Renal Denervation in Heart Failure Treatment: Data for a Self-Fulfilling Prophecy
Abstract
:1. Introduction
2. Sympathetic Overdrive in HF
2.1. Pathophysiology of Imbalance of the SNS
2.2. Measurement of SNS Tone
2.2.1. Plasma and Urine Noradrenaline (NA) Levels
2.2.2. Microneurography
2.2.3. Heart Rate and Heart Rate Variability (HRV)
2.2.4. Baroreceptor Sensitivity (BRS)
3. Preclinical Data on RDN in HF
3.1. Renal Physiology
3.2. Cardiovascular Physiology
4. Clinical Evidence
4.1. Observational Studies
4.2. Randomized Controlled Trials
5. Clinical Perspectives
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef] [PubMed]
- Savarese, G.; Becher, P.M.; Lund, L.H.; Seferovic, P.; Rosano, G.M.C.; Coats, A.J.S. Global Burden of Heart Failure: A Comprehensive and Updated Review of Epidemiology. Cardiovasc. Res. 2023, 118, 3272–3287. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2023 Focused Update of the 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. Eur. Heart J. 2023, 44, 3627–3639. [Google Scholar] [CrossRef] [PubMed]
- Seravalle, G.; Grassi, G. Sympathetic Nervous System, Hypertension, Obesity and Metabolic Syndrome. High. Blood Press. Cardiovasc. Prev. 2016, 23, 175–179. [Google Scholar] [CrossRef]
- Triposkiadis, F.; Karayannis, G.; Giamouzis, G.; Skoularigis, J.; Louridas, G.; Butler, J. The Sympathetic Nervous System in Heart Failure. J. Am. Coll. Cardiol. 2009, 54, 1747–1762. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the Management of Arterial Hypertension. Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef]
- Mancia, G.; Kreutz, R.; Brunström, M.; Burnier, M.; Grassi, G.; Januszewicz, A.; Muiesan, M.L.; Tsioufis, K.; Agabiti-Rosei, E.; Algharably, E.A.E.; et al. 2023 ESH Guidelines for the Management of Arterial Hypertension The Task Force for the Management of Arterial Hypertension of the European Society of Hypertension. J. Hypertens 2023, 41, 1874–2071. [Google Scholar] [CrossRef]
- McEvoy, J.W.; McCarthy, C.P.; Bruno, R.M.; Brouwers, S.; Canavan, M.D.; Ceconi, C.; Christodorescu, R.M.; Daskalopoulou, S.S.; Ferro, C.J.; Gerdts, E.; et al. 2024 ESC Guidelines for the Management of Elevated Blood Pressure and Hypertension. Eur. Heart J. 2024, 45, 3912–4018. [Google Scholar] [CrossRef]
- Gallo, G.; Savoia, C. Hypertension and Heart Failure: From Pathophysiology to Treatment. Int. J. Mol. Sci. 2024, 25, 6661. [Google Scholar] [CrossRef]
- Dimitriadis, K.; Tsioufis, C.; Iliakis, P.; Kasiakogias, A.; Andrikou, I.; Leontsinis, I.; Konstantinidis, D.; Tousoulis, D. Future Anti-Aldosterone Agents. Curr. Pharm. Des. 2019, 24, 5548–5554. [Google Scholar] [CrossRef] [PubMed]
- Tsioufis, C.; Iliakis, P.; Kasiakogias, A.; Konstantinidis, D.; Lovic, D.; Petras, D.; Doumas, M.; Tsiamis, E.; Papademetriou, V.; Tousoulis, D. Non-Pharmacological Modulation of the Autonomic Nervous System for Heart Failure Treatment: Where Do We Stand? Curr. Vasc. Pharmacol. 2017, 16, 30–43. [Google Scholar] [CrossRef] [PubMed]
- Dornas, W.C.; Silva, M.E. Animal Models for the Study of Arterial Hypertension. J. Biosci. 2011, 36, 731–737. [Google Scholar] [CrossRef] [PubMed]
- de Prado, A.P.; Pérez-Martínez, C.; Regueiro-Purriños, M.; Cuellas-Ramón, C.; López-Benito, M.; Gonzalo-Orden, J.M.; Estévez-Loureiro, R.; Cortina-Rivero, A.I.; Viñuela-Baragaño, D.; R Altonaga, J.; et al. Development and Evaluation of a Disease Large Animal Model for Preclinical Assessment of Renal Denervation Therapies. Animals 2020, 10, 1446. [Google Scholar] [CrossRef] [PubMed]
- Böhm, M.; Linz, D.; Urban, D.; Mahfoud, F.; Ukena, C. Renal Sympathetic Denervation: Applications in Hypertension and Beyond. Nat. Rev. Cardiol. 2013, 10, 465–476. [Google Scholar] [CrossRef]
- Jarrah, M.; Khader, Y.; Alkouri, O.; Al-Bashaireh, A.; Alhalaiqa, F.; Al Marzouqi, A.; Qaladi, O.A.; Alharbi, A.; Alshahrani, Y.M.; Alqarni, A.S.; et al. Medication Adherence and Its Influencing Factors among Patients with Heart Failure: A Cross Sectional Study. Medicina 2023, 59, 960. [Google Scholar] [CrossRef]
- Cheng, C.; Donovan, G.; Al-Jawad, N.; Jalal, Z. The Use of Technology to Improve Medication Adherence in Heart Failure Patients: A Systematic Review of Randomised Controlled Trials. J. Pharm. Policy Pract. 2023, 16, 81. [Google Scholar] [CrossRef]
- Huber, M.; Busch, A.K.; Stalder-Ochsner, I.; Flammer, A.J.; Schmid-Mohler, G. Medication Adherence in Adults after Hospitalization for Heart Failure: A Cross-Sectional Study. Int. J. Cardiol. Cardiovasc. Risk Prev. 2024, 20, 200234. [Google Scholar] [CrossRef]
- Zipes, D.P. Heart-Brain Interactions in Cardiac Arrhythmias: Role of the Autonomic Nervous System. Cleve Clin. J. Med. 2008, 75, S94. [Google Scholar] [CrossRef]
- Rozec, B.; Erfanian, M.; Laurent, K.; Trochu, J.-N.; Gauthier, C. Nebivolol, a Vasodilating Selective Β1-Blocker, Is a Β3-Adrenoceptor Agonist in the Nonfailing Transplanted Human Heart. J. Am. Coll. Cardiol. 2009, 53, 1532–1538. [Google Scholar] [CrossRef]
- Ziaeian, B.; Fonarow, G.C. Epidemiology and Aetiology of Heart Failure. Nat. Rev. Cardiol. 2016, 13, 368–378. [Google Scholar] [CrossRef]
- Braunwald, E. Heart Failure. JACC Heart Fail. 2013, 1, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Bloom, M.W.; Greenberg, B.; Jaarsma, T.; Januzzi, J.L.; Lam, C.S.P.; Maggioni, A.P.; Trochu, J.-N.; Butler, J. Heart Failure with Reduced Ejection Fraction. Nat. Rev. Dis. Primers 2017, 3, 17058. [Google Scholar] [CrossRef] [PubMed]
- Borlaug, B.A. The Pathophysiology of Heart Failure with Preserved Ejection Fraction. Nat. Rev. Cardiol. 2014, 11, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Reddy, Y.N.V.; Andersen, M.J.; Obokata, M.; Koepp, K.E.; Kane, G.C.; Melenovsky, V.; Olson, T.P.; Borlaug, B.A. Arterial Stiffening with Exercise in Patients with Heart Failure and Preserved Ejection Fraction. J. Am. Coll. Cardiol. 2017, 70, 136–148. [Google Scholar] [CrossRef]
