Crossing Age Boundaries: The Unifying Potential of Presepsin in Sepsis Diagnosis Across Diverse Age Groups
Abstract
:1. Introduction
2. Demographics of Sepsis
3. Pathophysiology and Immunological Aspects of Sepsis Across Ages
4. Biomarkers and Sepsis
5. Presepsin as a Sepsis Biomarker Across Age Groups
5.1. Presepsin as a Sepsis Biomarker in Neonates and Children
5.2. Presepsin as a Sepsis Biomarker in Adults
5.3. Presepsin as a Sepsis Biomarker in Older Adults
6. Published Meta-Analysis on Presepsin as a Sepsis Biomarker
7. Discussion
8. Conclusions
Funding
Conflicts of Interest
References
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Martín, S.; Pérez, A.; Aldecoa, C. Sepsis and Immunosenescence in the Elderly Patient: A Review. Front. Med. 2017, 4, 20. [Google Scholar] [CrossRef] [PubMed]
- Rudd, K.E.; Johnson, S.C.; Agesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R.; Colombara, D.V.; Ikuta, K.S.; Kissoon, N.; Finfer, S.; et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the Global Burden of Disease Study. Lancet 2020, 395, 200–211. [Google Scholar] [CrossRef] [PubMed]
- Vaduganathan, M.; Mensah, G.A.; Turco, J.V.; Fuster, V.; Roth, G.A. The Global Burden of Cardiovascular Diseases and Risk A Compass for Future Health. J. Am. Coll. Cardiol. 2022, 80, 2361–2371. [Google Scholar] [CrossRef] [PubMed]
- Kerrigan, S.W.; Martin-Loeches, I. Public awareness of sepsis is still poor: We need to do more. Intensiv. Care Med. 2018, 44, 1771–1773. [Google Scholar] [CrossRef]
- Fiest, K.M.; Krewulak, K.D.; Brundin-Mather, R.; Leia, M.P.; Fox-Robichaud, A.; Lamontagne, F.; Leigh, J.P.; Canada, F.S. Patient, Public, and Healthcare Professionals’ Sepsis Awareness, Knowledge, and Information Seeking Behaviors: A Scoping Review. Crit. Care Med. 2022, 50, 1187–1197. [Google Scholar] [CrossRef]
- Kim, H.I.; Park, S. Sepsis: Early Recognition and Optimized Treatment. Tuberc. Respir. Dis. 2018, 81, 6–14. [Google Scholar] [CrossRef]
- Luo, J.; Jiang, W.; Weng, L.; Peng, J.; Hu, X.; Wang, C.; Liu, G.; Huang, H.; Du, B. Usefulness of qSOFA and SIRS scores for detection of incipient sepsis in general ward patients: A prospective cohort study. J. Crit. Care 2019, 51, 13–18. [Google Scholar] [CrossRef]
- Behnes, M.; Bertsch, T.; Lepiorz, D.; Lang, S.; Trinkmann, F.; Brueckmann, M.; Borggrefe, M.; Hoffmann, U. Diagnostic and prognostic utility of soluble CD 14 subtype (presepsin) for severe sepsis and septic shock during the first week of intensive care treatment. Crit. Care 2014, 18, 507. [Google Scholar] [CrossRef]
- CDC Centers for Disease Ccontrol and Prevention. About Multiple Cause of Death, 1999–2020. About Multiple Cause of Death, 1999–2020. Published September 8, 2023. Available online: https://wonder.cdc.gov/mcd-icd10.html (accessed on 23 July 2023).
