Catheter Ablation for Ventricular Tachycardias: Current Status and Future Perspectives
Abstract
:1. Introduction
2. Current Status of Arrhythmogenic Substrate Mappings
3. Prominent Mapping Techniques Using Unipolar Potentials
4. Current Status and Future Perspectives of Ablation Sources
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ARI | activation–recovery interval |
DZ | deceleration zone |
ILAM | isochronal late activation map |
LAVA | local abnormal ventricular activities |
PFA | pulsed-field ablation |
VT | ventricular tachycardia |
References
- Sapp, J.L.; Wells, G.A.; Parkash, R.; Stevenson, W.G.; Blier, L.; Sarrazin, J.F.; Thibault, B.; Rivard, L.; Gula, L.; Leong-Sit, P.; et al. Ventricular Tachycardia Ablation versus Escalation of Antiarrhythmic Drugs. N. Engl. J. Med. 2016, 375, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Della Bella, P.; Baratto, F.; Vergara, P.; Bertocchi, P.; Santamaria, M.; Notarstefano, P.; Calo, L.; Orsida, D.; Tomasi, L.; Piacenti, M.; et al. Does Timing of Ventricular Tachycardia Ablation Affect Prognosis in Patients With an Implantable Cardioverter Defibrillator? Results From the Multicenter Randomized PARTITA Trial. Circulation 2022, 145, 1829–1838. [Google Scholar] [CrossRef] [PubMed]
- Tung, R.; Xue, Y.; Chen, M.; Jiang, C.; Shatz, D.Y.; Besser, S.A.; Hu, H.; Chung, F.P.; Nakahara, S.; Kim, Y.H.; et al. First-Line Catheter Ablation of Monomorphic Ventricular Tachycardia in Cardiomyopathy Concurrent With Defibrillator Implantation: The PAUSE-SCD Randomized Trial. Circulation 2022, 145, 1839–1849. [Google Scholar] [CrossRef] [PubMed]
- Reddy, V.Y.; Reynolds, M.R.; Neuzil, P.; Richardson, A.W.; Taborsky, M.; Jongnarangsin, K.; Kralovec, S.; Sediva, L.; Ruskin, J.N.; Josephson, M.E. Prophylactic catheter ablation for the prevention of defibrillator therapy. N. Engl. J. Med. 2007, 357, 2657–2665. [Google Scholar] [CrossRef]
- Kuck, K.H.; Schaumann, A.; Eckardt, L.; Willems, S.; Ventura, R.; Delacrétaz, E.; Pitschner, H.F.; Kautzner, J.; Schumacher, B.; Hansen, P.S.; et al. Catheter ablation of stable ventricular tachycardia before defibrillator implantation in patients with coronary heart disease (VTACH): A multicentre randomised controlled trial. Lancet 2010, 375, 31–40. [Google Scholar] [CrossRef]
- Kuck, K.H.; Tilz, R.R.; Deneke, T.; Hoffmann, B.A.; Ventura, R.; Hansen, P.S.; Zarse, M.; Hohnloser, S.H.; Kautzner, J.; Willems, S.; et al. Radiofrequency Versus Cryoballoon Catheter Ablation for Paroxysmal Atrial Fibrillation: Durability of Pulmonary Vein Isolation and Effect on Atrial Fibrillation Burden: The RACE-AF Randomized Controlled Trial. Circ. Arrhythm. Electrophysiol. 2017, 10, e004422. [Google Scholar] [CrossRef]
- Willems, S.; Tilz, R.R.; Steven, D.; Kääb, S.; Wegscheider, K.; Gellér, L.; Meyer, C.; Heeger, C.H.; Metzner, A.; Sinner, M.F.; et al. Preventive or Deferred Ablation of Ventricular Tachycardia in Patients With Ischemic Cardiomyopathy and Implantable Defibrillator (BERLIN VT): A Multicenter Randomized Trial. Circulation 2020, 141, 1057–1067. [Google Scholar] [CrossRef]
