Moderately Increased Left Ventricular Filling Pressure Suggesting Early Stage of Heart Failure with Preserved Ejection Fraction in Patients with Invasively Assessed Coronary Microvascular Dysfunction
Abstract
:1. Introduction
1.1. Coronary Microvascular Dysfunction
1.2. HFpEF and Diastolic Dysfunction
1.3. Left Ventricular and Left Atrial Strain
2. Materials and Methods
- History of anterior MI;
- Heart failure with reduced ejection fraction;
- Moderate or severe valvular heart disease;
- Severe co-morbidities (e.g., malignancies, advanced respiratory, renal, or liver failure).
2.1. Invasive Assessment of Coronary Flow Reserve and Index of Microvascular Resistance
2.2. Echocardiography Measurements
2.3. Statistical Methods
3. Results
3.1. Characteristics of the Study Group
3.2. Cardiovascular Risk Factors
3.3. Echocardiographic Parameters
4. Discussion
4.1. Diastolic Dysfunction
4.2. GLS
4.3. Left Atrial Strain
4.4. CAD Risk Factor Profile
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HFpEF | heart failure with preserved ejection fraction |
INOCA | ischemia with non-obstructed coronary arteries |
CAD | coronary artery disease |
LAD | left anterior descending artery |
CMD | coronary microvascular dysfunction |
IMR | index of microvascular resistance |
CFR | coronary flow reserve |
LV | left ventricle |
LA | left atrium |
LAVI | left atrial volume index |
PACS | peak atrial contraction strain |
PALS | peak atrial longitudinal strain |
GLS | global longitudinal strain |
References
- Mehta, P.K.; Quesada, O.; Al-Badri, A.; Fleg, J.L.; Volgman, A.S.; Pepine, C.J.; Merz, C.N.B.; Shaw, L.J. Ischemia and No Obstructive Coronary Arteries in Patients with Stable Ischemic Heart Disease. Int. J. Cardiol. 2022, 348, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Shin, D.; Lee, J.M.; van de Hoef, T.P.; Hong, D.; Choi, K.H.; Hwang, D.; Boerhout, C.K.M.; de Waard, G.A.; Jung, J.-H.; et al. Clinical Relevance of Ischemia with Nonobstructive Coronary Arteries According to Coronary Microvascular Dysfunction. J. Am. Heart Assoc. 2022, 11, e025171. [Google Scholar] [CrossRef] [PubMed]
- Mehta, P.K.; Huang, J.; Levit, R.D.; Malas, W.; Waheed, N.; Bairey Merz, C.N. Ischemia and No Obstructive Coronary Arteries (INOCA): A Narrative Review. Atherosclerosis 2022, 363, 8–21. [Google Scholar] [CrossRef]
- Groepenhoff, F.; Klaassen, R.G.M.; Valstar, G.B.; Bots, S.H.; Onland-Moret, N.C.; Den Ruijter, H.M.; Leiner, T.; Eikendal, A.L.M. Evaluation of Non-Invasive Imaging Parameters in Coronary Microvascular Disease: A Systematic Review. BMC Med. Imaging 2021, 21, 5. [Google Scholar] [CrossRef] [PubMed]
- Borlaug, B.A. The Pathophysiology of Heart Failure with Preserved Ejection Fraction. Nat. Rev. Cardiol. 2014, 11, 507–515. [Google Scholar] [CrossRef]
- Dorfs, S.; Zeh, W.; Hochholzer, W.; Jander, N.; Kienzle, R.-P.; Pieske, B.; Neumann, F.J. Pulmonary Capillary Wedge Pressure during Exercise and Long-Term Mortality in Patients with Suspected Heart Failure with Preserved Ejection Fraction. Eur. Heart J. 2014, 35, 3103–3112. [Google Scholar] [CrossRef]