- Oikonomakou, M.Z.; Gkentzi, D.; Gogos, C.; Akinosoglou, K. Biomarkers in pediatric sepsis: A review of recent literature. Biomark. Med. 2020, 14, 895–917. [Google Scholar] [CrossRef]
- Balamuth, F.; Weiss, S.L.; Neuman, M.I.; Scott, H.; Brady, P.W.M.; Paul, R.; Farris, R.W.D.; McClead, R.; Hayes, K.B.; Gaieski, D.; et al. Pediatric Severe Sepsis in U.S. Children’s Hospitals. Pediatr. Crit. Care Med. 2014, 15, 798–805. [Google Scholar] [CrossRef] [PubMed]
- Gude, S.S.; Peddi, N.C.; Vuppalapati, S.; Gopal, S.V.; Ramesh, H.M.; Gude, S.S. Biomarkers of Neonatal Sepsis: From Being Mere Numbers to Becoming Guiding Diagnostics. Cureus 2022, 14, e23215. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Farahbakhsh, N.; Shastri, S.; Sharma, P. Biomarkers for diagnosis of neonatal sepsis: A literature review. J. Matern-Fetal Neonatal Med. 2018, 31, 1646–1659. [Google Scholar] [CrossRef] [PubMed]
- Martin, G.S.; Mannino, D.M.; Moss, M. The effect of age on the development and outcome of adult sepsis. Crit. Care Med. 2006, 34, 15–21. [Google Scholar] [CrossRef]
- Kramarow, E.A. Sepsis-related Mortality Among Adults Aged 65 and Over: United States, 2019. NCHS Data Brief 2021, 422, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Arora, J.; Mendelson, A.A.; Fox-Robichaud, A. Sepsis: Network pathophysiology and implications for early diagnosis. Am. J. Physiol-Regul Integr. Comp. Physiol. 2023, 324, R613–R624. [Google Scholar] [CrossRef]
- Michels, E.H.A.; Butler, J.M.; Reijnders, T.D.Y.; Scicluna, B.P.; Uhel, F.; Peters-Sengers, H.; Schultz, M.J.; Knight, J.C.; van Vught, L.A.; van der Poll, T.; et al. Association between age and the host response in critically ill patients with sepsis. Crit. Care 2022, 26, 385. [Google Scholar] [CrossRef]
- Wynn, J.; Cornell, T.T.; Wong, H.R.; Shanley, T.P.; Wheeler, D.S. The Host Response to Sepsis and Developmental Impact. Pediatrics 2010, 125, 1031–1041. [Google Scholar] [CrossRef]
- Hincu, M.A.; Zonda, G.I.; Stanciu, G.D.; Nemescu, D.; Paduraru, L. Relevance of Biomarkers Currently in Use or Research for Practical Diagnosis Approach of Neonatal Early-Onset Sepsis. Children 2020, 7, 309. [Google Scholar] [CrossRef]
- de Camargo, J.F.; Caldas, J.P.d.S.; Marba, S.T.M. Early neonatal sepsis: Prevalence, complications and outcomes in newborns with 35 weeks of gestational age or more. Rev. Paul. Pediatr. 2021, 40, e2020388. [Google Scholar] [CrossRef]
- Goldstein, B.; Giroir, B.; Randolph, A. International pediatric sepsis consensus conference: Definitions for sepsis and organ dysfunction in pediatrics. Pediatr. Crit. Care Med. 2005, 6, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Schlapbach, L.J.; Kissoon, N. Defining Pediatric Sepsis. JAMA Pediatr. 2018, 172, 313–314. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Pinto, L.N.; Bennett, T.D.; DeWitt, P.E.; Russell, S.; Rebull, M.N.; Martin, B.; Akech, S.; Albers, D.J.; Alpern, E.R.; Balamuth, F.; et al. Development and Validation of the Phoenix Criteria for Pediatric Sepsis and Septic Shock. JAMA 2024, 331, 675–686. [Google Scholar] [CrossRef] [PubMed]