- Arenal, Á.; Ávila, P.; Jiménez-Candil, J.; Tercedor, L.; Calvo, D.; Arribas, F.; Fernández-Portales, J.; Merino, J.L.; Hernández-Madrid, A.; Fernández-Avilés, F.J.; et al. Substrate Ablation vs Antiarrhythmic Drug Therapy for Symptomatic Ventricular Tachycardia. J. Am. Coll. Cardiol. 2022, 79, 1441–1453. [Google Scholar] [CrossRef]
- Uetake, S.; Hasegawa, K.; Kurata, M.; Davogustto, G.E.; Hu, T.Y.; Siergrist, K.K.; Yoneda, Z.; Richardson, T.D.; Kanagasundram, A.N.; Stevenson, W.G.; et al. Emergent Ablation for Ventricular Tachycardia: Predictors of Prolonged Hospitalization and Mortality. JACC Clin. Electrophysiol. 2024; Online ahead of print. [Google Scholar]
- Guandalini, G.S.; Liang, J.J.; Marchlinski, F.E. Ventricular Tachycardia Ablation: Past, Present, and Future Perspectives. JACC Clin. Electrophysiol. 2019, 5, 1363–1383. [Google Scholar] [CrossRef]
- Jaïs, P.; Maury, P.; Khairy, P.; Sacher, F.; Nault, I.; Komatsu, Y.; Hocini, M.; Forclaz, A.; Jadidi, A.S.; Weerasooryia, R.; et al. Elimination of local abnormal ventricular activities: A new end point for substrate modification in patients with scar-related ventricular tachycardia. Circulation 2012, 125, 2184–2196. [Google Scholar] [CrossRef] [PubMed]
- Porta-Sánchez, A.; Jackson, N.; Lukac, P.; Kristiansen, S.B.; Nielsen, J.M.; Gizurarson, S.; Massé, S.; Labos, C.; Viswanathan, K.; King, B.; et al. Multicenter Study of Ischemic Ventricular Tachycardia Ablation With Decrement-Evoked Potential (DEEP) Mapping With Extra Stimulus. JACC Clin. Electrophysiol. 2018, 4, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Armenta, J.; Andreu, D.; Penela, D.; Trucco, E.; Cipolletta, L.; Arbelo, E.; Berne, P.; María Tolosana, J.; Pedrote, A.; Brugada, J.; et al. Sinus rhythm detection of conducting channels and ventricular tachycardia isthmus in arrhythmogenic right ventricular cardiomyopathy. Heart Rhythm 2014, 11, 747–754. [Google Scholar] [CrossRef] [PubMed]
- Pogwizd, S.M.; McKenzie, J.P.; Cain, M.E. Mechanisms underlying spontaneous and induced ventricular arrhythmias in patients with idiopathic dilated cardiomyopathy. Circulation 1998, 98, 2404–2414. [Google Scholar] [CrossRef]
- Irie, T.; Yu, R.; Bradfield, J.S.; Vaseghi, M.; Buch, E.F.; Ajijola, O.; Macias, C.; Fujimura, O.; Mandapati, R.; Boyle, N.G.; et al. Relationship between sinus rhythm late activation zones and critical sites for scar-related ventricular tachycardia: Systematic analysis of isochronal late activation mapping. Circ. Arrhythm. Electrophysiol. 2015, 8, 390–399. [Google Scholar] [CrossRef]
- Aziz, Z.; Shatz, D.; Raiman, M.; Upadhyay, G.A.; Beaser, A.D.; Besser, S.A.; Shatz, N.A.; Fu, Z.; Jiang, R.; Nishimura, T.; et al. Targeted Ablation of Ventricular Tachycardia Guided by Wavefront Discontinuities During Sinus Rhythm: A New Functional Substrate Mapping Strategy. Circulation 2019, 140, 1383–1397. [Google Scholar] [CrossRef]
- Packer, D.L.; Wilber, D.J.; Kapa, S.; Dyrda, K.; Nault, I.; Killu, A.M.; Kanagasundram, A.; Richardson, T.; Stevenson, W.; Verma, A.; et al. Ablation of Refractory Ventricular Tachycardia Using Intramyocardial Needle Delivered Heated Saline-Enhanced Radiofrequency Energy: A First-in-Man Feasibility Trial. Circ. Arrhythm. Electrophysiol. 2022, 15, e010347. [Google Scholar] [CrossRef]