- Kakouri, N.; Andrikou, I.; Konstantinidhs, D.; Siafi, E.; Manta, E.; Koullias, M.; Papageorgiou, H.; Grigoriou, K.; Leontsinis, I.; Iliakis, P.; et al. THE INTERPLAY BETWEEN SYMPATHETIC NERVOUS SYSTEM OVERACTIVITY, BLOOD PRESSURE LEVELS AND NON-ALCOHOLIC FATTY LIVER DISEASE IN HYPERTENSIVE PATIENTS. J. Hypertens. 2024, 42, e15. [Google Scholar] [CrossRef]
- Kakouri, N.; Andrikou, I.; Konstantinidis, D.; Siafi, E.; Kariori, M.; Drogkaris, S.; Polyzos, D.; Manta, E.; Tatakis, F.; Grigoriou, K.; et al. SYMPATHETIC NERVOUS SYSTEM ACTIVITY AND BLOOD PRESSURE IN HYPERTENSIVE PATIENTS WITH NONALCOHOLIC FATTY LIVER DISEASE. J. Hypertens. 2022, 40, e124. [Google Scholar] [CrossRef]
- Regitz, V.; Leuchs, B.; Bossaller, C.; Sehested, J.; Rappolder, M.; Fleck, E. Myocardial Catecholamine Concentrations in Dilated Cardiomyopathy and Heart Failure of Different Origins. Eur. Heart J. 1991, 12, 171–174. [Google Scholar] [CrossRef]
- Communal, C.; Singh, K.; Pimentel, D.R.; Colucci, W.S. Norepinephrine Stimulates Apoptosis in Adult Rat Ventricular Myocytes by Activation of the β-Adrenergic Pathway. Circulation 1998, 98, 1329–1334. [Google Scholar] [CrossRef]
- Richards, A.M. Is Atrial Natriuretic Factor a Physiological Regulator of Sodium Excretion? A Review of the Evidence. J. Cardiovasc. Pharmacol. 1990, 16 (Suppl. 7), S39–S42. [Google Scholar] [CrossRef]
- DiBona, G.F.; Kopp, U.C. Neural Control of Renal Function. Physiol. Rev. 1997, 77, 75–197. [Google Scholar] [CrossRef]
- Brunner-La Rocca, H. Effect of Cardiac Sympathetic Nervous Activity on Mode of Death in Congestive Heart Failure. Eur. Heart J. 2001, 22, 1136–1143. [Google Scholar] [CrossRef] [PubMed]
- Patel, H.C.; Rosen, S.D.; Lindsay, A.; Hayward, C.; Lyon, A.R.; di Mario, C. Targeting the Autonomic Nervous System: Measuring Autonomic Function and Novel Devices for Heart Failure Management. Int. J. Cardiol. 2013, 170, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Hasking, G.J.; Esler, M.D.; Jennings, G.L.; Burton, D.; Johns, J.A.; Korner, P.I. Norepinephrine Spillover to Plasma in Patients with Congestive Heart Failure: Evidence of Increased Overall and Cardiorenal Sympathetic Nervous Activity. Circulation 1986, 73, 615–621. [Google Scholar] [CrossRef] [PubMed]
- Esler, M.; Jennings, G.; Korner, P.; Willett, I.; Dudley, F.; Hasking, G.; Anderson, W.; Lambert, G. Assessment of Human Sympathetic Nervous System Activity from Measurements of Norepinephrine Turnover. Hypertension 1988, 11, 3–20. [Google Scholar] [CrossRef]
- Thomas, J.A.; Marks, B.H. Plasma Norepinephrine in Congestive Heart Failure. Am. J. Cardiol. 1978, 41, 233–243. [Google Scholar] [CrossRef]
- Cohn, J.N.; Levine, T.B.; Olivari, M.T.; Garberg, V.; Lura, D.; Francis, G.S.; Simon, A.B.; Rector, T. Plasma Norepinephrine as a Guide to Prognosis in Patients with Chronic Congestive Heart Failure. N. Engl. J. Med. 1984, 311, 819–823. [Google Scholar] [CrossRef]
- Francis, G.S.; Cohn, J.N.; Johnson, G.; Rector, T.S.; Goldman, S.; Simon, A. Plasma Norepinephrine, Plasma Renin Activity, and Congestive Heart Failure. Relations to Survival and the Effects of Therapy in V-HeFT II. The V-HeFT VA Cooperative Studies Group. Circulation 1993, 87, VI40-8. [Google Scholar]
- Rengo, G.; Pagano, G.; Vitale, D.F.; Formisano, R.; Komici, K.; Petraglia, L.; Parisi, V.; Femminella, G.D.; de Lucia, C.; Paolillo, S.; et al. Impact of Aging on Cardiac Sympathetic Innervation Measured by 123I-MIBG Imaging in Patients with Systolic Heart Failure. Eur. J. Nucl. Med. Mol. Imaging 2016, 43, 2392–2400. [Google Scholar] [CrossRef]
- Viquerat, C.E.; Daly, P.; Swedberg, K.; Evers, C.; Curran, D.; Parmley, W.W.; Chatterjee, K. Endogenous Catecholamine Levels in Chronic Heart Failure. Relation to the Severity of Hemodynamic Abnormalities. Am. J. Med. 1985, 78, 455–460. [Google Scholar] [CrossRef]
- Bristow, M.R.; Ginsburg, R.; Minobe, W.; Cubicciotti, R.S.; Sageman, W.S.; Lurie, K.; Billingham, M.E.; Harrison, D.C.; Stinson, E.B. Decreased Catecholamine Sensitivity and β-Adrenergic-Receptor Density in Failing Human Hearts. N. Engl. J. Med. 1982, 307, 205–211. [Google Scholar] [CrossRef]
- Matsushita, M.; Shirakabe, A.; Kobayashi, N.; Okazaki, H.; Shibata, Y.; Goda, H.; Shigihara, S.; Asano, K.; Tani, K.; Kiuchi, K.; et al. Mechanisms of Urgently Presenting Acute Heart Failure. Int. Heart J. 2020, 61, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Hjemdahl, P. Plasma Catecholamines—Analytical Challenges and Physiological Limitations. Baillieres Clin. Endocrinol. Metab. 1993, 7, 307–353. [Google Scholar] [CrossRef] [PubMed]
- Eisenhofer, G.; Rundquist, B.; Aneman, A.; Friberg, P.; Dakak, N.; Kopin, I.J.; Jacobs, M.C.; Lenders, J.W. Regional Release and Removal of Catecholamines and Extraneuronal Metabolism to Metanephrines. J. Clin. Endocrinol. Metab. 1995, 80, 3009–3017. [Google Scholar] [CrossRef] [PubMed]
- Grassi, G.; Esler, M. How to Assess Sympathetic Activity in Humans. J. Hypertens. 1999, 17, 719–734. [Google Scholar] [CrossRef]
- Kaye, D.M.; Esler, M.; Kingwell, B.; McPherson, G.; Esmore, D.; Jennings, G. Functional and Neurochemical Evidence for Partial Cardiac Sympathetic Reinnervation after Cardiac Transplantation in Humans. Circulation 1993, 88, 1110–1118. [Google Scholar] [CrossRef]
- Leimbach, W.N.; Wallin, B.G.; Victor, R.G.; Aylward, P.E.; Sundlöf, G.; Mark, A.L. Direct Evidence from Intraneural Recordings for Increased Central Sympathetic Outflow in Patients with Heart Failure. Circulation 1986, 73, 913–919. [Google Scholar] [CrossRef]