- Obokata, M.; Reddy, Y.N.V.; Borlaug, B.A. Diastolic Dysfunction and Heart Failure with Preserved Ejection Fraction: Understanding Mechanisms by Using Noninvasive Methods. JACC Cardiovasc. Imaging 2020, 13, 245–257. [Google Scholar] [CrossRef]
- Okura, H.; Kubo, T.; Asawa, K.; Toda, I.; Yoshiyama, M.; Yoshikawa, J.; Yoshida, K. Elevated E/E′ Predicts Prognosis in Congestive Heart Failure Patients with Preserved Systolic Function. Circ. J. 2009, 73, 86–91. [Google Scholar] [CrossRef]
- Shah, A.M.; Cikes, M.; Prasad, N.; Li, G.; Getchevski, S.; Claggett, B.; Rizkala, A.; Lukashevich, I.; O’Meara, E.; Ryan, J.J.; et al. Echocardiographic Features of Patients with Heart Failure and Preserved Left Ventricular Ejection Fraction. J. Am. Coll. Cardiol. 2019, 74, 2858–2873. [Google Scholar] [CrossRef]
- Abou, R.; van der Bijl, P.; Bax, J.J.; Delgado, V. Global Longitudinal Strain: Clinical Use and Prognostic Implications in Contemporary Practice. Heart 2020, 106, 1438–1444. [Google Scholar] [CrossRef]
- Kusunose, K. Is Global Longitudinal Strain a Gold Standard Parameter in All Cardiovascular Diseases? Heart 2021, 107, 776–777. [Google Scholar] [CrossRef] [PubMed]
- Potter, E.; Marwick, T.H. Assessment of Left Ventricular Function by Echocardiography: The Case for Routinely Adding Global Longitudinal Strain to Ejection Fraction. JACC Cardiovasc. Imaging 2018, 11, 260–274. [Google Scholar] [CrossRef] [PubMed]
- Marwick, T.H.; Shah, S.J.; Thomas, J.D. Myocardial Strain in the Assessment of Patients with Heart Failure: A Review. JAMA Cardiol. 2019, 4, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Tagliamonte, E.; Sperlongano, S.; Montuori, C.; Riegler, L.; Scarafile, R.; Carbone, A.; Forni, A.; Radmilovic, J.; Di Vilio, A.; Astarita, R.; et al. Coronary Microvascular Dysfunction Affects Left Ventricular Global Longitudinal Strain Response to Dipyridamole Stress Echocardiography: A Pilot Study. Heart Vessels 2023, 38, 470–477. [Google Scholar] [CrossRef]
- Hoit, B.D. Left Atrial Size and Function: Role in Prognosis. J. Am. Coll. Cardiol. 2014, 63, 493–505. [Google Scholar] [CrossRef]
- Santos, A.B.S.; Kraigher-Krainer, E.; Gupta, D.K.; Claggett, B.; Zile, M.R.; Pieske, B.; Voors, A.A.; Lefkowitz, M.; Bransford, T.; Shi, V.; et al. Impaired Left Atrial Function in Heart Failure with Preserved Ejection Fraction. Eur. J. Heart Fail. 2014, 16, 1096–1103. [Google Scholar] [CrossRef]
- Mondillo, S.; Cameli, M.; Caputo, M.L.; Lisi, M.; Palmerini, E.; Padeletti, M.; Ballo, P. Early Detection of Left Atrial Strain Abnormalities by Speckle-Tracking in Hypertensive and Diabetic Patients with Normal Left Atrial Size. J. Am. Soc. Echocardiogr. 2011, 24, 898–908. [Google Scholar] [CrossRef] [PubMed]
- Taqueti, V.R.; Solomon, S.D.; Shah, A.M.; Desai, A.S.; Groarke, J.D.; Osborne, M.T.; Hainer, J.; Bibbo, C.F.; Dorbala, S.; Blankstein, R.; et al. Coronary Microvascular Dysfunction and Future Risk of Heart Failure with Preserved Ejection Fraction. Eur. Heart J. 2018, 39, 840–849. [Google Scholar] [CrossRef]