- Nies, M.; Watanabe, K.; Kawamura, I.; Santos-Gallego, C.G.; Reddy, V.Y.; Koruth, J.S. Preclinical Study of Pulsed Field Ablation of Difficult Ventricular Targets: Intracavitary Mobile Structures, Interventricular Septum, and Left Ventricular Free Wall. Circ. Arrhythm. Electrophysiol. 2024, 17, e012734. [Google Scholar] [CrossRef]
- Kataoka, N.; Imamura, T.; Uchida, K.; Koi, T.; Nakamura, M.; Kinugawa, K. Urgent catheter ablation in Japanese patients with mechanical circulatory supports suffering from refractory ventricular electrical storm. J. Cardiol. 2023, 81, 229–235. [Google Scholar] [CrossRef]
- Sroubek, J.; Vajapey, R.; Sipko, J.J.; Soltesz, E.G.; Weiss, A.J.; Bhargava, M.; Hussein, A.A.; Kanj, M.; Saliba, W.I.; Taigen, T.L.; et al. First-in-Human Experience With Impella 5.0/5.5 for High-Risk Patients With Advanced Heart Failure Undergoing VT Ablation. J. Am. Coll. Cardiol. 2023, 82, 469–471. [Google Scholar] [CrossRef]
- Polin, G.M.; Haqqani, H.; Tzou, W.; Hutchinson, M.D.; Garcia, F.C.; Callans, D.J.; Zado, E.S.; Marchlinski, F.E. Endocardial unipolar voltage mapping to identify epicardial substrate in arrhythmogenic right ventricular cardiomyopathy/dysplasia. Heart Rhythm 2011, 8, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, M.D.; Gerstenfeld, E.P.; Desjardins, B.; Bala, R.; Riley, M.P.; Garcia, F.C.; Dixit, S.; Lin, D.; Tzou, W.S.; Cooper, J.M.; et al. Endocardial unipolar voltage mapping to detect epicardial ventricular tachycardia substrate in patients with nonischemic left ventricular cardiomyopathy. Circ. Arrhythm. Electrophysiol. 2011, 4, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Vlachos, K.; Letsas, K.P.; Srinivasan, N.T.; Frontera, A.; Efremidis, M.; Dragasis, S.; Martin, C.A.; Martin, R.; Nakashima, T.; Bazoukis, G.; et al. The value of functional substrate mapping in ventricular tachycardia ablation. Heart Rhythm O2 2023, 4, 134–146. [Google Scholar] [CrossRef] [PubMed]
- Payne, J.E.; Woods, C.; Elshazly, M.B.; Matthews, A.; Kroman, A.; Feng, Z.; Rabinkova, A.; Ghadban, R.; Dhakal, B.; Winterfield, J. A novel automated peak frequency annotation algorithm for identifying deceleration zones and ventricular tachycardia ablation sites. Heart Rhythm 2024, 21, 27–33. [Google Scholar] [CrossRef]
- Shinoda, Y.; Jameria, Z.A.; Sahara, N.; Upadhyay, G.A.; Liao, Y.; Martinez, J.; Katrapati, P.; Bai, R.; Zawaneh, M.; Weiss, J.P.; et al. Rate-Dependent Pacemap Matching in Scar-Related Ventricular Tachycardia: Impact of “TR Fusion” Phenomenon. JACC Clin. Electrophysiol. 2024, 10, 2132–2144. [Google Scholar] [CrossRef]
- Berruezo, A.; Fernández-Armenta, J.; Andreu, D.; Penela, D.; Herczku, C.; Evertz, R.; Cipolletta, L.; Acosta, J.; Borràs, R.; Arbelo, E.; et al. Scar dechanneling: New method for scar-related left ventricular tachycardia substrate ablation. Circ. Arrhythm. Electrophysiol. 2015, 8, 326–336. [Google Scholar] [CrossRef]
- Hattori, M.; Komatsu, Y.; Naeemah, Q.J.; Hanaki, Y.; Ichihara, N.; Ota, C.; Machino, T.; Kuroki, K.; Yamasaki, H.; Igarashi, M.; et al. Rotational Activation Pattern During Functional Substrate Mapping: Novel Target for Catheter Ablation of Scar-Related Ventricular Tachycardia. Circ. Arrhythm. Electrophysiol. 2022, 15, e010308. [Google Scholar] [CrossRef]
