- Klarin, D.; Zhu, Q.M.; Emdin, C.A.; Chaffin, M.; Horner, S.; McMillan, B.J.; Leed, A.; Weale, M.E.; Spencer, C.C.A.; Aguet, F.; et al. Genetic Analysis in UK Biobank Links Insulin Resistance and Transendothelial Migration Pathways to Coronary Artery Disease. Nat. Genet. 2017, 49, 1392–1397. [Google Scholar] [CrossRef] [PubMed]
- Howson, J.M.M.; Zhao, W.; Barnes, D.R.; Ho, W.-K.; Young, R.; Paul, D.S.; Waite, L.L.; Freitag, D.F.; Fauman, E.B.; Salfati, E.L.; et al. Fifteen New Risk Loci for Coronary Artery Disease Highlight Arterial-Wall-Specific Mechanisms. Nat. Genet. 2017, 49, 1113–1119. [Google Scholar] [CrossRef] [PubMed]
- Matsunaga, H.; Ito, K.; Akiyama, M.; Takahashi, A.; Koyama, S.; Nomura, S.; Ieki, H.; Ozaki, K.; Onouchi, Y.; Sakaue, S.; et al. Transethnic Meta-Analysis of Genome-Wide Association Studies Identifies Three New Loci and Characterizes Population-Specific Differences for Coronary Artery Disease. Circ. Genom. Precis. Med. 2020, 13, e002670. [Google Scholar] [CrossRef] [PubMed]
- Webb, T.R.; Erdmann, J.; Stirrups, K.E.; Stitziel, N.O.; Masca, N.G.D.; Jansen, H.; Kanoni, S.; Nelson, C.P.; Ferrario, P.G.; König, I.R.; et al. Systematic Evaluation of Pleiotropy Identifies 6 Further Loci Associated with Coronary Artery Disease. J. Am. Coll. Cardiol. 2017, 69, 823–836. [Google Scholar] [CrossRef]
- O’Donnell, C.J.; Kavousi, M.; Smith, A.V.; Kardia, S.L.R.; Feitosa, M.F.; Hwang, S.-J.; Sun, Y.V.; Province, M.A.; Aspelund, T.; Dehghan, A.; et al. Genome-Wide Association Study for Coronary Artery Calcification with Follow-up in Myocardial Infarction. Circulation 2011, 124, 2855–2864. [Google Scholar] [CrossRef]
- de Vries, P.S.; Conomos, M.P.; Singh, K.; Nicholson, C.J.; Jain, D.; Hasbani, N.R.; Jiang, W.; Lee, S.; Lino Cardenas, C.L.; Lutz, S.M.; et al. Whole-Genome Sequencing Uncovers Two Loci for Coronary Artery Calcification and Identifies ARSE as a Regulator of Vascular Calcification. Nat. Cardiovasc. Res. 2023, 2, 1159–1172. [Google Scholar] [CrossRef]
- Kavousi, M.; Bos, M.M.; Barnes, H.J.; Lino Cardenas, C.L.; Wong, D.; Lu, H.; Hodonsky, C.J.; Landsmeer, L.P.L.; Turner, A.W.; Kho, M.; et al. Multi-Ancestry Genome-Wide Study Identifies Effector Genes and Druggable Pathways for Coronary Artery Calcification. Nat. Genet. 2023, 55, 1651–1664. [Google Scholar] [CrossRef]
- Do, R.; Stitziel, N.O.; Won, H.-H.; Jørgensen, A.B.; Duga, S.; Angelica Merlini, P.; Kiezun, A.; Farrall, M.; Goel, A.; Zuk, O.; et al. Exome Sequencing Identifies Rare LDLR and APOA5 Alleles Conferring Risk for Myocardial Infarction. Nature 2015, 518, 102–106. [Google Scholar] [CrossRef]
- Khera, A.V.; Won, H.-H.; Peloso, G.M.; O’Dushlaine, C.; Liu, D.; Stitziel, N.O.; Natarajan, P.; Nomura, A.; Emdin, C.A.; Gupta, N.; et al. Association of Rare and Common Variation in the Lipoprotein Lipase Gene with Coronary Artery Disease. JAMA 2017, 317, 937–946. [Google Scholar] [CrossRef]
- Myocardial Infarction Genetics and CARDIoGRAM Exome Consortia Investigators; Stitziel, N.O.; Stirrups, K.E.; Masca, N.G.D.; Erdmann, J.; Ferrario, P.G.; König, I.R.; Weeke, P.E.; Webb, T.R.; Auer, P.L.; et al. Coding Variation in ANGPTL4, LPL, and SVEP1 and the Risk of Coronary Disease. N. Engl. J. Med. 2016, 374, 1134–1144. [Google Scholar] [CrossRef] [PubMed]
- Khera, A.V.; Kathiresan, S. Genetics of Coronary Artery Disease: Discovery, Biology and Clinical Translation. Nat. Rev. Genet. 2017, 18, 331–344. [Google Scholar] [CrossRef] [PubMed]
- Rutsch, F.; Ruf, N.; Vaingankar, S.; Toliat, M.R.; Suk, A.; Höhne, W.; Schauer, G.; Lehmann, M.; Roscioli, T.; Schnabel, D.; et al. Mutations in ENPP1 Are Associated with “idiopathic” Infantile Arterial Calcification. Nat. Genet. 2003, 34, 379–381. [Google Scholar] [CrossRef] [PubMed]
- Bergen, A.A.; Plomp, A.S.; Schuurman, E.J.; Terry, S.; Breuning, M.; Dauwerse, H.; Swart, J.; Kool, M.; van Soest, S.; Baas, F.; et al. Mutations in ABCC6 Cause Pseudoxanthoma Elasticum. Nat. Genet. 2000, 25, 228–231. [Google Scholar] [CrossRef]
- Rice, G.I.; Park, S.; Gavazzi, F.; Adang, L.A.; Ayuk, L.A.; Van Eyck, L.; Seabra, L.; Barrea, C.; Battini, R.; Belot, A.; et al. Genetic and Phenotypic Spectrum Associated with IFIH1 Gain-of-Function. Hum. Mutat. 2020, 41, 837–849. [Google Scholar] [CrossRef]
- Jang, M.-A.; Kim, E.K.; Now, H.; Nguyen, N.T.H.; Kim, W.-J.; Yoo, J.-Y.; Lee, J.; Jeong, Y.-M.; Kim, C.-H.; Kim, O.-H.; et al. Mutations in DDX58, Which Encodes RIG-I, Cause Atypical Singleton-Merten Syndrome. Am. J. Hum. Genet. 2015, 96, 266–274. [Google Scholar] [CrossRef]
- Feigenbaum, A.; Müller, C.; Yale, C.; Kleinheinz, J.; Jezewski, P.; Kehl, H.G.; MacDougall, M.; Rutsch, F.; Hennekam, R.C.M. Singleton-Merten Syndrome: An Autosomal Dominant Disorder with Variable Expression. Am. J. Med. Genet. A 2013, 161A, 360–370. [Google Scholar] [CrossRef]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.-M.; Capodanno, D.; et al. 2021 ESC Guidelines on Cardiovascular Disease Prevention in Clinical Practice. Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef]