- Badrov, M.B.; Keir, D.A.; Tomlinson, G.; Notarius, C.F.; Millar, P.J.; Kimmerly, D.S.; Shoemaker, J.K.; Keys, E.; Floras, J.S. Normal and Excessive Muscle Sympathetic Nerve Activity in Heart Failure: Implications for Future Trials of Therapeutic Autonomic Modulation. Eur. J. Heart Fail. 2023, 25, 201–210. [Google Scholar] [CrossRef]
- de Matos, L.D.N.J.; Gardenghi, G.; Rondon, M.U.P.B.; Soufen, H.N.; Tirone, A.P.; Barretto, A.C.P.; Brum, P.C.; Middlekauff, H.R.; Negrão, C.E. Impact of 6 Months of Therapy with Carvedilol on Muscle Sympathetic Nerve Activity in Heart Failure Patients. J. Card. Fail. 2004, 10, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Meyer, S.E.; Kimber, M.; Maier, L.E.; Matenchuk, B.; Moldenhauer, R.; de Waal, S.; Sivak, A.; Davenport, M.H.; Steinback, C.D. The Impact of Exercise Training on Muscle Sympathetic Nerve Activity: A Systematic Review and Meta-Analysis. J. Appl. Physiol. 2024, 137, 429–444. [Google Scholar] [CrossRef]
- Manabe, K.; D’Souza, A.W.; Washio, T.; Takeda, R.; Hissen, S.L.; Akins, J.D.; Fu, Q. Sympathetic and Hemodynamic Responses to Exercise in Heart Failure with Preserved Ejection Fraction. Front. Cardiovasc. Med. 2023, 10, 1148324. [Google Scholar] [CrossRef]
- Javaheri, S.; Brown, L.K.; Abraham, W.T.; Khayat, R. Apneas of Heart Failure and Phenotype-Guided Treatments. Chest 2020, 157, 394–402. [Google Scholar] [CrossRef] [PubMed]
- Nanchen, D.; Leening, M.J.G.; Locatelli, I.; Cornuz, J.; Kors, J.A.; Heeringa, J.; Deckers, J.W.; Hofman, A.; Franco, O.H.; Stricker, B.H.C.; et al. Resting Heart Rate and the Risk of Heart Failure in Healthy Adults. Circ. Heart Fail. 2013, 6, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Böhm, M.; Swedberg, K.; Komajda, M.; Borer, J.S.; Ford, I.; Dubost-Brama, A.; Lerebours, G.; Tavazzi, L. Heart Rate as a Risk Factor in Chronic Heart Failure (SHIFT): The Association between Heart Rate and Outcomes in a Randomised Placebo-Controlled Trial. Lancet 2010, 376, 886–894. [Google Scholar] [CrossRef] [PubMed]
- Grassi, G.; Vailati, S.; Bertinieri, G.; Seravalle, G.; Stella, M.L.; Dell’Oro, R.; Mancia, G. Heart Rate as Marker of Sympathetic Activity. J. Hypertens. 1998, 16, 1635–1639. [Google Scholar] [CrossRef]
- Kingwell, B.A.; Thompson, J.M.; Kaye, D.M.; McPherson, G.A.; Jennings, G.L.; Esler, M.D. Heart Rate Spectral Analysis, Cardiac Norepinephrine Spillover, and Muscle Sympathetic Nerve Activity during Human Sympathetic Nervous Activation and Failure. Circulation 1994, 90, 234–240. [Google Scholar] [CrossRef]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef]
- Baig, M.; Moafi-Madani, M.; Qureshi, R.; Roberts, M.B.; Allison, M.; Manson, J.E.; LaMonte, M.J.; Liu, S.; Eaton, C.B. Heart Rate Variability and the Risk of Heart Failure and Its Subtypes in Post-Menopausal Women: The Women’s Health Initiative Study. PLoS ONE 2022, 17, e0276585. [Google Scholar] [CrossRef]
- Nolan, J.; Batin, P.D.; Andrews, R.; Lindsay, S.J.; Brooksby, P.; Mullen, M.; Baig, W.; Flapan, A.D.; Cowley, A.; Prescott, R.J.; et al. Prospective Study of Heart Rate Variability and Mortality in Chronic Heart Failure. Circulation 1998, 98, 1510–1516. [Google Scholar] [CrossRef]
- Pousset, F.; Copie, X.; Lechat, P.; Jaillon, P.; Boissel, J.-P.; Hetzel, M.; Fillette, F.; Remme, W.; Guize, L.; Heuzey, J.-Y. Le Effects of Bisoprolol on Heart Rate Variability in Heart Failure. Am. J. Cardiol. 1996, 77, 612–617. [Google Scholar] [CrossRef]
- Bauer, A.; Malik, M.; Schmidt, G.; Barthel, P.; Bonnemeier, H.; Cygankiewicz, I.; Guzik, P.; Lombardi, F.; Müller, A.; Oto, A.; et al. Heart Rate Turbulence: Standards of Measurement, Physiological Interpretation, and Clinical Use. J. Am. Coll. Cardiol. 2008, 52, 1353–1365. [Google Scholar] [CrossRef]
- La Rovere, M.T.; Pinna, G.D.; Maestri, R.; Robbi, E.; Caporotondi, A.; Guazzotti, G.; Sleight, P.; Febo, O. Prognostic Implications of Baroreflex Sensitivity in Heart Failure Patients in the Beta-Blocking Era. J. Am. Coll. Cardiol. 2009, 53, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Cygankiewicz, I.; Zareba, W.; Vazquez, R.; Vallverdu, M.; Gonzalez-Juanatey, J.R.; Valdes, M.; Almendral, J.; Cinca, J.; Caminal, P.; de Luna, A.B. Heart Rate Turbulence Predicts All-Cause Mortality and Sudden Death in Congestive Heart Failure Patients. Heart Rhythm. 2008, 5, 1095–1102. [Google Scholar] [CrossRef] [PubMed]
- Charytan, D.M.; Soomro, Q.H.; Caporotondi, A.; Guazzotti, G.; Maestri, R.; Pinna, G.D.; La Rovere, M.T. Baroreceptor Sensitivity in Individuals with CKD and Heart Failure. Kidney360 2022, 3, 2027–2035. [Google Scholar] [CrossRef] [PubMed]
- Bradfield, J.S.; Shivkumar, K. Avoiding the ‘Cart before the Horse’: The Importance of Continued Basic and Translational Studies of Renal Denervation. EP Europace 2020, 22, 513–514. [Google Scholar] [CrossRef] [PubMed]
- Kon, V.; Yared, A.; Ichikawa, I. Role of Renal Sympathetic Nerves in Mediating Hypoperfusion of Renal Cortical Microcirculation in Experimental Congestive Heart Failure and Acute Extracellular Fluid Volume Depletion. J. Clin. Investig. 1985, 76, 1913–1920. [Google Scholar] [CrossRef] [PubMed]
- Rafiq, K.; Noma, T.; Fujisawa, Y.; Ishihara, Y.; Arai, Y.; Nabi, A.H.M.N.; Suzuki, F.; Nagai, Y.; Nakano, D.; Hitomi, H.; et al. Renal Sympathetic Denervation Suppresses de Novo Podocyte Injury and Albuminuria in Rats with Aortic Regurgitation. Circulation 2012, 125, 1402–1413. [Google Scholar] [CrossRef]
- Mizelle, H.L.; Hall, J.E.; Montani, J.P. Role of Renal Nerves in Control of Sodium Excretion in Chronic Congestive Heart Failure. Am. J. Physiol.-Ren. Physiol. 1989, 256, F1084–F1093. [Google Scholar] [CrossRef] [PubMed]
- Souza, D.R.B.; Mill, J.G.; Cabral, A.M. Chronic Experimental Myocardial Infarction Produces Antinatriuresis by a Renal Nerve-Dependent Mechanism. Braz. J. Med. Biol. Res. 2004, 37, 285–293. [Google Scholar] [CrossRef]