- Nishimura, T.; Shatz, N.; Weiss, J.P.; Zawaneh, M.; Bai, R.; Beaser, A.D.; Upadhyay, G.A.; Aziz, Z.A.; Nayak, H.M.; Shatz, D.Y.; et al. Identification of Human Ventricular Tachycardia Demarcated by Fixed Lines of Conduction Block in a 3-Dimensional Hyperboloid Circuit. Circulation 2023, 148, 1354–1367. [Google Scholar] [CrossRef]
- Qian, P.C.; Oberfeld, B.; Schaeffer, B.; Nakamura, T.; John, R.M.; Sapp, J.L.; Stevenson, W.G.; Tedrow, U.B. Frequency Content of Unipolar Electrograms May Predict Deep Intramural Excitable Substrate: Insights From Intramural Needle Catheter Ablation of Ventricular Tachycardia. JACC Clin. Electrophysiol. 2020, 6, 760–769. [Google Scholar] [CrossRef]
- Amoni, M.; Vermoortele, D.; Ekhteraei-Tousi, S.; Donate Puertas, R.; Gilbert, G.; Youness, M.; Thienpont, B.; Willems, R.; Roderick, H.L.; Claus, P.; et al. Heterogeneity of Repolarization and Cell-Cell Variability of Cardiomyocyte Remodeling Within the Myocardial Infarction Border Zone Contribute to Arrhythmia Susceptibility. Circ. Arrhythm. Electrophysiol. 2023, 16, e011677. [Google Scholar] [CrossRef]
- Orini, M.; Graham, A.J.; Srinivasan, N.T.; Campos, F.O.; Hanson, B.M.; Chow, A.; Hunter, R.J.; Schilling, R.J.; Finlay, M.; Earley, M.J.; et al. Evaluation of the reentry vulnerability index to predict ventricular tachycardia circuits using high-density contact mapping. Heart Rhythm 2020, 17, 576–583. [Google Scholar] [CrossRef] [PubMed]
- Jelvehgaran, P.; O’Hara, R.; Prakosa, A.; Chrispin, J.; Boink, G.J.J.; Trayanova, N.; Coronel, R.; Oostendorp, T. Computational Re-Entry Vulnerability Index Mapping to Guide Ablation in Patients With Postmyocardial Infarction Ventricular Tachycardia. JACC Clin. Electrophysiol. 2023, 9, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Stoks, J.; Langfield, P.; Cluitmans, M.J.M. Methodological and Mechanistic Considerations in Local Repolarization Mapping. JACC Clin. Electrophysiol. 2024, 10, 376–377. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, N.; Imamura, T.; Uchida, K.; Koi, T.; Kinugawa, K. Unipolar morphology–guided critical isthmus emphasis in a patient with scar-related ventricular tachycardia. Hear. Case Rep. 2024, 10, 656–660. [Google Scholar] [CrossRef]
- Chen, P.S.; Moser, K.M.; Dembitsky, W.P.; Auger, W.R.; Daily, P.O.; Calisi, C.M.; Jamieson, S.W.; Feld, G.K. Epicardial activation and repolarization patterns in patients with right ventricular hypertrophy. Circulation 1991, 83, 104–118. [Google Scholar] [CrossRef]
- Nagase, S.; Kusano, K.F.; Morita, H.; Nishii, N.; Banba, K.; Watanabe, A.; Hiramatsu, S.; Nakamura, K.; Sakuragi, S.; Ohe, T. Longer repolarization in the epicardium at the right ventricular outflow tract causes type 1 electrocardiogram in patients with Brugada syndrome. J. Am. Coll. Cardiol. 2008, 51, 1154–1161. [Google Scholar] [CrossRef]
- Kataoka, N.; Nagase, S.; Kamakura, T.; Noda, T.; Aiba, T.; Kusano, K. Local activation delay exacerbates local J-ST elevation in the epicardium: Electrophysiological substrate in Brugada syndrome. Hear. Case Rep. 2017, 3, 595–598. [Google Scholar] [CrossRef]
- Kataoka, N.; Imamura, T. Brugada Syndrome: A Comprehensive Review of Fundamental and Electrophysiological New Findings. J. Clin. Med. 2023, 12, 6590. [Google Scholar] [CrossRef]