- Barsness, K.A.; Bensard, D.D.; Partrick, D.A.; Calkins, C.M.; Hendrickson, R.J.; McIntyre, R.C. Endotoxin induces an exaggerated interleukin-10 response in peritoneal macrophages of children compared with adults. J. Pediatr. Surg. 2004, 39, 912–915. [Google Scholar] [CrossRef] [PubMed]
- Wynn, J.L.; Scumpia, P.O.; Winfield, R.D.; Delano, M.J.; Kelly-Scumpia, K.; Barker, T.; Ungaro, R.; Levy, O.; Moldawer, L.L. Defective innate immunity predisposes murine neonates to poor sepsis outcome but is reversed by TLR agonists. Blood 2008, 112, 1750–1758. [Google Scholar] [CrossRef]
- Hall, M. Immune Modulation in Pediatric Sepsis. J. Pediatr. Intensiv. Care 2019, 8, 42–50. [Google Scholar] [CrossRef]
- Wong, H.R. Pediatric sepsis biomarkers for prognostic and predictive enrichment. Pediatr. Res. 2022, 91, 283–288. [Google Scholar] [CrossRef]
- Lim, P.P.C.; Bondarev, D.J.; Edwards, A.M.; Hoyen, C.M.; Macias, C.G. The evolving value of older biomarkers in the clinical diagnosis of pediatric sepsis. Pediatr. Res. 2023, 93, 789–796. [Google Scholar] [CrossRef]
- Jeevan, G.J.; Chandra, G.F.; Bahadur, T.S. Clinical, Demographic Profile and Outcome of Children Admitted in PICU with A Diagnosis of Severe Sepsis and Septic Shock. J. Med Sci. Clin. Res. 2017, 5, 31470–31474. [Google Scholar] [CrossRef]
- Wong, H.R.; Cvijanovich, N.Z.; Anas, N.; Allen, G.L.; Thomas, N.J.; Bigham, M.T.; Weiss, S.L.; Fitzgerald, J.; Checchia, P.A.; Meyer, K.; et al. Developing a Clinically Feasible Personalized Medicine Approach to Pediatric Septic Shock. Am. J. Respir. Crit. Care Med. 2015, 191, 309–315. [Google Scholar] [CrossRef]
- Wardi, G.; Tainter, C.R.; Ramnath, V.R.; Brennan, J.J.; Tolia, V.; Castillo, E.M.; Hsia, R.Y.; Malhotra, A.; Schmidt, U.; Meier, A. Age-related incidence and outcomes of sepsis in California, 2008–2015. J. Crit. Care 2021, 62, 212–217. [Google Scholar] [CrossRef] [PubMed]
- van der Poll, T.; Shankar-Hari, M.; Wiersinga, W.J. The immunology of sepsis. Immunity 2021, 54, 2450–2464. [Google Scholar] [CrossRef] [PubMed]
- Gentile, L.F.; Nacionales, D.C.; Lopez, M.C.; Vanzant, E.; Cuenca, A.; Cuenca, A.G.; Ungaro, R.; Szpila, B.E.; Larson, S.; Joseph, A.; et al. Protective Immunity and Defects in the Neonatal and Elderly Immune Response to Sepsis. J. Immunol. 2014, 192, 3156–3165. [Google Scholar] [CrossRef] [PubMed]
- Darden, D.B.; Kelly, L.S.; Fenner, B.P.; Moldawer, L.L.; Mohr, A.M.; Efron, P.A. Dysregulated Immunity and Immunotherapy after Sepsis. J. Clin. Med. 2021, 10, 1742. [Google Scholar] [CrossRef]
- Milbrandt, E.B.; Eldadah, B.; Nayfield, S.; Hadley, E.; Angus, D.C. Toward an Integrated Research Agenda for Critical Illness in Aging. Am. J. Respir. Crit. Care Med. 2012, 182, 995–1003. [Google Scholar] [CrossRef]
- Jia, L.; Hao, L.; Li, X.; Jia, R.; Zhang, H.L. Comparing the predictive values of five scales for 4-year all-cause mortality in critically ill elderly patients with sepsis. Ann. Palliat. Med. 2021, 10, 2387–2397. [Google Scholar] [CrossRef]
- Wang, Y.; Dong, C.; Han, Y.; Gu, Z.; Sun, C. Immunosenescence, aging and successful aging. Front. Immunol. 2022, 13, 942796. [Google Scholar] [CrossRef]
- Martin-Loeches, I.; Guia, M.C.; Vallecoccia, M.S.; Suarez, D.; Ibarz, M.; Irazabal, M.; Ferrer, R.; Artigas, A. Risk factors for mortality in elderly and very elderly critically ill patients with sepsis: A prospective, observational, multicenter cohort study. Ann. Intensiv. Care 2019, 9, 26. [Google Scholar] [CrossRef]