- Kim, B.S.; Chan, N.; Hsu, G.; Makaryus, A.N.; Chopra, M.; Cohen, S.L.; Makaryus, J.N. Sex Differences in Coronary Arterial Calcification in Symptomatic Patients. Am. J. Cardiol. 2021, 149, 16–20. [Google Scholar] [CrossRef]
- Obisesan, O.H.; Boakye, E.; Wang, F.M.; Dardari, Z.; Dzaye, O.; Cainzos-Achirica, M.; Meyer, M.L.; Gottesman, R.; Palta, P.; Coresh, J.; et al. Coronary Artery Calcium as a Marker of Healthy and Unhealthy Aging in Adults Aged 75 and Older: The Atherosclerosis Risk in Communities (ARIC) Study. Atherosclerosis 2024, 392, 117475. [Google Scholar] [CrossRef]
- Bild, D.E.; Detrano, R.; Peterson, D.; Guerci, A.; Liu, K.; Shahar, E.; Ouyang, P.; Jackson, S.; Saad, M.F. Ethnic Differences in Coronary Calcification: The Multi-Ethnic Study of Atherosclerosis (MESA). Circulation 2005, 111, 1313–1320. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, N.; Möhlenkamp, S.; Mahabadi, A.A.; Schmermund, A.; Roggenbuck, U.; Seibel, R.; Grönemeyer, D.; Budde, T.; Dragano, N.; Stang, A.; et al. Effect of Smoking and Other Traditional Risk Factors on the Onset of Coronary Artery Calcification: Results of the Heinz Nixdorf Recall Study. Atherosclerosis 2014, 232, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Loria, C.M.; Liu, K.; Lewis, C.E.; Hulley, S.B.; Sidney, S.; Schreiner, P.J.; Williams, O.D.; Bild, D.E.; Detrano, R. Early Adult Risk Factor Levels and Subsequent Coronary Artery Calcification: The CARDIA Study. J. Am. Coll. Cardiol. 2007, 49, 2013–2020. [Google Scholar] [CrossRef] [PubMed]
- Petsophonsakul, P.; Burgmaier, M.; Willems, B.; Heeneman, S.; Stadler, N.; Gremse, F.; Reith, S.; Burgmaier, K.; Kahles, F.; Marx, N.; et al. Nicotine Promotes Vascular Calcification via Intracellular Ca2+-Mediated, Nox5-Induced Oxidative Stress, and Extracellular Vesicle Release in Vascular Smooth Muscle Cells. Cardiovasc. Res. 2021, 118, 2196–2210. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-D.; Jacobs, D.R.; Hankinson, A.; Iribarren, C.; Sidney, S. Cardiorespiratory Fitness and Coronary Artery Calcification in Young Adults: The CARDIA Study. Atherosclerosis 2009, 203, 263–268. [Google Scholar] [CrossRef]
- Bertoni, A.G.; Whitt-Glover, M.C.; Chung, H.; Le, K.Y.; Barr, R.G.; Mahesh, M.; Jenny, N.S.; Burke, G.L.; Jacobs, D.R. The Association between Physical Activity and Subclinical Atherosclerosis: The Multi-Ethnic Study of Atherosclerosis. Am. J. Epidemiol. 2009, 169, 444–454. [Google Scholar] [CrossRef]
- Aengevaeren, V.L.; Mosterd, A.; Braber, T.L.; Prakken, N.H.J.; Doevendans, P.A.; Grobbee, D.E.; Thompson, P.D.; Eijsvogels, T.M.H.; Velthuis, B.K. Relationship Between Lifelong Exercise Volume and Coronary Atherosclerosis in Athletes. Circulation 2017, 136, 138–148. [Google Scholar] [CrossRef]
- Aengevaeren, V.L.; Mosterd, A.; Bakker, E.A.; Braber, T.L.; Nathoe, H.M.; Sharma, S.; Thompson, P.D.; Velthuis, B.K.; Eijsvogels, T.M.H. Exercise Volume Versus Intensity and the Progression of Coronary Atherosclerosis in Middle-Aged and Older Athletes: Findings from the MARC-2 Study. Circulation 2023, 147, 993–1003. [Google Scholar] [CrossRef]
- Ogunmoroti, O.; Osibogun, O.; Mathews, L.; Esuruoso, O.A.; Ndumele, C.E.; Okunrintemi, V.; Burke, G.L.; Blumenthal, R.S.; Budoff, M.J.; Michos, E.D. Favorable Cardiovascular Health Is Associated With Lower Prevalence, Incidence, Extent, and Progression of Extracoronary Calcification: MESA. Circ. Cardiovasc. Imaging 2022, 15, e013762. [Google Scholar] [CrossRef]
- Hoffmann, U.; Massaro, J.M.; D’Agostino, R.B.; Kathiresan, S.; Fox, C.S.; O’Donnell, C.J. Cardiovascular Event Prediction and Risk Reclassification by Coronary, Aortic, and Valvular Calcification in the Framingham Heart Study. J. Am. Heart Assoc. 2016, 5, e003144. [Google Scholar] [CrossRef]
- Gore, M.O.; Ayers, C.R.; Khera, A.; deFilippi, C.R.; Wang, T.J.; Seliger, S.L.; Nambi, V.; Selvin, E.; Berry, J.D.; Hundley, W.G.; et al. Combining Biomarkers and Imaging for Short-Term Assessment of Cardiovascular Disease Risk in Apparently Healthy Adults. J. Am. Heart Assoc. 2020, 9, e015410. [Google Scholar] [CrossRef] [PubMed]
- Greenland, P.; LaBree, L.; Azen, S.P.; Doherty, T.M.; Detrano, R.C. Coronary Artery Calcium Score Combined with Framingham Score for Risk Prediction in Asymptomatic Individuals. JAMA 2004, 291, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Ilgar, M.; Dağ, N.; Türkoğlu, C. Importance of Incidental Coronary Artery Calcification in Early Diagnosis of Obstructive Coronary Artery Disease. Pol. J. Radiol. 2023, 88, e338–e342. [Google Scholar] [CrossRef] [PubMed]
