Use of Intravascular Micro-Axial Left Ventricular Assist Devices as a Bridging Strategy for Cardiogenic Shock: Mid-Term Outcomes
Abstract
:1. Introduction
2. Methods
2.1. Predictors of In-Hospital Mortality
2.2. Assumption Check for Multivriable Logistic Regression Model
2.3. Variable Selection
2.4. Predictors of Long-Term Survival
2.5. Assumption Check for Multivriable Cox Regression Model
2.6. Technique of M-LVAD Insertion
3. Results
3.1. Postoperative Results
3.2. Predictors of Perioperative Mortality
3.3. Long-Term Results
3.4. Predictors of Long-Term Mortality
Cox Regression
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vlachakis, P.K.; Theofilis, P.; Leontsinis, I.; Drakopoulou, M.; Karakasis, P.; Oikonomou, E.; Chrysohoou, C.; Tsioufis, K.; Tousoulis, D. Bridge to Life: Current Landscape of Temporary Mechanical Circulatory Support in Heart-Failure-Related Cardiogenic Shock. J. Clin. Med. 2024, 13, 4120. [Google Scholar] [CrossRef] [PubMed]
- Hall, S.A.; Uriel, N.; Carey, S.A.; Edens, M.; Gong, G.; Esposito, M.; O’kelly, R.; Annamalai, S.; Aghili, N.; Adatya, S.; et al. Use of a percutaneous temporary circulatory support device as a bridge to decision during acute decompensation of advanced heart failure. J. Heart Lung Transplant. 2018, 37, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Rihal, C.S.; Naidu, S.S.; Givertz, M.M.; Szeto, W.Y.; Burke, J.A.; Kapur, N.K.; Kern, M.; Garratt, K.N.; Goldstein, J.A.; Dimas, V.; et al. 2015 SCAI/ACC/HFSA/STS Clinical Expert Consensus Statement on the Use of Percutaneous Mechanical Circulatory Support De-vices in Cardiovascular Care: Endorsed by the American Heart Assocation, the Cardiological Society of India, and Sociedad Latino Americana de Cardiologia Intervencion; Affirmation of Value by the Canadian Association of Interventional Cardiol-ogy-Association Canadienne de Cardiologie d’intervention. J. Am. Coll. Cardiol. 2015, 65, e7–e26. [Google Scholar] [CrossRef]
- Basra, S.S.; Loyalka, P.; Kar, B. Current status of percutaneous ventricular assist devices for cardiogenic shock. Curr. Opin. Cardiol. 2011, 26, 548–554. [Google Scholar] [CrossRef]
- Haddad, O.; Sareyyupoglu, B.; Goswami, R.M.; Bitargil, M.; Patel, P.C.; Jacob, S.; Ahmed, M.M.E.; Moreno, J.C.L.; Yip, D.S.; Landolfo, K.; et al. Short-term outcomes of heart transplant patients bridged with Impella 5.5 ventricular assist device. ESC Heart Fail. 2023, 10, 2298–2306. [Google Scholar] [CrossRef]
- Kakuturu, J.; Dhamija, A.; Chan, E.; Lagazzi, L.; Thibault, D.; Badhwar, V.; Hayanga, J.W.A. Mortality and cost of post-cardiotomy extracorporeal support in the United States. Perfusion 2022, 38, 1468–1477. [Google Scholar] [CrossRef] [PubMed]
- Armas, I.A.S.d.; Holifield, L.; Janowiak, L.M.; Akay, M.H.; Patarroyo, M.; Nascimbene, A.; Akkanti, B.H.; Patel, M.; Patel, J.; Marcano, J.; et al. The use of veno-arterial extracorporeal membrane oxygenation in the octogenarian population: A single-center experience. Perfusion 2022, 38, 1196–1202. [Google Scholar] [CrossRef] [PubMed]
- Mahesh, B.; Williams, L.; Punjabi, P.P.; Katsaridis, S. Novel strategy for improved outcomes of extra-corporeal membrane oxygenation as a treatment for refractory post cardiotomy cardiogenic shock in the current era: A refreshing new perspective. Perfusion 2021, 37, 825–834. [Google Scholar] [CrossRef] [PubMed]
- Ramzy, D.; Anderson, M.; Batsides, G.; Ono, M.; Silvestry, S.; D’alessandro, D.A.; Funamoto, M.; Zias, E.A.; Lemaire, A.; Soltese, E. Early Outcomes of the First 200 US Patients Treated with Impella 5.5: A Novel Temporary Left Ventricular Assist Device. Innov. Technol. Technol. Cardiothorac. Vasc. Surg. 2021, 16, 365–372. [Google Scholar] [CrossRef]