- Pettersson, A.; Hedner, J.; Hedner, T. Renal Interaction between Sympathetic Activity and ANP in Rats with Chronic Ischaemic Heart Failure. Acta Physiol. Scand. 1989, 135, 487–492. [Google Scholar] [CrossRef]
- Villarreal, D.; Freeman, R.H.; Johnson, R.A. Neurohumoral Modulators and Sodium Balance in Experimental Heart Failure. Am. J. Physiol. 1993, 264, H1187–H1193. [Google Scholar] [CrossRef]
- Villarreal, D.; Freeman, R.H.; Johnson, R.A.; Simmons, J.C. Effects of Renal Denervation on Postprandial Sodium Excretion in Experimental Heart Failure. Am. J. Physiol. 1994, 266, R1599–R1604. [Google Scholar] [CrossRef] [PubMed]
- DiBona, G.F.; Sawin, L.L. Effect of Renal Denervation on Dynamic Autoregulation of Renal Blood Flow. Am. J. Physiol. Renal Physiol. 2004, 286, F1209–F1218. [Google Scholar] [CrossRef] [PubMed]
- Clayton, S.C.; Haack, K.K.V.; Zucker, I.H. Renal Denervation Modulates Angiotensin Receptor Expression in the Renal Cortex of Rabbits with Chronic Heart Failure. Am. J. Physiol. Renal Physiol. 2011, 300, F31–F39. [Google Scholar] [CrossRef] [PubMed]
- Nozawa, T.; Igawa, A.; Fujii, N.; Kato, B.; Yoshida, N.; Asanoi, H.; Inoue, H. Effects of Long-Term Renal Sympathetic Denervation on Heart Failure after Myocardial Infarction in Rats. Heart Vessels 2002, 16, 51–56. [Google Scholar] [CrossRef]
- Guo, Z.; Zhao, Q.; Deng, H.; Tang, Y.; Wang, X.; Dai, Z.; Xiao, J.; Wan, P.; Wang, X.; Huang, H.; et al. Renal Sympathetic Denervation Attenuates the Ventricular Substrate and Electrophysiological Remodeling in Dogs with Pacing-Induced Heart Failure. Int. J. Cardiol. 2014, 175, 185–186. [Google Scholar] [CrossRef]
- Hu, W.; Zhao, Q.; Yu, S.; Sun, B.; Chen, L.; Cao, S.; Guo, R. Renal Sympathetic Denervation Inhibites the Development of Left Ventricular Mechanical Dyssynchrony during the Progression of Heart Failure in Dogs. Cardiovasc. Ultrasound 2014, 12, 47. [Google Scholar] [CrossRef]
- Luo, Q.; Jin, Q.; Zhang, N.; Huang, S.; Han, Y.; Lin, C.; Ling, T.; Chen, K.; Pan, W.; Wu, L. Antifibrillatory Effects of Renal Denervation on Ventricular Fibrillation in a Canine Model of Pacing-induced Heart Failure. Exp. Physiol. 2018, 103, 19–30. [Google Scholar] [CrossRef]
- Yamada, S.; Lo, L.-W.; Chou, Y.-H.; Lin, W.-L.; Chang, S.-L.; Lin, Y.-J.; Liu, S.-H.; Cheng, W.-H.; Tsai, T.-Y.; Chen, S.-A. Renal Denervation Ameliorates the Risk of Ventricular Fibrillation in Overweight and Heart Failure. EP Europace 2020, 22, 657–666. [Google Scholar] [CrossRef]
- Linz, D.; van Hunnik, A.; Ukena, C.; Ewen, S.; Mahfoud, F.; Schirmer, S.H.; Lenski, M.; Neuberger, H.-R.; Schotten, U.; Böhm, M. Renal Denervation: Effects on Atrial Electrophysiology and Arrhythmias. Clin. Res. Cardiol. 2014, 103, 765–774. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, Q.; Deng, H.; Wang, X.; Guo, Z.; Dai, Z.; Xiao, J.; Wan, P.; Huang, C. Effects of Renal Sympathetic Denervation on the Atrial Electrophysiology in Dogs with Pacing-Induced Heart Failure. Pacing Clin. Electrophysiol. 2014, 37, 1357–1366. [Google Scholar] [CrossRef]
- Yamada, S.; Lo, L.-W.; Chou, Y.-H.; Lin, W.-L.; Chang, S.-L.; Lin, Y.-J.; Chen, S.-A. Renal Denervation Regulates the Atrial Arrhythmogenic Substrates through Reverse Structural Remodeling in Heart Failure Rabbit Model. Int. J. Cardiol. 2017, 235, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Li, Y.; Cheng, W.; Yang, Z.; Wang, F.; Lv, P.; Niu, C.; Hou, Y.; Yan, Y.; Ge, J. A Comparison of the Efficacy of Surgical Renal Denervation and Pharmacologic Therapies in Post-Myocardial Infarction Heart Failure. PLoS ONE 2014, 9, e96996. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, H.; Iwanaga, Y.; Miyaji, Y.; Yamamoto, H.; Miyazaki, S. Renal Denervation Mitigates Cardiac Remodeling and Renal Damage in Dahl Rats: A Comparison with β-Receptor Blockade. Hypertens. Res. 2016, 39, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Zhang, Q.; Wang, K.; Wang, S.; Lu, D.; Li, Z.; Geng, J.; Fang, P.; Wang, Y.; Shan, Q. Renal Denervation Findings on Cardiac and Renal Fibrosis in Rats with Isoproterenol Induced Cardiomyopathy. Sci. Rep. 2015, 5, 18582. [Google Scholar] [CrossRef] [PubMed]
- Mahfoud, F.; Moon, L.B.; Pipenhagen, C.A.; Jensen, J.A.; Pathak, A.; Papademetriou, V.; Ewen, S.; Linz, D.; Böhm, M. Catheter-Based Radio-Frequency Renal Nerve Denervation Lowers Blood Pressure in Obese Hypertensive Swine Model. J. Hypertens. 2016, 34, 1854–1862. [Google Scholar] [CrossRef]
- McArdle, M.J.; deGoma, E.M.; Cohen, D.L.; Townsend, R.R.; Wilensky, R.L.; Giri, J. Beyond Blood Pressure: Percutaneous Renal Denervation for the Management of Sympathetic Hyperactivity and Associated Disease States. J. Am. Heart Assoc. 2015, 4, e001415. [Google Scholar] [CrossRef]
- Chen, P.; Leng, S.; Luo, Y.; Li, S.; Huang, Z.; Liu, Z.; Liu, Z.; Wang, J.; Lei, X. Efficacy and Safety of Renal Sympathetic Denervation on Dogs with Pressure Overload-Induced Heart Failure. Heart Lung Circ. 2017, 26, 194–200. [Google Scholar] [CrossRef]
- Pinkham, M.I.; Loftus, M.T.; Amirapu, S.; Guild, S.-J.; Quill, G.; Woodward, W.R.; Habecker, B.A.; Barrett, C.J. Renal Denervation in Male Rats with Heart Failure Improves Ventricular Sympathetic Nerve Innervation and Function. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2017, 312, R368–R379. [Google Scholar] [CrossRef]
- Polhemus, D.J.; Trivedi, R.K.; Gao, J.; Li, Z.; Scarborough, A.L.; Goodchild, T.T.; Varner, K.J.; Xia, H.; Smart, F.W.; Kapusta, D.R.; et al. Renal Sympathetic Denervation Protects the Failing Heart Via Inhibition of Neprilysin Activity in the Kidney. J. Am. Coll. Cardiol. 2017, 70, 2139–2153. [Google Scholar] [CrossRef] [PubMed]