- Singleton, M.J.; Nelson, M.B.; Samuel, T.J.; Kitzman, D.W.; Brubaker, P.; Haykowsky, M.J.; Upadhya, B.; Chen, H.; Nelson, M.D. Left Atrial Stiffness Index Independently Predicts Exercise Intolerance and Quality of Life in Older, Obese Patients with Heart Failure with Preserved Ejection Fraction. J. Card. Fail. 2022, 28, 567–575. [Google Scholar] [CrossRef]
- Rush, C.J.; Berry, C.; Oldroyd, K.G.; Rocchiccioli, J.P.; Lindsay, M.M.; Touyz, R.M.; Murphy, C.L.; Ford, T.J.; Sidik, N.; McEntegart, M.B.; et al. Prevalence of Coronary Artery Disease and Coronary Microvascular Dysfunction in Patients with Heart Failure with Preserved Ejection Fraction. JAMA Cardiol. 2021, 6, 1130–1143. [Google Scholar] [CrossRef]
- Kopeva, K.; Grakova, E.; Maltseva, A.; Mochula, A.; Gusakova, A.; Smorgon, A.; Zavadovsky, K. Coronary Microvascular Dysfunction: Features and Prognostic Value. J. Clin. Med. 2023, 12, 2964. [Google Scholar] [CrossRef] [PubMed]
- Dryer, K.; Gajjar, M.; Narang, N.; Lee, M.; Paul, J.; Shah, A.P.; Nathan, S.; Butler, J.; Davidson, C.J.; Fearon, W.F.; et al. Coronary Microvascular Dysfunction in Patients with Heart Failure with Preserved Ejection Fraction. Am. J. Physiol. Heart Circ. Physiol. 2018, 314, H1033–H1042. [Google Scholar] [CrossRef] [PubMed]
- Keulards, D.C.J.; Bouwmeester, S.; de Vos, A.M.J.; Dekker, L.R.C.; Pijls, N.H.J.; Houthuizen, P. High Microvascular Resistance and Reduced Left Atrial Strain in Patients with Coronary Microvascular Dysfunction: The Micro-Strain Study. Int. J. Cardiol. 2021, 333, 21–28. [Google Scholar] [CrossRef]
- Michelsen, M.M.; Pena, A.; Mygind, N.D.; Bech, J.; Gustafsson, I.; Kastrup, J.; Hansen, H.S.; Høst, N.; Hansen, P.R.; Prescott, E. Coronary Microvascular Dysfunction and Myocardial Contractile Reserve in Women with Angina and No Obstructive Coronary Artery Disease. Echocardiography 2018, 35, 196–203. [Google Scholar] [CrossRef]
- Yu, Z.; Pan, H.; Cheng, Z.; Lu, K.; Hu, H. Evaluation of Left Ventricular Systolic Function in Patients with Coronary Microvascular Dysfunction by Three-Dimensional Speckle-Tracking Imaging. Braz. J. Cardiovasc. Surg. 2022, 37, 321–327. [Google Scholar] [CrossRef]
- Sucato, V.; Galassi, A.R.; Novo, S.; Saladino, A.; Evola, S.; Novo, G. Correlation between Longitudinal Strain Analysis and Coronary Microvascular Dysfunction in Patients with Heart Failure with Preserved Ejection Fraction. Microcirculation 2020, 27, e12605. [Google Scholar] [CrossRef] [PubMed]
- Hage, C.; Svedlund, S.; Saraste, A.; Faxén, U.L.; Benson, L.; Fermer, M.L.; Gan, L.-M.; Shah, S.J.; Lam, C.S.P.; Lund, L.H. Association of Coronary Microvascular Dysfunction with Heart Failure Hospitalizations and Mortality in Heart Failure with Preserved Ejection Fraction: A Follow-up in the PROMIS-HFpEF Study. J. Card. Fail. 2020, 26, 1016–1021. [Google Scholar] [CrossRef]