- Arad, Y.; Goodman, K.J.; Roth, M.; Newstein, D.; Guerci, A.D. Coronary Calcification, Coronary Disease Risk Factors, C-Reactive Protein, and Atherosclerotic Cardiovascular Disease Events: The St. Francis Heart Study. J. Am. Coll. Cardiol. 2005, 46, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Nasir, K.; Michos, E.D.; Blumenthal, R.S.; Raggi, P. Detection of High-Risk Young Adults and Women by Coronary Calcium and National Cholesterol Education Program Panel III Guidelines. J. Am. Coll. Cardiol. 2005, 46, 1931–1936. [Google Scholar] [CrossRef]
- Michos, E.D.; Nasir, K.; Braunstein, J.B.; Rumberger, J.A.; Budoff, M.J.; Post, W.S.; Blumenthal, R.S. Framingham Risk Equation Underestimates Subclinical Atherosclerosis Risk in Asymptomatic Women. Atherosclerosis 2006, 184, 201–206. [Google Scholar] [CrossRef]
- Feuchtner, G.M.; Plank, F.; Beyer, C.; Barbieri, F.; Widmann, G.; Spitaler, P.; Dichtl, W. Cardiac Computed Tomography: State of the Art and Future Horizons. J. Clin. Med. 2022, 11, 4429. [Google Scholar] [CrossRef]
- Authors/Task Force members; Windecker, S.; Kolh, P.; Alfonso, F.; Collet, J.-P.; Cremer, J.; Falk, V.; Filippatos, G.; Hamm, C.; Head, S.J.; et al. 2014 ESC/EACTS Guidelines on Myocardial Revascularization: The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS)Developed with the Special Contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur. Heart J. 2014, 35, 2541–2619. [Google Scholar] [CrossRef]
- Gulati, M.; Levy, P.D.; Mukherjee, D.; Amsterdam, E.; Bhatt, D.L.; Birtcher, K.K.; Blankstein, R.; Boyd, J.; Bullock-Palmer, R.P.; Conejo, T.; et al. 2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR Guideline for the Evaluation and Diagnosis of Chest Pain: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2021, 144, e368–e454. [Google Scholar] [CrossRef]
- Serruys, P.W.; Hara, H.; Garg, S.; Kawashima, H.; Nørgaard, B.L.; Dweck, M.R.; Bax, J.J.; Knuuti, J.; Nieman, K.; Leipsic, J.A.; et al. Coronary Computed Tomographic Angiography for Complete Assessment of Coronary Artery Disease: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2021, 78, 713–736. [Google Scholar] [CrossRef]
- Agatston, A.S.; Janowitz, W.R.; Hildner, F.J.; Zusmer, N.R.; Viamonte, M.; Detrano, R. Quantification of Coronary Artery Calcium Using Ultrafast Computed Tomography. J. Am. Coll. Cardiol. 1990, 15, 827–832. [Google Scholar] [CrossRef] [PubMed]
- Hisamatsu, T.; Kinuta, M. Coronary Artery Calcium in Assessment of Atherosclerotic Cardiovascular Disease Risk and Its Role in Primary Prevention. J. Atheroscler. Thromb. 2023, 30, 1289–1302. [Google Scholar] [CrossRef] [PubMed]
- Razavi, A.C.; Agatston, A.S.; Shaw, L.J.; De Cecco, C.N.; van Assen, M.; Sperling, L.S.; Bittencourt, M.S.; Daubert, M.A.; Nasir, K.; Blumenthal, R.S.; et al. Evolving Role of Calcium Density in Coronary Artery Calcium Scoring and Atherosclerotic Cardiovascular Disease Risk. JACC Cardiovasc. Imaging 2022, 15, 1648–1662. [Google Scholar] [CrossRef] [PubMed]
- McCollough, C.H.; Ulzheimer, S.; Halliburton, S.S.; Shanneik, K.; White, R.D.; Kalender, W.A. Coronary Artery Calcium: A Multi-Institutional, Multimanufacturer International Standard for Quantification at Cardiac CT. Radiology 2007, 243, 527–538. [Google Scholar] [CrossRef] [PubMed]
- Callister, T.Q.; Cooil, B.; Raya, S.P.; Lippolis, N.J.; Russo, D.J.; Raggi, P. Coronary Artery Disease: Improved Reproducibility of Calcium Scoring with an Electron-Beam CT Volumetric Method. Radiology 1998, 208, 807–814. [Google Scholar] [CrossRef]
- Yoon, H.C.; Greaser, L.E.; Mather, R.; Sinha, S.; McNitt-Gray, M.F.; Goldin, J.G. Coronary Artery Calcium: Alternate Methods for Accurate and Reproducible Quantitation. Acad. Radiol. 1997, 4, 666–673. [Google Scholar] [CrossRef]
- Hecht, H.S. Coronary Artery Calcium Scanning: Past, Present, and Future. JACC Cardiovasc. Imaging 2015, 8, 579–596. [Google Scholar] [CrossRef]
- Hecht, H.S.; Blaha, M.J.; Kazerooni, E.A.; Cury, R.C.; Budoff, M.; Leipsic, J.; Shaw, L. CAC-DRS: Coronary Artery Calcium Data and Reporting System. An Expert Consensus Document of the Society of Cardiovascular Computed Tomography (SCCT). J. Cardiovasc. Comput. Tomogr. 2018, 12, 185–191. [Google Scholar] [CrossRef]
- Cury, R.C.; Abbara, S.; Achenbach, S.; Agatston, A.; Berman, D.S.; Budoff, M.J.; Dill, K.E.; Jacobs, J.E.; Maroules, C.D.; Rubin, G.D.; et al. Coronary Artery Disease—Reporting and Data System (CAD-RADS): An Expert Consensus Document of SCCT, ACR and NASCI: Endorsed by the ACC. JACC Cardiovasc. Imaging 2016, 9, 1099–1113. [Google Scholar] [CrossRef]
- Williams, M.C.; Moss, A.; Dweck, M.; Hunter, A.; Pawade, T.; Adamson, P.D.; Shah, A.S.V.; Alam, S.; Maroules, C.D.; van Beek, E.J.; et al. Standardized Reporting Systems for Computed Tomography Coronary Angiography and Calcium Scoring: A Real-World Validation of CAD-RADS and CAC-DRS in Patients with Stable Chest Pain. J. Cardiovasc. Comput. Tomogr. 2020, 14, 3–11. [Google Scholar] [CrossRef]