- Sharp, T.E.; Polhemus, D.J.; Li, Z.; Spaletra, P.; Jenkins, J.S.; Reilly, J.P.; White, C.J.; Kapusta, D.R.; Lefer, D.J.; Goodchild, T.T. Renal Denervation Prevents Heart Failure Progression Via Inhibition of the Renin-Angiotensin System. J. Am. Coll. Cardiol. 2018, 72, 2609–2621. [Google Scholar] [CrossRef]
- Kosiborod, M.N.; Abildstrøm, S.Z.; Borlaug, B.A.; Butler, J.; Rasmussen, S.; Davies, M.; Hovingh, G.K.; Kitzman, D.W.; Lindegaard, M.L.; Møller, D.V.; et al. Semaglutide in Patients with Heart Failure with Preserved Ejection Fraction and Obesity. N. Engl. J. Med. 2023, 389, 1069–1084. [Google Scholar] [CrossRef] [PubMed]
- Katsurada, K.; Nandi, S.S.; Zheng, H.; Liu, X.; Sharma, N.M.; Patel, K.P. GLP-1 Mediated Diuresis and Natriuresis Are Blunted in Heart Failure and Restored by Selective Afferent Renal Denervation. Cardiovasc. Diabetol. 2020, 19, 57. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Zheng, X.; Qian, J.; Yao, W.; Bai, L.; Hou, G.; Qiu, X.; Li, X.; Jiang, X. Renal Sympathetic Denervation Alleviates Myocardial Fibrosis Following Isoproterenol-Induced Heart Failure. Mol. Med. Rep. 2017, 16, 5091–5098. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Song, L.; Li, C.; Feng, Q.; Xu, M.; Li, Z.; Lu, C. Renal Denervation Improves Cardiac Function by Attenuating Myocardiocyte Apoptosis in Dogs after Myocardial Infarction. BMC Cardiovasc. Disord. 2018, 18, 86. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Liu, X.; Katsurada, K.; Patel, K.P. Renal Denervation Improves Sodium Excretion in Rats with Chronic Heart Failure: Effects on Expression of Renal ENaC and AQP2. Am. J. Physiol.-Heart Circ. Physiol. 2019, 317, H958–H968. [Google Scholar] [CrossRef]
- Shen, Z.; Zhang, Y.; Bu, G.; Fang, L. Renal Denervation Improves Mitochondrial Oxidative Stress and Cardiac Hypertrophy through Inactivating SP1/BACH1-PACS2 Signaling. Int. Immunopharmacol. 2024, 141, 112778. [Google Scholar] [CrossRef]
- Dimitriadis, K.; Schmieder, R.E.; Iliakis, P.; Nickel, L.; Tsioufis, K.; Weil, J. Long-Term Efficacy and Safety of Renal Denervation: An Update from Registries and Randomised Trials. Blood Press. 2023, 32, 2266664. [Google Scholar] [CrossRef]
- Tsioufis, C.; Dimitriadis, K.; Kasiakogias, A.; Kalos, T.; Liatakis, I.; Koutra, E.; Nikolopoulou, L.; Kordalis, A.; Ella, R.O.; Lau, E.O.-Y.; et al. Effects of Multielectrode Renal Denervation on Elevated Sympathetic Nerve Activity and Insulin Resistance in Metabolic Syndrome. J. Hypertens. 2017, 35, 1100–1108. [Google Scholar] [CrossRef] [PubMed]
- Bruno, R.M.; Taddei, S. Renal Denervation and Regression of Left Ventricular Hypertrophy. Eur. Heart J. 2014, 35, 2205–2207. [Google Scholar] [CrossRef] [PubMed]
- Brandt, M.C.; Mahfoud, F.; Reda, S.; Schirmer, S.H.; Erdmann, E.; Böhm, M.; Hoppe, U.C. Renal Sympathetic Denervation Reduces Left Ventricular Hypertrophy and Improves Cardiac Function in Patients with Resistant Hypertension. J. Am. Coll. Cardiol. 2012, 59, 901–909. [Google Scholar] [CrossRef]
- Davies, J.E.; Manisty, C.H.; Petraco, R.; Barron, A.J.; Unsworth, B.; Mayet, J.; Hamady, M.; Hughes, A.D.; Sever, P.S.; Sobotka, P.A.; et al. First-in-Man Safety Evaluation of Renal Denervation for Chronic Systolic Heart Failure: Primary Outcome from REACH-Pilot Study. Int. J. Cardiol. 2013, 162, 189–192. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.-Q.; Xie, Y.; Yang, W.; Zheng, J.-P.; Liu, Z.-J. Effects of Percutaneous Renal Sympathetic Denervation on Cardiac Function and Exercise Tolerance in Patients with Chronic Heart Failure. Rev. Port. Cardiol. 2017, 36, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Hopper, I.; Gronda, E.; Hoppe, U.C.; Rundqvist, B.; Marwick, T.H.; Shetty, S.; Hayward, C.; Lambert, T.; Hering, D.; Esler, M.; et al. Sympathetic Response and Outcomes Following Renal Denervation in Patients with Chronic Heart Failure: 12-Month Outcomes from the Symplicity HF Feasibility Study. J. Card. Fail. 2017, 23, 702–707. [Google Scholar] [CrossRef]
- Kresoja, K.-P.; Rommel, K.-P.; Fengler, K.; von Roeder, M.; Besler, C.; Lücke, C.; Gutberlet, M.; Desch, S.; Thiele, H.; Böhm, M.; et al. Renal Sympathetic Denervation in Patients with Heart Failure with Preserved Ejection Fraction. Circ. Heart Fail. 2021, 14, e007421. [Google Scholar] [CrossRef]
- Fengler, K.; Kresoja, K.-P.; Rommel, K.-P.; Rosch, S.; Roeder, M.V.; Desch, S.; Thiele, H.; Lurz, P. Sympathomodulation in Heart Failure with High vs. Normal Ejection Fraction. Struct. Heart 2022, 6, 100073. [Google Scholar] [CrossRef]
- Rommel, K.-P.; Pagoulatou, S.; Kresoja, K.-P.; Rosch, S.; Schöber, A.R.; von Roeder, M.; Thiele, H.; Fengler, K.; Stergiopulos, N.; Lurz, P. Modulation of Pulsatile Left Ventricular Afterload by Renal Denervation in Heart Failure with Preserved Ejection Fraction. Circ. Heart Fail. 2023, 16, e010543. [Google Scholar] [CrossRef]
- Geng, J.; Chen, C.; Zhou, X.; Qian, W.; Shan, Q. Influence of Renal Sympathetic Denervation in Patients with Early-Stage Heart Failure Versus Late-Stage Heart Failure. Int. Heart J. 2018, 59, 99–104. [Google Scholar] [CrossRef]
- Vogt, A.; Plehn, A.; Atti, C.; Nussbaum, M.; Tongers, J.; Sedding, D.; Dutzmann, J. Left Ventricular Structure and Function Following Renal Sympathetic Denervation in Patients with HFpEF: An Echocardiographic 9-Year Long-Term Follow-Up. Front. Cardiovasc. Med. 2024, 11, 1408547. [Google Scholar] [CrossRef]
- Dai, Q.; Lu, J.; Wang, B.; Ma, G. Effect of Percutaneous Renal Sympathetic Nerve Radiofrequency Ablation in Patients with Severe Heart Failure. Int. J. Clin. Exp. Med. 2015, 8, 9779–9785. [Google Scholar]