- Jovanovic, I.; Tesic, M.; Giga, V.; Dobric, M.; Boskovic, N.; Vratonjic, J.; Orlic, D.; Gudelj, O.; Tomasevic, M.; Dikic, M.; et al. Impairment of Coronary Flow Velocity Reserve and Global Longitudinal Strain in Women with Cardiac Syndrome X and Slow Coronary Flow. J. Cardiol. 2020, 76, 1–8. [Google Scholar] [CrossRef]
- Faustino, M.; Baptista, S.B.; Freitas, A.; Monteiro, C.; Leal, P.; Nédio, M.; Antunes, C.; Farto e Abreu, P.; Gil, V.; Morais, C. The Index of Microcirculatory Resistance as a Predictor of Echocardiographic Left Ventricular Performance Recovery in Patients with ST-Elevation Acute Myocardial Infarction Undergoing Successful Primary Angioplasty. J. Interv. Cardiol. 2016, 29, 137–145. [Google Scholar] [CrossRef]
- Firman, D.; Taslim, I.; Wangi, S.B.; Yonas, E.; Pranata, R.; Alkatiri, A.A. The Effect of Early Dual Antiplatelet Timing on the Microvascular Resistance and Ventricular Function in Primary Percutaneous Coronary Intervention. Medicine 2020, 99, e21177. [Google Scholar] [CrossRef]
- Nielsen, A.B.; Skaarup, K.G.; Hauser, R.; Johansen, N.D.; Lassen, M.C.H.; Jensen, G.B.; Schnohr, P.; Møgelvang, R.; Biering-Sørensen, T. Normal Values and Reference Ranges for Left Atrial Strain by Speckle-Tracking Echocardiography: The Copenhagen City Heart Study. Eur. Heart J. Cardiovasc. Imaging 2021, 23, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y.; Lee, J.M.; Fearon, W.F.; Lee, J.H.; Nishi, T.; Choi, D.-H.; Zimmermann, F.M.; Jung, J.-H.; Lee, H.-J.; Doh, J.-H.; et al. Three-Vessel Assessment of Coronary Microvascular Dysfunction in Patients With Clinical Suspicion of Ischemia: Prospective Observational Study with the Index of Microcirculatory Resistance. Circ. Cardiovasc. Interv. 2017, 10, e005445. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Gao, Y.; Lin, Y. Progress in molecular mechanisms of coronary microvascular dysfunction. Microcirculation 2023, 30, e12827. [Google Scholar] [CrossRef] [PubMed]
- Fujii, K.; Kawasaki, D.; Oka, K.; Akahori, H.; Iwasaku, T.; Fukunaga, M.; Eguchi, A.; Sawada, H.; Masutani, M.; Lee-Kawabata, M.; et al. The impact of pravastatin pre-treatment on periprocedural microcirculatory damage in patients undergoing percutaneous coronary intervention. JACC Cardiovasc. Interv. 2011, 4, 513–520. [Google Scholar] [CrossRef]
Parameter | Mean | SD |
---|---|---|
GLS | 17.43 | 3.81 |
PALS | 28.04 | 6.13 |
PACS | 13.91 | 3.53 |
LVd [mm] | 51.25 | 4.77 |
IVS [mm] | 12.15 | 1.67 |
LA [mm] | 39.71 | 3.76 |
LAV [mL] | 75.43 | 11.95 |
LAVI [mL/m2] | 36.07 | 2.43 |
LA stiffness index | 0.28 | 0.10 |
EF s [%] | 56.75 | 6.87 |
LDL [mg%] | 85.26 | 42.28 |
BMI [kg/m2] | 28.64 | 4.78 |
eGFR [mL/min] | 82.66 | 23.3 |
HbA1c [%] | 6.51 | 1.23 |
NT proBNP [pg/mL] | 549.7 | 920.75 |
IMR | 28.3 | 16.81 |
CFR | 2.76 | 1.64 |
IMR | W Test | ||
---|---|---|---|
Parameter | <25 | ≥25 | |
A | B | p | |
GLS | 17.01 (±3.29) | 17.92 (±4.35) | 0.21 |
PALS | 27.60 (+6.62) | 28.68 (±5.41) | 0.7 |
PACS | 13.49 (±3.59) | 14.55 (±3.44) | 0.35 |
LVd [mm] | 51.74 (±5.10) | 50.62 (±4.32) | 0.36 |