- Cury, R.C.; Abbara, S.; Achenbach, S.; Agatston, A.; Berman, D.S.; Budoff, M.J.; Dill, K.E.; Jacobs, J.E.; Maroules, C.D.; Rubin, G.D.; et al. CAD-RADSTM: Coronary Artery Disease—Reporting and Data System: An Expert Consensus Document of the Society of Cardiovascular Computed Tomography (SCCT), the American College of Radiology (ACR) and the North American Society for Cardiovascular Imaging (NASCI). Endorsed by the American College of Cardiology. J. Am. Coll. Radiol. 2016, 13, 1458–1466.e9. [Google Scholar] [CrossRef] [PubMed]
- Mannarino, T.; D’Antonio, A.; Assante, R.; Zampella, E.; Gaudieri, V.; Petretta, M.; Cuocolo, A.; Acampa, W. Combined Evaluation of CAC Score and Myocardial Perfusion Imaging in Patients at Risk of Cardiovascular Disease: Where Are We and What Do the Data Say. J. Nucl. Cardiol. 2023, 30, 2349–2360. [Google Scholar] [CrossRef] [PubMed]
- Guaricci, A.I.; Neglia, D.; Acampa, W.; Andreini, D.; Baggiano, A.; Bianco, F.; Carrabba, N.; Conte, E.; Gaudieri, V.; Mushtaq, S.; et al. Computed Tomography and Nuclear Medicine for the Assessment of Coronary Inflammation: Clinical Applications and Perspectives. J. Cardiovasc. Med. 2023, 24, e67–e76. [Google Scholar] [CrossRef] [PubMed]
- Kwiecinski, J.; Wolny, R.; Chwala, A.; Slomka, P. Advances in the Assessment of Coronary Artery Disease Activity with PET/CT and CTA. Tomography 2023, 9, 328–341. [Google Scholar] [CrossRef] [PubMed]
- Alavi, A.; Werner, T.J.; Raynor, W.; Høilund-Carlsen, P.F.; Revheim, M.-E. Critical Review of PET Imaging for Detection and Characterization of the Atherosclerotic Plaques with Emphasis on Limitations of FDG-PET Compared to NaF-PET in This Setting. Am. J. Nucl. Med. Mol. Imaging. 2021, 11, 337–351. [Google Scholar]
- Kim, W.Y.; Danias, P.G.; Stuber, M.; Flamm, S.D.; Plein, S.; Nagel, E.; Langerak, S.E.; Weber, O.M.; Pedersen, E.M.; Schmidt, M.; et al. Coronary Magnetic Resonance Angiography for the Detection of Coronary Stenoses. N. Engl. J. Med. 2001, 345, 1863–1869. [Google Scholar] [CrossRef]
- Foley, J.R.J.; Plein, S.; Greenwood, J.P. Assessment of Stable Coronary Artery Disease by Cardiovascular Magnetic Resonance Imaging: Current and Emerging Techniques. World J. Cardiol. 2017, 9, 92–108. [Google Scholar] [CrossRef]
- Hamdan, A.; Asbach, P.; Wellnhofer, E.; Klein, C.; Gebker, R.; Kelle, S.; Kilian, H.; Huppertz, A.; Fleck, E. A Prospective Study for Comparison of MR and CT Imaging for Detection of Coronary Artery Stenosis. JACC Cardiovasc. Imaging 2011, 4, 50–61. [Google Scholar] [CrossRef]
- Mitsis, A.; Eftychiou, C.; Kadoglou, N.P.E.; Theodoropoulos, K.C.; Karagiannidis, E.; Nasoufidou, A.; Ziakas, A.; Tzikas, S.; Kassimis, G. Innovations in Intracoronary Imaging: Present Clinical Practices and Future Outlooks. J. Clin. Med. 2024, 13, 4086. [Google Scholar] [CrossRef]
- Peng, C.; Wu, H.; Kim, S.; Dai, X.; Jiang, X. Recent Advances in Transducers for Intravascular Ultrasound (IVUS) Imaging. Sensors 2021, 21, 3540. [Google Scholar] [CrossRef]
- Tearney, G.J.; Regar, E.; Akasaka, T.; Adriaenssens, T.; Barlis, P.; Bezerra, H.G.; Bouma, B.; Bruining, N.; Cho, J.; Chowdhary, S.; et al. Consensus Standards for Acquisition, Measurement, and Reporting of Intravascular Optical Coherence Tomography Studies: A Report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J. Am. Coll. Cardiol. 2012, 59, 1058–1072. [Google Scholar] [CrossRef] [PubMed]
- Jenny, N.S.; Brown, E.R.; Detrano, R.; Folsom, A.R.; Saad, M.F.; Shea, S.; Szklo, M.; Herrington, D.M.; Jacobs, D.R. Associations of Inflammatory Markers with Coronary Artery Calcification: Results from the Multi-Ethnic Study of Atherosclerosis. Atherosclerosis 2010, 209, 226–229. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Park, H.E.; Yoon, J.W.; Choi, S.-Y. Clinical Significance of Body Fat Distribution in Coronary Artery Calcification Progression in Korean Population. Diabetes Metab. J. 2021, 45, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.; Park, S.; Yu, H.T.; Chang, H.J.; Lee, S.H.; Kang, S.M.; Choi, D. Lack of Superiority for Soluble ST2 over High Sensitive C-Reactive Protein in Predicting High Risk Coronary Artery Calcium Score in a Community Cohort. Yonsei Med. J. 2016, 57, 1347–1353. [Google Scholar] [CrossRef] [PubMed]
- Tajani, A.; Sadeghi, M.; Omidkhoda, N.; Mohammadpour, A.H.; Samadi, S.; Jomehzadeh, V. The Association between C-Reactive Protein and Coronary Artery Calcification: A Systematic Review and Meta-Analysis. BMC Cardiovasc. Disord 2024, 24, 204. [Google Scholar] [CrossRef]
- Roy, N.; Rosas, S.E. IL-6 Associated with Progression of Coronary Artery Calcification and Mortality in Incident Dialysis Patients. Am. J. Nephrol. 2021, 52, 745–752. [Google Scholar] [CrossRef]