- Nagase, S.; Kataoka, N.; Morita, H.; Kamakura, T.; Ueoka, A.; Nakamura, T.; Oka, S.; Miyazaki, Y.; Wakamiya, A.; Nakajima, K.; et al. Demonstration of Arrhythmia Substrate-Associated Dispersion of Repolarization by Epicardial Unipolar Mapping in Brugada Syndrome. JACC Clin. Electrophysiol. 2024, 10, 1576–1588. [Google Scholar] [CrossRef]
- Chery, G.; Khoshknab, M.; Nazarian, S. Imaging to Facilitate Ventricular Tachycardia Ablation: Intracardiac Echocardiography, Computed Tomography, Magnetic Resonance, and Positron Emission Tomography. JACC Clin. Electrophysiol. 2024, 10, 2277–2292. [Google Scholar] [CrossRef]
- Bhuva, A.N.; Kellman, P.; Graham, A.; Ramlall, M.; Boubertakh, R.; Feuchter, P.; Hawkins, A.; Lowe, M.; Lambiase, P.D.; Sekhri, N.; et al. Clinical impact of cardiovascular magnetic resonance with optimized myocardial scar detection in patients with cardiac implantable devices. Int. J. Cardiol. 2019, 279, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Masnok, K.; Watanabe, N. Catheter contact area strongly correlates with lesion area in radiofrequency cardiac ablation: An ex vivo porcine heart study. J. Interv. Card. Electrophysiol. 2022, 63, 561–572. [Google Scholar] [CrossRef] [PubMed]
- Koruth, J.S.; Dukkipati, S.; Miller, M.A.; Neuzil, P.; d’Avila, A.; Reddy, V.Y. Bipolar irrigated radiofrequency ablation: A therapeutic option for refractory intramural atrial and ventricular tachycardia circuits. Heart Rhythm 2012, 9, 1932–1941. [Google Scholar] [CrossRef] [PubMed]
- Rivera, S.; de la Paz Ricapito, M.; Espinoza, J.; Belardi, D.; Albina, G.; Giniger, A.; Roux, J.F.; Ayala-Paredes, F.; Scazzuso, F. Cryoablation for Ventricular Arrhythmias Arising From the Papillary Muscles of the Left Ventricle Guided by Intracardiac Echocardiography and Image Integration. JACC Clin. Electrophysiol. 2015, 1, 509–516. [Google Scholar] [CrossRef]
- Whitaker, J.; Batnyam, U.; Kapur, S.; Sauer, W.H.; Tedrow, U. Safety and Efficacy of Cryoablation for Right Ventricular Moderator Band-Papillary Muscle Complex Ventricular Arrhythmias. JACC Clin. Electrophysiol. 2022, 8, 857–868. [Google Scholar] [CrossRef]
- Lee, J.; Bates, M.; Shepherd, E.; Riley, S.; Henshaw, M.; Metherall, P.; Daniel, J.; Blower, A.; Scoones, D.; Wilkinson, M.; et al. Cardiac stereotactic ablative radiotherapy for control of refractory ventricular tachycardia: Initial UK multicentre experience. Open Heart 2021, 8, e001770. [Google Scholar] [CrossRef]
- Füting, A.; Reinsch, N.; Höwel, D.; Brokkaar, L.; Rahe, G.; Neven, K. First experience with pulsed field ablation as routine treatment for paroxysmal atrial fibrillation. Europace 2022, 24, 1084–1092. [Google Scholar] [CrossRef]
- Reddy, V.Y.; Gerstenfeld, E.P.; Natale, A.; Whang, W.; Cuoco, F.A.; Patel, C.; Mountantonakis, S.E.; Gibson, D.N.; Harding, J.D.; Ellis, C.R.; et al. Pulsed Field or Conventional Thermal Ablation for Paroxysmal Atrial Fibrillation. N. Engl. J. Med. 2023, 389, 1660–1671. [Google Scholar] [CrossRef]
- Lozano-Granero, C.; Hirokami, J.; Franco, E.; Tohoku, S.; Matía-Francés, R.; Schmidt, B.; Hernández-Madrid, A.; Zamorano Gómez, J.L.; Moreno, J.; Chun, J. Case Series of Ventricular Tachycardia Ablation With Pulsed-Field Ablation: Pushing Technology Further (Into the Ventricle). JACC Clin. Electrophysiol. 2023, 9, 1990–1994. [Google Scholar] [CrossRef]