IVS [mm] | 11.92 (±1.24) | 12.44 (±2.09) | 0.5 |
E/E′ | 6.91 (±2.22) | 7.43 (±2.23) | 0.36 |
LAVI [ml/m2] | 36.46 (±2.090 | 35.76 (±2.63) | 0.46 |
LA stiffness index | 0.27 (±0.11) | 0.28 (±0.10) | 0.53 |
EF [%] | 57.55 (±5.04) | 58.54 (±3.75) | 0.46 |
LDL [mg%] | 75.37 (±37.02) | 96.64 (±44.38) | 0.06 |
BMI [kg/m2] | 27.77 (±4.10) | 29.39 (±5.48) | 0.29 |
eGFR [mL/min] | 85.24 (±19.83) | 79.47 (±27.23) | 0.52 |
CRP | 3.22 (±6.80) | 2.80 (±3.33) | 0.46 |
HbA1c [%] | 6.50 (±1.13) | 6.52 (±1.40) | 0.89 |
NT pro BNP [pg/mL] | 393.53 (±672.15) | 430.41 (±715.38) | 0.77 |
CFR | W Test | ||
---|---|---|---|
Parameter | ≥2 | <2 | |
A | B | p | |
GLS | 17.12 (±3.51) | 18.04 (±4.37) | 0.34 |
PALS | 27.48 (±6.26) | 29.08 (±5.91) | 0.37 |
PACS | 13.96 (±3.22) | 13.80 (±4.19) | 0.76 |
LVd [mm] | 51.54 (±5.07) | 50.67 (±4.13) | 0.69 |
IVS [mm] | 12.24 (±1.88) | 11.94 (±1.16) | 0.9 |
E/E′ | 6.69 (±1.99) | 8.64 (±2.36) | 0.016 |
LAVI [mL/m2] | 36.03 (±2.64) | 36.22 (±2.03) | 0.83 |
LA stiffness index | 0.32 (±0.12) | 0.26 (±0.10) | 0.21 |
EF [%] | 58.14 (±4.41) | 57.67 (±4.83) | 0.82 |
LDL [mg%] | 72.70 (±27.15) | 110.56 (±54.17) | 0.019 |
BMI [kg/m2] | 28.9 (±4.8) | 27.72 (±4.84) | 0.26 |
eGFR [mL/min] | 83.14 (±21.70) | 81.56 (±27.22) | 0.79 |
CRP | 2.36 (±2.88) | 4.56 (±8.75) | 0.45 |
HbA1c [%] | 6.38 (±1.06) | 6.80 (±1.60) | 0.26 |
NT proBNP [pg/mL] | 251.71 (±262.12) | 727.65 (±1078.98) | 0.21 |
Variable: E/E′ | ||||||
---|---|---|---|---|---|---|
AUC | SE | AUC Lower 95% | AUC Upper 95% | Z = (v1 − 0.5)/v2 | p | |
1 | 0.769 | 0.105 | 0.563 | 0.974 | 2.564 | 0.0103 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arkowski, J.; Obremska, M.; Sareło, P.; Wawrzyńska, M. Moderately Increased Left Ventricular Filling Pressure Suggesting Early Stage of Heart Failure with Preserved Ejection Fraction in Patients with Invasively Assessed Coronary Microvascular Dysfunction. J. Clin. Med. 2024, 13, 6841. https://doi.org/10.3390/jcm13226841
Arkowski J, Obremska M, Sareło P, Wawrzyńska M. Moderately Increased Left Ventricular Filling Pressure Suggesting Early Stage of Heart Failure with Preserved Ejection Fraction in Patients with Invasively Assessed Coronary Microvascular Dysfunction. Journal of Clinical Medicine. 2024; 13(22):6841. https://doi.org/10.3390/jcm13226841
Chicago/Turabian StyleArkowski, Jacek, Marta Obremska, Przemysław Sareło, and Magdalena Wawrzyńska. 2024. "Moderately Increased Left Ventricular Filling Pressure Suggesting Early Stage of Heart Failure with Preserved Ejection Fraction in Patients with Invasively Assessed Coronary Microvascular Dysfunction" Journal of Clinical Medicine 13, no. 22: 6841. https://doi.org/10.3390/jcm13226841
APA StyleArkowski, J., Obremska, M., Sareło, P., & Wawrzyńska, M. (2024). Moderately Increased Left Ventricular Filling Pressure Suggesting Early Stage of Heart Failure with Preserved Ejection Fraction in Patients with Invasively Assessed Coronary Microvascular Dysfunction. Journal of Clinical Medicine, 13(22), 6841. https://doi.org/10.3390/jcm13226841