- Kurozumi, A.; Nakano, K.; Yamagata, K.; Okada, Y.; Nakayamada, S.; Tanaka, Y. IL-6 and sIL-6R Induces STAT3-Dependent Differentiation of Human VSMCs into Osteoblast-like Cells through JMJD2B-Mediated Histone Demethylation of RUNX2. Bone 2019, 124, 53–61. [Google Scholar] [CrossRef]
- Wong, N.D.; Kawakubo, M.; LaBree, L.; Azen, S.P.; Xiang, M.; Detrano, R. Relation of Coronary Calcium Progression and Control of Lipids According to National Cholesterol Education Program Guidelines. Am. J. Cardiol. 2004, 94, 431–436. [Google Scholar] [CrossRef]
- Wang, J.-S.; Chiang, H.-Y.; Wang, Y.-C.; Yeh, H.-C.; Ting, I.-W.; Liang, C.-C.; Wang, M.-C.; Lin, C.-C.; Hsiao, C.-T.; Shen, M.-Y.; et al. Dyslipidemia and Coronary Artery Calcium: From Association to Development of a Risk-Prediction Nomogram. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 1944–1954. [Google Scholar] [CrossRef]
- Fernández-Macías, J.C.; Ochoa-Martínez, A.C.; Varela-Silva, J.A.; Pérez-Maldonado, I.N. Atherogenic Index of Plasma: Novel Predictive Biomarker for Cardiovascular Illnesses. Arch. Med. Res. 2019, 50, 285–294. [Google Scholar] [CrossRef]
- Yao, H.; Feng, G.; Liu, Y.; Chen, Y.; Shao, C.; Wang, Z. Coronary Artery Calcification Burden, Atherogenic Index of Plasma, and Risk of Adverse Cardiovascular Events in the General Population: Evidence from a Mediation Analysis. Lipids Health Dis. 2024, 23, 258. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Zhou, S.; Feng, X.; Yang, J.; Qiao, J.; Zhao, Y.; Shi, D.; Zhou, Y. The Sensibility of the New Blood Lipid Indicator--Atherogenic Index of Plasma (AIP) in Menopausal Women with Coronary Artery Disease. Lipids Health Dis. 2020, 19, 27. [Google Scholar] [CrossRef] [PubMed]
- Sitinjak, B.D.P.; Murdaya, N.; Rachman, T.A.; Zakiyah, N.; Barliana, M.I. The Potential of Single Nucleotide Polymorphisms (SNPs) as Biomarkers and Their Association with the Increased Risk of Coronary Heart Disease: A Systematic Review. Vasc. Health Risk Manag. 2023, 19, 289–301. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, J.; Tang, X.; Xu, J.; Liu, R.; Jiang, L.; Tian, J.; Zhang, Y.; Wang, D.; Sun, K.; et al. Association of NPC1L1 and HMGCR Gene Polymorphisms with Coronary Artery Calcification in Patients with Premature Triple-Vessel Coronary Disease. BMC Med. Genomics 2024, 17, 22. [Google Scholar] [CrossRef]
- Golüke, N.M.S.; Schoffelmeer, M.A.; De Jonghe, A.; Emmelot-Vonk, M.H.; De Jong, P.A.; Koek, H.L. Serum Biomarkers for Arterial Calcification in Humans: A Systematic Review. Bone Rep. 2022, 17, 101599. [Google Scholar] [CrossRef]
- Maahs, D.M.; Ogden, L.G.; Kinney, G.L.; Wadwa, P.; Snell-Bergeon, J.K.; Dabelea, D.; Hokanson, J.E.; Ehrlich, J.; Eckel, R.H.; Rewers, M. Low Plasma Adiponectin Levels Predict Progression of Coronary Artery Calcification. Circulation 2005, 111, 747–753. [Google Scholar] [CrossRef]
- Abedin, M.; Omland, T.; Ueland, T.; Khera, A.; Aukrust, P.; Murphy, S.A.; Jain, T.; Gruntmanis, U.; McGuire, D.K.; de Lemos, J.A. Relation of Osteoprotegerin to Coronary Calcium and Aortic Plaque (from the Dallas Heart Study). Am. J. Cardiol. 2007, 99, 513–518. [Google Scholar] [CrossRef]
- Jono, S.; Ikari, Y.; Vermeer, C.; Dissel, P.; Hasegawa, K.; Shioi, A.; Taniwaki, H.; Kizu, A.; Nishizawa, Y.; Saito, S. Matrix Gla Protein Is Associated with Coronary Artery Calcification as Assessed by Electron-Beam Computed Tomography. Thromb. Haemost. 2004, 91, 790–794. [Google Scholar] [CrossRef]
- Schafer, C.; Heiss, A.; Schwarz, A.; Westenfeld, R.; Ketteler, M.; Floege, J.; Muller-Esterl, W.; Schinke, T.; Jahnen-Dechent, W. The Serum Protein Alpha 2-Heremans-Schmid Glycoprotein/Fetuin-A Is a Systemically Acting Inhibitor of Ectopic Calcification. J. Clin. Investig. 2003, 112, 357–366. [Google Scholar] [CrossRef]
- Zheng, J.; Huang, M.; Huang, Q.; Chen, Q.; Chen, Z. The Relationship between Fetuin-A and Coronary Atherosclerotic Heart Disease (CHD) and CHD-Related Risk Factors. Medicine 2021, 100, e27481. [Google Scholar] [CrossRef]
- Pan, W.; Jie, W.; Huang, H. Vascular Calcification: Molecular Mechanisms and Therapeutic Interventions. MedComm 2023, 4, e200. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.X.; Kircelli, F.; O’Neill, K.D.; Chen, X.; Moe, S.M. Verapamil Inhibits Calcification and Matrix Vesicle Activity of Bovine Vascular Smooth Muscle Cells. Kidney Int. 2010, 77, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, T.; Tanaka, T.; Iso, T.; Kawai-Kowase, K.; Kurabayashi, M. Azelnidipine Inhibits Msx2-Dependent Osteogenic Differentiation and Matrix Mineralization of Vascular Smooth Muscle Cells. Int. Heart J. 2012, 53, 331–335. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, Z.B.; Boughner, D.R.; Drangova, M.; Rogers, K.A. Angiotensin II Type 1 Receptor Blocker Inhibits Arterial Calcification in a Pre-Clinical Model. Cardiovasc. Res. 2011, 90, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Montezano, A.C.; Nguyen Dinh Cat, A.; Rios, F.J.; Touyz, R.M. Angiotensin II and Vascular Injury. Curr. Hypertens. Rep. 2014, 16, 431. [Google Scholar] [CrossRef]