- Kleinbaum, D.; Klein, M. Survival Analysis: A Self-Learning Text, 1st ed.; Springer: New York, NY, USA, 1996. [Google Scholar]
- Saha, A.; Kurlansky, P.; Ning, Y.; Sanchez, J.; Fried, J.; Witer, L.J.; Kaku, Y.; Takayama, H.; Naka, Y.; Takeda, K. Early venoarterial extracorporeal membrane oxygenation improves outcomes in post-cardiotomy shock. J. Artif. Organs 2021, 24, 7–14. [Google Scholar] [CrossRef]
- Lorusso, R.; Whitman, G.; Milojevic, M.; Raffa, G.; McMullan, D.M.; Boeken, U.; Haft, J.; Bermudez, C.; Shah, A.; D’Alessandro, D.A. 2020 EACTS/ELSO/STS/AATS expert consensus on post-cardiotomy extracorporeal life support in adult patients. J. Thorac. Cardiovasc. Surg. 2021, 161, 1287–1331. [Google Scholar] [CrossRef] [PubMed]
- Usman, A.A.; Spelde, A.E.; Olia, S.E.; Cevasco, M.; Bermudez, C.; Haddle, J.; Ibrahim, M.; Szeto, W.; Vernick, W.; Gutsche, J. First-in-man successful use of the SPECTRUM percutaneous dual-stage right ventricle and right atrium to pulmonary artery ventricular assist device. J. Card. Surg. 2022, 37, 3403–3407. [Google Scholar] [CrossRef] [PubMed]
- Roscoe, A.; Zochios, V. Echocardiography in weaning right ventricular mechanical circulatory support: Are we measuring the right stuff? J. Cardiothorac. Vasc. Anesth. 2022, 36, 362–366. [Google Scholar] [CrossRef] [PubMed]
- Ortoleva, J.P.; Alfadhel, A.; Dalia, A.A. Invasive hemodynamic and physiologic considerations in patients undergoing extracorporeal membrane oxygenation. J. Cardiothorac. Vasc. Anesth. 2021, 35, 2549–2551. [Google Scholar] [CrossRef] [PubMed]
- Coco, V.L.; Lorusso, R.; Raffa, G.M.; Malvindi, P.G.; Pilato, M.; Martucci, G.; Arcadipane, A.; Zieliński, K.; Suwalski, P.; Kowalewski, M. Clinical complications during veno-arterial extracorporeal membrane oxigenation in post-cardiotomy and non post-cardiotomy shock: Still the achille’s heel. J. Thorac. Dis. 2018, 10, 6993–7004. [Google Scholar] [CrossRef]
- Pawale, A.; Schwartz, Y.; Itagaki, S.; Pinney, S.; Adams, D.H.; Anyanwu, A.C. Selective implantation of durable left ventricular assist devices as primary therapy for refractory cardiogenic shock. J. Thorac. Cardiovasc. Surg. 2018, 155, 1059–1068. [Google Scholar] [CrossRef]
- Soleimani, B.; Brehm, C.; Campbell, D.C.; Conte, J.V. A bridge to many? J. Thorac. Cardiovasc. Surg. 2017, 1–2, Invited editorial commentary. [Google Scholar]
- Tarabichi, S.; Ikegami, H.; Russo, M.J.; Lee, L.Y.; Lemaire, A. The role of the axillary Impella 5.0 device on patients with acute cardiogenic shock. J. Cardiothorac. Surg. 2020, 15, 218. [Google Scholar] [CrossRef]
- Gill, G.; Rowe, G.; Chen, Q.; Malas, J.; Thomas, J.; Peiris, A.; Cole, R.; Chikwe, J.; Megna, D.; Emerson, D. Bridging with surgically placed microaxial left ventricular assist devices: A High-volume center experience. Eur. J. Cardiothorac. Surg. 2023, 63, ezad116. [Google Scholar] [CrossRef]
- Schumer, E.M.; Bai, Y.Z.; Kotkar, K.D.; Masood, M.F.; Itoh, A.; Schilling, J.D.; Ewald, G.A.; Damiano, M.S.; Fischer, I.; Pawale, T.K.; et al. Surgically implanted endovascular, micro axial left ventricular assist device: A single institution study. J. Thorac. Cardiovasc. Technol. 2024, 23, 63–71. [Google Scholar]
- Consolo, F.; Ursoleo, J.D.; Pieri, M.; Nardelli, P.; Cianfanelli, L.; Pazzanese, V.; Ajello, S.; Scandroglio, A.M. The intelligent Impella: Future perspectives of artificial intelligence in the setting of Impella support. ESC Heart Fail. 2024, 11, 2933–2940. [Google Scholar] [CrossRef] [PubMed]