- Chen, W.; Ling, Z.; Xu, Y.; Liu, Z.; Su, L.; Du, H.; Xiao, P.; Lan, X.; Shan, Q.; Yin, Y. Preliminary Effects of Renal Denervation with Saline Irrigated Catheter on Cardiac Systolic Function in Patients with Heart Failure: A Prospective, Randomized, Controlled, Pilot Study. Catheter. Cardiovasc. Interv. 2017, 89, E153–E161. [Google Scholar] [CrossRef]
- Patel, H.C.; Rosen, S.D.; Hayward, C.; Vassiliou, V.; Smith, G.C.; Wage, R.R.; Bailey, J.; Rajani, R.; Lindsay, A.C.; Pennell, D.J.; et al. Renal Denervation in Heart Failure with Preserved Ejection Fraction (RDT-PEF): A Randomized Controlled Trial. Eur. J. Heart Fail. 2016, 18, 703–712. [Google Scholar] [CrossRef] [PubMed]
- Drożdż, T.; Jastrzębski, M.; Moskal, P.; Kusiak, A.; Bednarek, A.; Styczkiewicz, K.; Jankowski, P.; Czarnecka, D. Renal Denervation in Patients with Symptomatic Chronic Heart Failure despite Resynchronization Therapy—A Pilot Study. Adv. Interv. Cardiol. 2019, 15, 240–246. [Google Scholar] [CrossRef]
- Gao, J.-Q.; Yang, W.; Liu, Z.-J. Percutaneous Renal Artery Denervation in Patients with Chronic Systolic Heart Failure: A Randomized Controlled Trial. Cardiol. J. 2019, 26, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Feyz, L.; Nannan Panday, R.; Henneman, M.; Verzijlbergen, F.; Constantinescu, A.A.; van Dalen, B.M.; Brugts, J.J.; Caliskan, K.; Geleijnse, M.L.; Kardys, I.; et al. Endovascular Renal Sympathetic Denervation to Improve Heart Failure with Reduced Ejection Fraction: The IMPROVE-HF-I Study. Neth. Heart J. 2022, 30, 149–159. [Google Scholar] [CrossRef]
- Spadaro, A.G.; Bocchi, E.A.; Souza, G.E.; Filho, A.E.; Mariani, J.; Campos, C.M.; Lemos, P.A. Renal Denervation in Patients with Heart Failure Secondary to Chagas’ Disease: A Pilot Randomized Controlled Trial. Catheter. Cardiovasc. Interv. 2019, 94, 644–650. [Google Scholar] [CrossRef]
- Su, Q.; Li, J.; Shi, F.; Yu, J. A Meta-Analysis and Review on the Effectiveness and Safety of Renal Denervation in Managing Heart Failure with Reduced Ejection Fraction. Ren. Fail. 2024, 46, 2359032. [Google Scholar] [CrossRef]
- Li, M.; Ma, W.; Fan, F.; Yi, T.; Qiu, L.; Wang, Z.; Weng, H.; Zhang, Y.; Li, J.; Huo, Y. Renal Denervation in Management of Heart Failure with Reduced Ejection Fraction: A Systematic Review and Meta-Analysis. J. Cardiol. 2023, 81, 513–521. [Google Scholar] [CrossRef]
- Zile, M.R.; Lindenfeld, J.; Weaver, F.A.; Zannad, F.; Galle, E.; Rogers, T.; Abraham, W.T. Baroreflex Activation Therapy in Patients with Heart Failure with Reduced Ejection Fraction. J. Am. Coll. Cardiol. 2020, 76, 1–13. [Google Scholar] [CrossRef]
- Coats, A.J.S.; Abraham, W.T.; Zile, M.R.; Lindenfeld, J.A.; Weaver, F.A.; Fudim, M.; Bauersachs, J.; Duval, S.; Galle, E.; Zannad, F. Baroreflex Activation Therapy with the Barostim TM Device in Patients with Heart Failure with Reduced Ejection Fraction: A Patient Level Meta-analysis of Randomized Controlled Trials. Eur. J. Heart Fail. 2022, 24, 1665–1673. [Google Scholar] [CrossRef] [PubMed]
- Gold, M.R.; Van Veldhuisen, D.J.; Hauptman, P.J.; Borggrefe, M.; Kubo, S.H.; Lieberman, R.A.; Milasinovic, G.; Berman, B.J.; Djordjevic, S.; Neelagaru, S.; et al. Vagus Nerve Stimulation for the Treatment of Heart Failure. J. Am. Coll. Cardiol. 2016, 68, 149–158. [Google Scholar] [CrossRef]
- Premchand, R.K.; Sharma, K.; Mittal, S.; Monteiro, R.; Dixit, S.; Libbus, I.; DiCarlo, L.A.; Ardell, J.L.; Rector, T.S.; Amurthur, B.; et al. Autonomic Regulation Therapy via Left or Right Cervical Vagus Nerve Stimulation in Patients with Chronic Heart Failure: Results of the ANTHEM-HF Trial. J. Card. Fail. 2014, 20, 808–816. [Google Scholar] [CrossRef] [PubMed]
- Kumar, H.U.; Nearing, B.D.; Mittal, S.; Premchand, R.K.; Libbus, I.; DiCarlo, L.A.; Amurthur, B.; KenKnight, B.H.; Anand, I.S.; Verrier, R.L. Autonomic Regulation Therapy in Chronic Heart Failure with Preserved/Mildly Reduced Ejection Fraction: ANTHEM-HFpEF Study Results. Int. J. Cardiol. 2023, 381, 37–44. [Google Scholar] [CrossRef] [PubMed]
- van Kleef, M.E.A.M.; Devireddy, C.M.; van der Heyden, J.; Bates, M.C.; Bakris, G.L.; Stone, G.W.; Williams, B.; Spiering, W. Treatment of Resistant Hypertension with Endovascular Baroreflex Amplification. JACC Cardiovasc. Interv. 2022, 15, 321–332. [Google Scholar] [CrossRef]
- Dimitriadis, K.; Iliakis, P.; Tsioufis, K. MobiusHD Device. JACC Cardiovasc. Interv. 2022, 15, 1183. [Google Scholar] [CrossRef] [PubMed]
- Piayda, K.; Sievert, K.; Sievert, H.; Shaburishvili, T.; Gogorishvili, I.; Rothman, M.; Januzzi, J.L.; Lindenfeld, J.; Stone, G.W. Endovascular Baroreflex Amplification with the MobiusHD Device in Patients with Heart Failure and Reduced Ejection Fraction: Interim Analysis of the First-in-Human Results. Struct. Heart 2022, 6, 100086. [Google Scholar] [CrossRef]
- Pahuja, M.; Akhtar, K.H.; Krishan, S.; Nasir, Y.M.; Généreux, P.; Stavrakis, S.; Dasari, T.W. Neuromodulation Therapies in Heart Failure: A State-of-the-Art Review. J. Soc. Cardiovasc. Angiogr. Interv. 2023, 2, 101199. [Google Scholar] [CrossRef]
- Vaduganathan, M.; Docherty, K.F.; Claggett, B.L.; Jhund, P.S.; de Boer, R.A.; Hernandez, A.F.; Inzucchi, S.E.; Kosiborod, M.N.; Lam, C.S.P.; Martinez, F.; et al. SGLT2 Inhibitors in Patients with Heart Failure: A Comprehensive Meta-Analysis of Five Randomised Controlled Trials. Lancet 2022, 400, 757–767. [Google Scholar] [CrossRef]
- Gao, M.; Bhatia, K.; Kapoor, A.; Badimon, J.; Pinney, S.P.; Mancini, D.M.; Santos-Gallego, C.G.; Lala, A. SGLT2 Inhibitors, Functional Capacity, and Quality of Life in Patients with Heart Failure. JAMA Netw. Open 2024, 7, e245135. [Google Scholar] [CrossRef]
- Lopaschuk, G.D.; Verma, S. Mechanisms of Cardiovascular Benefits of Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors: A State-of-the-Art Review. JACC Basic Transl. Sci. 2020, 5, 632–644. [Google Scholar] [CrossRef]