- Lichtlen, P.R.; Hugenholtz, P.G.; Rafflenbeul, W.; Hecker, H.; Jost, S.; Deckers, J.W. Retardation of Angiographic Progression of Coronary Artery Disease by Nifedipine. Results of the International Nifedipine Trial on Antiatherosclerotic Therapy (INTACT). INTACT Group Investigators. Lancet 1990, 335, 1109–1113. [Google Scholar] [CrossRef]
- Motro, M.; Shemesh, J. Calcium Channel Blocker Nifedipine Slows down Progression of Coronary Calcification in Hypertensive Patients Compared with Diuretics. Hypertension 2001, 37, 1410–1413. [Google Scholar] [CrossRef]
- Nissen, S.E.; Tuzcu, E.M.; Libby, P.; Thompson, P.D.; Ghali, M.; Garza, D.; Berman, L.; Shi, H.; Buebendorf, E.; Topol, E.J.; et al. Effect of Antihypertensive Agents on Cardiovascular Events in Patients with Coronary Disease and Normal Blood Pressure: The CAMELOT Study: A Randomized Controlled Trial. JAMA 2004, 292, 2217–2225. [Google Scholar] [CrossRef]
- Bruining, N.; de Winter, S.; Roelandt, J.R.T.C.; Rodriguez-Granillo, G.A.; Heller, I.; van Domburg, R.T.; Hamers, R.; de Feijter, P.J.; EUROPA/PERSPECTIVE Investigators. Coronary Calcium Significantly Affects Quantitative Analysis of Coronary Ultrasound: Importance for Atherosclerosis Progression/Regression Studies. Coron. Artery Dis. 2009, 20, 409–414. [Google Scholar] [CrossRef]
- Kizu, A.; Shioi, A.; Jono, S.; Koyama, H.; Okuno, Y.; Nishizawa, Y. Statins Inhibit in Vitro Calcification of Human Vascular Smooth Muscle Cells Induced by Inflammatory Mediators. J. Cell Biochem. 2004, 93, 1011–1019. [Google Scholar] [CrossRef]
- Bryniarski, K.L.; den Dekker, W.; Legutko, J.; Gasior, P.; Tahon, J.; Diletti, R.; Wilschut, J.M.; Nuis, R.-J.; Daemen, J.; Kleczynski, P.; et al. Role of Lipid-Lowering and Anti-Inflammatory Therapies on Plaque Stabilization. J. Clin. Med. 2024, 13, 3096. [Google Scholar] [CrossRef] [PubMed]
- Trion, A.; Schutte-Bart, C.; Bax, W.H.; Jukema, J.W.; van der Laarse, A. Modulation of Calcification of Vascular Smooth Muscle Cells in Culture by Calcium Antagonists, Statins, and Their Combination. Mol. Cell Biochem. 2008, 308, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Budoff, M.J.; Lane, K.L.; Bakhsheshi, H.; Mao, S.; Grassmann, B.O.; Friedman, B.C.; Brundage, B.H. Rates of Progression of Coronary Calcium by Electron Beam Tomography. Am. J. Cardiol. 2000, 86, 8–11. [Google Scholar] [CrossRef] [PubMed]
- Achenbach, S.; Ropers, D.; Pohle, K.; Leber, A.; Thilo, C.; Knez, A.; Menendez, T.; Maeffert, R.; Kusus, M.; Regenfus, M.; et al. Influence of Lipid-Lowering Therapy on the Progression of Coronary Artery Calcification: A Prospective Evaluation. Circulation 2002, 106, 1077–1082. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-E.; Sung, J.M.; Andreini, D.; Budoff, M.J.; Cademartiri, F.; Chinnaiyan, K.; Choi, J.H.; Chun, E.J.; Conte, E.; Gottlieb, I.; et al. Differential Association between the Progression of Coronary Artery Calcium Score and Coronary Plaque Volume Progression According to Statins: The Progression of AtheRosclerotic PlAque DetermIned by Computed TomoGraphic Angiography Imaging (PARADIGM) Study. Eur. Heart J. Cardiovasc. Imaging 2019, 20, 1307–1314. [Google Scholar] [CrossRef]
- Mitsis, A.; Kyriakou, M.; Sokratous, S.; Karmioti, G.; Drakomathioulakis, M.; Myrianthefs, M.; Ziakas, A.; Tzikas, S.; Kassimis, G. Exploring the Landscape of Anti-Inflammatory Trials: A Comprehensive Review of Strategies for Targeting Inflammation in Acute Myocardial Infraction. Biomedicines 2024, 12, 701. [Google Scholar] [CrossRef]
- Tardif, J.-C.; Kouz, S.; Waters, D.D.; Bertrand, O.F.; Diaz, R.; Maggioni, A.P.; Pinto, F.J.; Ibrahim, R.; Gamra, H.; Kiwan, G.S.; et al. Efficacy and Safety of Low-Dose Colchicine after Myocardial Infarction. N. Engl. J. Med. 2019, 381, 2497–2505. [Google Scholar] [CrossRef]
- Nidorf, S.M.; Fiolet, A.T.L.; Eikelboom, J.W.; Schut, A.; Opstal, T.S.J.; Bax, W.A.; Budgeon, C.A.; Tijssen, J.G.P.; Mosterd, A.; Cornel, J.H.; et al. The Effect of Low-Dose Colchicine in Patients with Stable Coronary Artery Disease: The LoDoCo2 Trial Rationale, Design, and Baseline Characteristics. Am. Heart J. 2019, 218, 46–56. [Google Scholar] [CrossRef]
- González, L.; Bulnes, J.F.; Orellana, M.P.; Muñoz Venturelli, P.; Martínez Rodriguez, G. The Role of Colchicine in Atherosclerosis: From Bench to Bedside. Pharmaceutics 2022, 14, 1395. [Google Scholar] [CrossRef]
- Gao, F.; Li, Y.P.; Ma, X.T.; Wang, Z.J.; Shi, D.M.; Zhou, Y.J. Effect of Alirocumab on Coronary Calcification in Patients With Coronary Artery Disease. Front. Cardiovasc. Med. 2022, 9, 907662. [Google Scholar] [CrossRef]