- Coorey, G.; Figtree, G.A.; Fletcher, D.F.; Snelson, V.J.; Vernon, S.T.; Winlaw, D.; Grieve, S.M.; McEwan, A.; Yang, J.Y.H.; Qian, P.; et al. The health digital twin to tackle cardiovascular disease—A review of an emerging interdisciplinary field. NPJ Digit. Med. 2022, 5, 126. [Google Scholar] [CrossRef] [PubMed]
- Van Edom, C.J.; Gramegna, M.; Baldetti, L.; Beneduce, A.; Castelein, T.; Dauwe, D.; Frederiks, P.; Giustino, G.; Jacquemin, M.; Janssens, S.P.; et al. Management of Bleeding and Hemolysis During Percutaneous Microaxial Flow Pump Support: A Practical Approach. JACC Cardiovasc. Interv. 2023, 16, 1707–1720. [Google Scholar] [CrossRef] [PubMed]
Variable | Group-1 (n = 34) | Group-2 (n = 25) | Group-3 (n = 42) | p-Value |
---|---|---|---|---|
Means ± SD | Means ± SD | Means ± SD | ||
Age (years) | 53 ± 12.4 | 57.5 ± 13 | 63.3 ± 12.4 | 0.002 |
Body mass index | 28.5 ± 3.9 | 29.1 ± 5.3 | 31.4 ± 6.1 | 0.045 |
Number (%) | Number (%) | Number (%) | ||
Female | 2 (5.9) | 3 (12) | 4 (9.5) | 0.69 |
p-RVAD | 0 | 5 (20) | 10 (24) | 0.009 |
ECMO to M-LVAD | 3 (9) | 6 (24) | 11 (26) | 0.043 |
Group-1 (n = 34) | Group-2 (n = 25) | Group-3 (n = 42) | p-Value | |
---|---|---|---|---|
Means ± SD | Means ± SD | Means ± SD | ||
Days on Impella support | 27 ± 21 | 20 ± 14 | 14.5 ± 11 | 0.003 |
Intensive care unit days | 38.7 ± 26 | 53 ± 30.5 | 27.8 ± 25 | 0.002 |
Number (%) | Number (%) | Number (%) | ||
Axillary hematoma | 5 (14.7) | 3 (12.5) | 2 (4.8) | 0.32 |
Device malfunction | 2 (5.9) | 2 (8) | 2 (4.8) | 0.87 |
Gastrointestinal bleed | 2 (5.9) | 1 (4) | 6 (14.3) | 0.3 |
Stroke | 1 (2.9) | 2 (8) | 8 (19) | 0.07 |
p-RVAD | 0 | 5 (20) | 10 (27.8) | 0.004 |
Dialysis | 4 (11.8) | 5 (20) | 12 (28.6) | 0.195 |
Hospital mortality | 2 (5.9) | 1 (4) | 10 (23.8) | 0.021 |
Odds Ratio (OR) | OR 95% Confidence Intervals | p-Value | |
---|---|---|---|
p-RVAD | 1.3 | 0.28–6 | 0.74 |
M-LVAD category | 4.7 | 0.9–24 | 0.05 |
Covariate | Hazard Ratio (HR) | HR 95% Confidence Interval | p-Value |
---|---|---|---|
M-LVAD category | 3.63 | 1.03–12.9 | 0.04 |
Postoperative long-term hemodialysis | 3.9 | 1.6–9 | 0.002 |
Gastrointestinal bleeding | 1.5 | 0.5–4.5 | 0.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahesh, B.; Peddaayyavarla, P.; Nguyen, K.; Mahesh, A.; Hartford, C.C.; Devich, R.; Dafflisio, G.; Nair, N.; Freundt, M.; Dowling, R.; et al. Use of Intravascular Micro-Axial Left Ventricular Assist Devices as a Bridging Strategy for Cardiogenic Shock: Mid-Term Outcomes. J. Clin. Med. 2024, 13, 6804. https://doi.org/10.3390/jcm13226804
Mahesh B, Peddaayyavarla P, Nguyen K, Mahesh A, Hartford CC, Devich R, Dafflisio G, Nair N, Freundt M, Dowling R, et al. Use of Intravascular Micro-Axial Left Ventricular Assist Devices as a Bridging Strategy for Cardiogenic Shock: Mid-Term Outcomes. Journal of Clinical Medicine. 2024; 13(22):6804. https://doi.org/10.3390/jcm13226804
Chicago/Turabian StyleMahesh, Balakrishnan, Prasanth Peddaayyavarla, Kenny Nguyen, Aditya Mahesh, Corrine Corrina Hartford, Robert Devich, Gianna Dafflisio, Nandini Nair, Miriam Freundt, Robert Dowling, and et al. 2024. "Use of Intravascular Micro-Axial Left Ventricular Assist Devices as a Bridging Strategy for Cardiogenic Shock: Mid-Term Outcomes" Journal of Clinical Medicine 13, no. 22: 6804. https://doi.org/10.3390/jcm13226804
APA StyleMahesh, B., Peddaayyavarla, P., Nguyen, K., Mahesh, A., Hartford, C. C., Devich, R., Dafflisio, G., Nair, N., Freundt, M., Dowling, R., & Soleimani, B. (2024). Use of Intravascular Micro-Axial Left Ventricular Assist Devices as a Bridging Strategy for Cardiogenic Shock: Mid-Term Outcomes. Journal of Clinical Medicine, 13(22), 6804. https://doi.org/10.3390/jcm13226804