- Dimitriadis, K.; Adamopoulou, E.; Pyrpyris, N.; Sakalidis, A.; Leontsinis, I.; Manta, E.; Mantzouranis, E.; Beneki, E.; Soulaidopoulos, S.; Konstantinidis, D.; et al. The Effect of SGLT2 Inhibitors on the Endothelium and the Microcirculation: From Bench to Bedside and Beyond. Eur. Heart J. Cardiovasc. Pharmacother. 2023, 9, 741–757. [Google Scholar] [CrossRef]
- Dimitriadis, K.; Pitsiori, D.; Alexiou, P.; Pyrpyris, N.; Sakalidis, A.; Beneki, E.; Iliakis, P.; Tatakis, F.; Theofilis, P.; Tsioufis, P.; et al. Modulating Sympathetic Nervous System with the Use of SGLT2 Inhibitors: Where There Is Smoke, There Is Fire? J. Cardiovasc. Pharmacol. 2024; in press. [Google Scholar] [CrossRef] [PubMed]
- Mariani, M.V.; Manzi, G.; Pierucci, N.; Laviola, D.; Piro, A.; D’Amato, A.; Filomena, D.; Matteucci, A.; Severino, P.; Miraldi, F.; et al. SGLT2i Effect on Atrial Fibrillation: A Network Meta-analysis of Randomized Controlled Trials. J. Cardiovasc. Electrophysiol. 2024, 35, 1754–1765. [Google Scholar] [CrossRef] [PubMed]
- Pauza, A.G.; Thakkar, P.; Tasic, T.; Felippe, I.; Bishop, P.; Greenwood, M.P.; Rysevaite-Kyguoliene, K.; Ast, J.; Broichhagen, J.; Hodson, D.J.; et al. GLP1R Attenuates Sympathetic Response to High Glucose via Carotid Body Inhibition. Circ. Res. 2022, 130, 694–707. [Google Scholar] [CrossRef]
- Chinitz, L.; Böhm, M.; Evonich, R.; Saba, S.; Sangriogoli, R.; Augostini, R.; O’Neill, P.G.; Fellows, C.; Kim, M.-Y.; Hettrick, D.A.; et al. Long-Term Changes in Atrial Arrhythmia Burden After Renal Denervation Combined with Pulmonary Vein Isolation. JACC Clin. Electrophysiol. 2024, 10, 2062–2073. [Google Scholar] [CrossRef]
- Nawar, K.; Mohammad, A.; Johns, E.J.; Abdulla, M.H. Renal Denervation for Atrial Fibrillation: A Comprehensive Updated Systematic Review and Meta-Analysis. J. Hum. Hypertens. 2022, 36, 887–897. [Google Scholar] [CrossRef]
- Warchol-Celinska, E.; Prejbisz, A.; Kadziela, J.; Florczak, E.; Januszewicz, M.; Michalowska, I.; Dobrowolski, P.; Kabat, M.; Sliwinski, P.; Klisiewicz, A.; et al. Renal Denervation in Resistant Hypertension and Obstructive Sleep Apnea. Hypertension 2018, 72, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Koutra, E.; Dimitriadis, K.; Pyrpyris, N.; Iliakis, P.; Fragkoulis, C.; Beneki, E.; Kasiakogias, A.; Tsioufis, P.; Tatakis, F.; Kordalis, A.; et al. Unravelling the Effect of Renal Denervation on Glucose Homeostasis: More Questions than Answers? Acta Diabetol. 2023, 61, 267–280. [Google Scholar] [CrossRef]
Measurement Modality | HF Prognosis | Advantages | Limitations |
---|---|---|---|
Noradrenaline (NA) spillover | NA levels over 900 pg/mL are associated with increased mortality | “Gold-standard” method Specific tissue examination Comparative evaluation of regional spillover | Heterogenous response to treatment High-expertise laboratory equipment Experienced operators |
Microneurography (MSNA) | MSNA values over 49 burst/min are associated with increased mortality Pharmacological treatment of HF associated with MSNA reduction | Ability to evaluate central sympathetic outflow to the periphery both at rest and during exercise Utilized in a clinical trials’ setting for comparative treatment evaluation | Only efferent sympathetic signals can be recorded Invasive, non-repeatable, and required learning curve Limitations in the arrhythmogenic substrate |
Heart rate Variability (HRV) | Decrease in SDNN (a marker of HRV) is significantly associated with increased mortality Pharmacological treatment with β-blockers is associated with HRV improvement | Non-invasive, easy-to-operate, and time-efficient method Provides both office and out-of-office real-life data | Inability to distinguish the impact of parasympathetic withdrawal vs. sympathetic overdrive High variability in prognosis prediction |
Baroreceptor Sensitivity (BRS) | Depressed BRS lower than 3.0 ms/mmHg is associated with ↑ mortality Abnormal HR turbulence strongly is associated with all-cause mortality when QRS > 120 ms | Non-invasive and easy to operate | Marker of parasympathetic activity Variability of the method Non-applicable in the presence of atrial fibrillation |
Author | Year | Study Type | N | Patient Characteristics | Follow-Up | Changes in Imaging Outcomes | Change in Laboratory Values | Changes in Functional Outcomes | Safety |
---|---|---|---|---|---|---|---|---|---|
Davies et al. [101] | 2013 | Observational | 7 | Chronic systolic HF | 6 months | NR | NR | All patients experienced symptom improvement. 6MWT distance was significantly increased (Δ = 27.1 ± 9.7 m, p = 0.03) | No patient was admitted for HF symptoms or procedural complications. No hypotensive episodes or syncope events. Renal function remained stable throughout the follow-up |
Gao et al. [102] | 2017 | Observational | 14 | Chronic HF, LVEF < 45% | 6 months | LVEF increased from 36.0 ± 4.1% to 43.8 ± 7.9% (p = 0.003) | NR | The 6MWT distance increased from 152.9 ± 38.0 m to 334.3 ± 94.4 m (p < 0.001) | No hypotensive episodes or syncope was reported at 6 months follow-up. Creatinine levels remained stable |
Hopper et al. [103] | 2017 | Observational | 39 | HFrEF | 12 months | Non-significant change in LVEF (28 ± 9% vs. 29 ± 11%; p = 0.536) | Significant reduction in NT-proBNP (1530 ± 1228 vs. 1428 ± 1844 ng/mL; p = 0.006) | Non-significant change in 6MWT distance (384 ± 96 vs. 391 ± 97 m; p = 0.584) | One patents experienced a renal artery occlusion event that did not meet the protocol definition of stenosis. Six patients had a rise in creatinine from 25% to 50% |
Kresoja et al. [104] | 2021 | Observational | 164 | HFpEF (n = 99) and healthy controls (n = 65) | Stroke volume index, LV diastolic stiffness, and LV filling pressures significantly decreased in HFpEF (p = 0.011, 0.032, and 0.043, respectively) Aortic distensibility (p = 0.007) and systolic stiffness (p < 0.001) increased | NT-proBNP significantly decreased in HFpEF patients (p < 0.001) | NR | NR | |