- Ikegami, Y.; Inoue, I.; Inoue, K.; Shinoda, Y.; Iida, S.; Goto, S.; Nakano, T.; Shimada, A.; Noda, M. The Annual Rate of Coronary Artery Calcification with Combination Therapy with a PCSK9 Inhibitor and a Statin Is Lower than That with Statin Monotherapy. NPJ Aging Mech. Dis. 2018, 4, 7. [Google Scholar] [CrossRef] [PubMed]
- Kawakami, R.; Nakagami, H.; Noma, T.; Ohmori, K.; Kohno, M.; Morishita, R. RANKL System in Vascular and Valve Calcification with Aging. Inflamm. Regener. 2016, 36, 10. [Google Scholar] [CrossRef] [PubMed]
- Sharma, T.; Mandal, C.C. Omega-3 Fatty Acids in Pathological Calcification and Bone Health. J. Food Biochem. 2020, 44, e13333. [Google Scholar] [CrossRef] [PubMed]
- Samelson, E.J.; Booth, S.L.; Fox, C.S.; Tucker, K.L.; Wang, T.J.; Hoffmann, U.; Cupples, L.A.; O’Donnell, C.J.; Kiel, D.P. Calcium Intake Is Not Associated with Increased Coronary Artery Calcification: The Framingham Study. Am. J. Clin. Nutr. 2012, 96, 1274–1280. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Yoon, J.W.; Kim, K.W.; Lee, E.J.; Lee, W.; Cho, S.-H.; Shin, C.S. Increased Dietary Calcium Intake Is Not Associated with Coronary Artery Calcification. Int. J. Cardiol. 2012, 157, 429–431. [Google Scholar] [CrossRef]
- Koshihara, Y.; Hoshi, K.; Okawara, R.; Ishibashi, H.; Yamamoto, S. Vitamin K Stimulates Osteoblastogenesis and Inhibits Osteoclastogenesis in Human Bone Marrow Cell Culture. J. Endocrinol. 2003, 176, 339–348. [Google Scholar] [CrossRef]
- Shioi, A.; Morioka, T.; Shoji, T.; Emoto, M. The Inhibitory Roles of Vitamin K in Progression of Vascular Calcification. Nutrients 2020, 12, 583. [Google Scholar] [CrossRef]
- Saito, Y.; Nakamura, K.; Miura, D.; Yunoki, K.; Miyoshi, T.; Yoshida, M.; Kawakita, N.; Kimura, T.; Kondo, M.; Sarashina, T.; et al. Suppression of Wnt Signaling and Osteogenic Changes in Vascular Smooth Muscle Cells by Eicosapentaenoic Acid. Nutrients 2017, 9, 858. [Google Scholar] [CrossRef]
- Hénaut, L.; Massy, Z.A. Magnesium as a Calcification Inhibitor. Adv. Chronic. Kidney Dis. 2018, 25, 281–290. [Google Scholar] [CrossRef]
- Schelski, N.; Luong, T.T.D.; Lang, F.; Pieske, B.; Voelkl, J.; Alesutan, I. SGK1-Dependent Stimulation of Vascular Smooth Muscle Cell Osteo-/Chondrogenic Transdifferentiation by Interleukin-18. Pflugers Arch. 2019, 471, 889–899. [Google Scholar] [CrossRef]
- He, L.; Xu, J.; Bai, Y.; Zhang, H.; Zhou, W.; Cheng, M.; Zhang, D.; Zhang, L.; Zhang, S. MicroRNA-103a Regulates the Calcification of Vascular Smooth Muscle Cells by Targeting Runt-Related Transcription Factor 2 in High Phosphorus Conditions. Exp. Ther. Med. 2021, 22, 1036. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Feng, W.; Su, X.; Luo, D.; Li, Z.; Zhou, Y.; Zhu, Y.; Zhang, M.; Chen, J.; Liu, B.; et al. SIRT6 Protects Vascular Smooth Muscle Cells from Osteogenic Transdifferentiation via Runx2 in Chronic Kidney Disease. J. Clin. Investig. 2022, 132, e150051. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Yu, H.; Zhang, D.; Feng, T.; Miao, M.; Li, J.; Liu, X. Matrix Vesicles as a Therapeutic Target for Vascular Calcification. Front. Cell Dev. Biol. 2022, 10, 825622. [Google Scholar] [CrossRef] [PubMed]
- Schurgers, L.J.; Uitto, J.; Reutelingsperger, C.P. Vitamin K-Dependent Carboxylation of Matrix Gla-Protein: A Crucial Switch to Control Ectopic Mineralization. Trends Mol. Med. 2013, 19, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.C.; Wang, Z. Precision Medicine: Disease Subtyping and Tailored Treatment. Cancers 2023, 15, 3837. [Google Scholar] [CrossRef]
- Shchekochikhin, D.; Kopylov, P. Personalized Medicine in Coronary Artery Disease: Where Are We in 2022? J. Pers. Med. 2022, 12, 1446. [Google Scholar] [CrossRef]
- Sethi, Y.; Patel, N.; Kaka, N.; Kaiwan, O.; Kar, J.; Moinuddin, A.; Goel, A.; Chopra, H.; Cavalu, S. Precision Medicine and the Future of Cardiovascular Diseases: A Clinically Oriented Comprehensive Review. J. Clin. Med. 2023, 12, 1799. [Google Scholar] [CrossRef]
- Mitsis, A.; Myrianthefs, M.; Sokratous, S.; Karmioti, G.; Kyriakou, M.; Drakomathioulakis, M.; Tzikas, S.; Kadoglou, N.P.E.; Karagiannidis, E.; Nasoufidou, A.; et al. Emerging Therapeutic Targets for Acute Coronary Syndromes: Novel Advancements and Future Directions. Biomedicines 2024, 12, 1670. [Google Scholar] [CrossRef]
- Bundy, K.; Boone, J.; Simpson, C.L. Wnt Signaling in Vascular Calcification. Front. Cardiovasc. Med. 2021, 8, 708470. [Google Scholar] [CrossRef]
- Sirasanagandla, S.R.; Al-Huseini, I.; Al Mushaiqri, M.; Al-Abri, N.; Al-Ghafri, F. Maternal resveratrol supplementation ameliorates bisphenol A-induced atherosclerotic lesions formation in adult offspring ApoE-/- mice. 3 Biotech 2022, 12, 36. [Google Scholar] [CrossRef]