- Im, S.I.; Higuchi, S.; Lee, A.; Stillson, C.; Buck, E.; Morrow, B.; Schenider, K.; Speltz, M.; Gerstenfeld, E.P. Pulsed Field Ablation of Left Ventricular Myocardium in a Swine Infarct Model. JACC Clin. Electrophysiol. 2022, 8, 722–731. [Google Scholar] [CrossRef]
- Askarinejad, A.; Kohansal, E.; Sabahizadeh, A.; Hesami, H.; Adimi, S.; Haghjoo, M. Pulsed-Field Ablation in Management of Ventricular Tachycardia: A Systematic Review of Case Reports and Clinical Outcomes. Clin. Cardiol. 2024, 47, e70018. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, H.; Castellvi, Q.; Neal, R.; Girouard, S.; Laughner, J.; Ikeda, A.; Sugawara, M.; An, Y.; Hussein, A.A.; Nakhla, S.; et al. Effects of Contact Force on Lesion Size During Pulsed Field Catheter Ablation: Histochemical Characterization of Ventricular Lesion Boundaries. Circ. Arrhythm. Electrophysiol. 2024, 17, e012026. [Google Scholar] [CrossRef] [PubMed]
- Della Rocca, D.G.; Cespón-Fernández, M.; Keelani, A.; Raffa, S.; Pannone, L.; Almorad, A.; Ströker, E.; Borisov, G.; Bala, G.; Sieira, J.; et al. Focal Pulsed Field Ablation for Premature Ventricular Contractions: A Multicenter Experience. Circ. Arrhythm. Electrophysiol. 2024, 17, e012826. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Z.; Tan, M.C.; Karikalan, S.; Deshmukh, A.J.; Srivathsan, K.; Shen, W.K.; El-Masry, H.; Scott, L.; Asirvatham, S.J.; Cha, Y.M.; et al. Causes of Early Mortality After Ventricular Tachycardia Ablation in Patients With Reduced Ejection Fraction. JACC Clin. Electrophysiol. 2023, 9, 824–832. [Google Scholar] [CrossRef] [PubMed]
- Van Wiechen, M.P.; Tchétché, D.; Ooms, J.F.; Hokken, T.W.; Kroon, H.; Ziviello, F.; Ghattas, A.; Siddiqui, S.; Laperche, C.; Spitzer, E.; et al. Suture- or Plug-Based Large-Bore Arteriotomy Closure: A Pilot Randomized Controlled Trial. JACC Cardiovasc. Interv. 2021, 14, 149–157. [Google Scholar] [CrossRef]
- Ekanem, E.; Neuzil, P.; Reichlin, T.; Kautzner, J.; van der Voort, P.; Jais, P.; Chierchia, G.B.; Bulava, A.; Blaauw, Y.; Skala, T.; et al. Safety of pulsed field ablation in more than 17,000 patients with atrial fibrillation in the MANIFEST-17K study. Nat. Med. 2024, 30, 2020–2029. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kataoka, N.; Imamura, T. Catheter Ablation for Ventricular Tachycardias: Current Status and Future Perspectives. J. Clin. Med. 2024, 13, 6805. https://doi.org/10.3390/jcm13226805
Kataoka N, Imamura T. Catheter Ablation for Ventricular Tachycardias: Current Status and Future Perspectives. Journal of Clinical Medicine. 2024; 13(22):6805. https://doi.org/10.3390/jcm13226805
Chicago/Turabian StyleKataoka, Naoya, and Teruhiko Imamura. 2024. "Catheter Ablation for Ventricular Tachycardias: Current Status and Future Perspectives" Journal of Clinical Medicine 13, no. 22: 6805. https://doi.org/10.3390/jcm13226805
APA StyleKataoka, N., & Imamura, T. (2024). Catheter Ablation for Ventricular Tachycardias: Current Status and Future Perspectives. Journal of Clinical Medicine, 13(22), 6805. https://doi.org/10.3390/jcm13226805