Fengler et al. [105] | 2022 | Observational | 99 | HFpEF, high LVEF (n = 63), and normal LVEF (n = 36) | NR | Ea was significantly reduced in both groups (p < 0.001) Ees/Ea was significantly increased in normal LVEF but not in high LVEF (p < 0.05) | NR | NR | NR |
Geng et al. [107] | 2018 | Observational | 17 | HF, HF duration < 3 years (n = 9), and HF duration > 3 years (n = 8) | 12 months | Significant increase in LVEF in the total cohort and <3 years duration (p < 0.05 for both) but not in >3 years | No significant change in BNP. Significant reduction in inflammatory markers in the total cohort and HF < 3 years | No significant change in 6MWT distance | No reported events of worsening renal function, renal artery stenosis/dissection, or orthostatic hypotension |
Vogt et al. [108] | 2024 | Observational | 21 | HFpEF | 9 years | Significant reduction in HFA-PEFF score (5.48 ± 0.51 to 4.33 ± 1.53 points; p < 0.01) Greater decrease in morphological and biomarker categories rather than functional. Concomitant reduction in LV hypertrophy | NR |
Author | Year | Study Type | N | Patient Characteristics | Follow-Up | Changes in Imaging Outcomes | Changes in Laboratory Outcomes | Changes in Clinical Outcomes | Safety |
---|---|---|---|---|---|---|---|---|---|
Dai et al. [109] | 2015 | RCT | 20 | HF and NYHA III-IV | 6 months | Significantly increased LVEF in the RDN group (45 vs. 38%; p = 0.001) | Neurohormonal levels were decreased compared with pre-operation and controls | Symptomatic improvement in patients post RDN | No events of procedure-related arrhythmia, oliguria, or renal artery dissection were reported |
Chen et al. [110] | 2016 | RCT | 60 (1:1) | HF | 6 months | Significant improvement in LVEF in the RDN group (p < 0.001) | Significant improvement in NT-proBNP (p < 0.001) in the RDN arm | Significant improvement in NYHA class (p < 0.001) and all domains of SF-36, except body pain (p = 0.74). | No artery stenosis at 6 months follow-up. Renal function remained stable |
Patel et al. [111] | 2016 | RCT | 25 (2:1) | HFpEF | 3–12 months | Improvements in E/e’ (31% vs. 13%, p = 0.04) in those undergoing RDN | More patients improved at 3 months in the RDN arm regarding VO2 peak (56% vs. 13%, p = 0.025) | No significant change in the Minnesota Living with Heart Failure Questionnaire score | Two patients undergoing RDN had more than a 30% reduction in eGFR at 12 months. No reported new renal artery stenosis. Median change in eGFR was similar between RDN and controls |
Drożdż et al. [112] | 2019 | RCT | 20 (1:1) | HFrEF not responding to CRT | 6 and 12 months | No significant differences in LVEF | No significant differences in BNP | No significant differences in 6MWT distance | No events of renal artery stenosis, renal artery dissection, pseudoaneurysm at the femoral access site or bleeding occurred at 6- and 12-month follow-up |
Gao et al. [113] | 2019 | RCT | 60 (1:1) | Chronic systolic HF | 6 months | Significant increase in LVEF post-RDN (39.1 ± 7.3% vs. 35.6 ± 3.3%, p = 0.017) | Significant decrease in NT-proBNP (440.1 ± 226.5 pg/mL vs. 790.8 ± 287.0 pg/mL, p < 0.001) in the RDN arm | Significant improvement in NYHA class in those undergoing RDN (p = 0.01) | None reported hypotensive or syncope episode. No significant change of eGFR between groups at 6-month follow-up |
Feyz et al. [114] | 2022 | RCT | 50 (1:1) | HFrEF | 6 months | No significant change in the composite of cardiovascular death, rehospitalization for HF, and acute kidney injury or change in iodine-123 meta-iodobenzylguanidine heart-to-mediastinum ratio at 6 months between groups | The composite safety endpoint of cardiovascular death, rehospitalization for heart failure, and acute kidney injury at 6 months was found similar between groups (8.3 vs. 8.0%). eGFR remained unchanged in both arms | ||
Spadaro et al. [115] | 2019 | RCT | 17 (2:1) | Chagas disease and HF | 9 months | Similar echocardiographic parameters between groups at 9 months | NR | Similar functional/quality-of-life parameters between groups at 9 months | No in-hospital complications. No worsening renal function evident in follow-up laboratory values |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimitriadis, K.; Iliakis, P.; Pyrpyris, N.; Tatakis, F.; Fragkoulis, C.; Mantziaris, V.; Plaitis, A.; Beneki, E.; Tsioufis, P.; Hering, D.; et al. Renal Denervation in Heart Failure Treatment: Data for a Self-Fulfilling Prophecy. J. Clin. Med. 2024, 13, 6656. https://doi.org/10.3390/jcm13226656
Dimitriadis K, Iliakis P, Pyrpyris N, Tatakis F, Fragkoulis C, Mantziaris V, Plaitis A, Beneki E, Tsioufis P, Hering D, et al. Renal Denervation in Heart Failure Treatment: Data for a Self-Fulfilling Prophecy. Journal of Clinical Medicine. 2024; 13(22):6656. https://doi.org/10.3390/jcm13226656
Chicago/Turabian StyleDimitriadis, Kyriakos, Panagiotis Iliakis, Nikolaos Pyrpyris, Fotis Tatakis, Christos Fragkoulis, Vasileios Mantziaris, Aristides Plaitis, Eirini Beneki, Panagiotis Tsioufis, Dagmara Hering, and et al. 2024. "Renal Denervation in Heart Failure Treatment: Data for a Self-Fulfilling Prophecy" Journal of Clinical Medicine 13, no. 22: 6656. https://doi.org/10.3390/jcm13226656
APA StyleDimitriadis, K., Iliakis, P., Pyrpyris, N., Tatakis, F., Fragkoulis, C., Mantziaris, V., Plaitis, A., Beneki, E., Tsioufis, P., Hering, D., Kollias, A., Konstantinidis, D., & Tsioufis, K. (2024). Renal Denervation in Heart Failure Treatment: Data for a Self-Fulfilling Prophecy. Journal of Clinical Medicine, 13(22), 6656. https://doi.org/10.3390/jcm13226656