Pathway | Key Molecular Players | Role in Calcification |
---|---|---|
Inflammatory Pathways | IL-1β [46], TNF-α, NF-kB [47,48,49] | Promote VSMCs differentiation and osteogenic transformation, contributing to calcified plaques |
Oxidative Stress Pathway | ROS, NADPH oxidase [69] | Enhances inflammation and calcification through oxidative damage and VSMCs differentiation |
Osteogenic Pathways | BMPs [79,80], RANKL [55,81], RUNX2 [33,34] | Induce VSMCs transformation into osteoblast-like cells, driving calcification |
Autophagy | AMPK, mTOR, Beclin-1, b-catenin [17,18,19,20] | Dysregulated autophagy promotes calcification by increasing osteogenic differentiation |
Imaging Modality | Pros | Cons | Key Characteristic |
---|---|---|---|
Cardiac Multi-Slice CT (MSCT) [118,119] | Most common modality for CAC detection | Focuses mainly on calcified plaques | Broad availability and relatively low cost of this modality. |
Supported by the European Society of Cardiology and the American Heart Association | Can be influenced by image noise | ||
Non-invasive evaluation of coronary arteries | Higher radiation exposure | ||
Quantifies degree of stenosis | Requires the use of contrast agents | ||
CT Calcium Scoring (CACS) [122,123] | Simple, standardized measure of calcified plaque burden | Only assesses calcified plaques | Important role in routine clinical practice for risk stratification. |
Highly predictive of future cardiovascular events | Can be affected by image noise | ||
Calcium Volume Score [124,125] | Assesses total volume of calcified plaques | Less commonly used | Useful for tracking changes in plaque burden over time. |
Offers greater stability over time | Requires more detailed processing | ||
Calcium Mass Score [126] | Combines plaque volume and density | More complex to calculate | More valuable in research settings or for detailed patient evaluations. |
Provides a physiologically relevant measure | Less widely adopted in clinical practice | ||
Potentially better for risk stratification | |||
PET/CT scans [132,133,134,135] | Combines anatomical and functional imaging | More costly | Important role in guiding therapeutic decisions, especially in complex cases. |
Enhances diagnostic accuracy by identifying metabolically active plaques | Less widely available | ||
Particularly valuable in high-risk patients | Higher radiation exposure | ||
Cardiac Magnetic Resonance Imaging (CMR) [136] | Provides detailed assessments of cardiac structure and function | Limited sensitivity to calcium | Important role as a complementary modality, especially for patients requiring frequent imaging without radiation exposure. |
No ionizing radiation | Not typically used for detecting calcification | ||
Effective for evaluating myocardial tissue | |||
Intravascular Ultrasound (IVUS) [139,140] | Deeper penetration into vessel wall | Lower spatial resolution | Invasive method typically reserved for specific clinical scenarios or interventional procedures. |
Effective for assessing overall plaque burden | May miss fine details like micro-calcifications | ||
Useful for quantifying calcification | Invasive procedure | ||
Optical Coherence Tomography (OCT) [141] | High spatial resolution | Limited penetration depth | Important role in pre-intervention planning, particularly when fine detail is crucial. |
Detailed visualization of plaque morphology | Requires blood clearance | ||
Precise delineation of calcified plaques | Invasive and costly |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitsis, A.; Khattab, E.; Christodoulou, E.; Myrianthopoulos, K.; Myrianthefs, M.; Tzikas, S.; Ziakas, A.; Fragakis, N.; Kassimis, G. From Cells to Plaques: The Molecular Pathways of Coronary Artery Calcification and Disease. J. Clin. Med. 2024, 13, 6352. https://doi.org/10.3390/jcm13216352
Mitsis A, Khattab E, Christodoulou E, Myrianthopoulos K, Myrianthefs M, Tzikas S, Ziakas A, Fragakis N, Kassimis G. From Cells to Plaques: The Molecular Pathways of Coronary Artery Calcification and Disease. Journal of Clinical Medicine. 2024; 13(21):6352. https://doi.org/10.3390/jcm13216352
Chicago/Turabian StyleMitsis, Andreas, Elina Khattab, Evi Christodoulou, Kimon Myrianthopoulos, Michael Myrianthefs, Stergios Tzikas, Antonios Ziakas, Nikolaos Fragakis, and George Kassimis. 2024. "From Cells to Plaques: The Molecular Pathways of Coronary Artery Calcification and Disease" Journal of Clinical Medicine 13, no. 21: 6352. https://doi.org/10.3390/jcm13216352
APA StyleMitsis, A., Khattab, E., Christodoulou, E., Myrianthopoulos, K., Myrianthefs, M., Tzikas, S., Ziakas, A., Fragakis, N., & Kassimis, G. (2024). From Cells to Plaques: The Molecular Pathways of Coronary Artery Calcification and Disease. Journal of Clinical Medicine, 13(21), 6352. https://doi.org/10.3390/jcm13216352