- Kaukonen, K.M.; Bailey, M.; Suzuki, S.; Pilcher, D.; Bellomo, R. Mortality Related to Severe Sepsis and Septic Shock Among Critically Ill Patients in Australia and New Zealand, 2000–2012. JAMA 2014, 311, 1308–1316. [Google Scholar] [CrossRef]
- Woodcock, J. The Prospects for “Personalized Medicine” in Drug Development and Drug Therapy. Clin. Pharmacol. Ther. 2007, 81, 164–169. [Google Scholar] [CrossRef]
- Woodcock, J.; Woosley, R. The FDA Critical Path Initiative and Its Influence on New Drug Development. Annu. Rev. Med. 2008, 59, 1–12. [Google Scholar] [CrossRef]
- Kim, M.H.; Choi, J.H. An Update on Sepsis Biomarkers. Infect. Chemother. 2020, 52, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Llitjos, J.-F.; Carrol, E.D.; Osuchowski, M.F.; Bonneville, M.; Scicluna, B.P.; Payen, D.; Randolph, A.G.; Witte, S.; Rodriguez-Manzano, J.; François, B.; et al. Enhancing sepsis biomarker development: Key considerations from public and private perspectives. Crit. Care 2024, 28, 238. [Google Scholar] [CrossRef] [PubMed]
- Liang, P.; Wu, Y.; Qu, S.; Younis, M.; Wang, W.; Wu, Z.; Huang, X. Exploring the biomarkers and potential therapeutic drugs for sepsis via integrated bioinformatic analysis. BMC Infect. Dis. 2024, 24, 32. [Google Scholar] [CrossRef] [PubMed]
- Deltell, J.M.M.; Boter, N.R. Biomarkers in emergencies: A never-ending race? Emergencias 2024, 36, 4–6. [Google Scholar] [CrossRef]
- Kadim, M.M.; AL-Dahmoshi, H.O.M.; AL-Khikan, F.H.O. Sepsis biomarkers: Current information and future visions. Microbes Infect. Dis. 2024, 5, 201–210. [Google Scholar] [CrossRef]
- Feng, L.; Liu, S.; Wang, J.; Gao, Y.; Xie, F.; Gong, J.; Bi, S.; Yao, Z.; Li, Y.; Liu, W.; et al. The performance of a combination of heparin-binding protein with other biomarkers for sepsis diagnosis: An observational cohort study. BMC Infect. Dis. 2024, 24, 755. [Google Scholar] [CrossRef] [PubMed]
- Clemente, C.; Fuentes, M.E.; Ortega, D.; Julián, A.; Martín-Sánchez, F.J.; González del Castillo, J. Utilidad de la combinación de biomarcadores de respuesta inflamatoria y escalas clínicas para la estratificación del riesgo en pacientes atendidos en urgencias por sospecha de infección. Emergencias 2024, 36, 9–16. [Google Scholar]
- Lippi, G. Sepsis biomarkers: Past, present and future. Clin. Chem. Lab. Med. 2019, 57, 1281–1283. [Google Scholar] [CrossRef]
- Poggi, C.; Bianconi, T.; Gozzini, E.; Generoso, M.; Dani, C. Presepsin for the detection of late-onset sepsis in preterm newborns. Pediatrics 2015, 135, 68–75. [Google Scholar] [CrossRef]
- Pugni, L.; Pietrasanta, C.; Milani, S.; Vener, C.; Ronchi, A.; Falbo, M.; Arghittu, M.; Mosca, F. Presepsin (Soluble CD14 Subtype): Reference Ranges of a New Sepsis Marker in Term and Preterm Neonates. PLoS ONE 2015, 10, e0146020. [Google Scholar] [CrossRef] [PubMed]
- Montaldo, P.; Rosso, R.; Santantonio, A.; Chello, G.; Giliberti, P. Presepsin for the detection of early-onset sepsis in preterm newborns. Pediatr. Res. 2017, 81, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Korpelainen, S.; Intke, C.; Hämäläinen, S.; Jantunen, E.; Juutilainen, A.; Pulkki, K. Soluble CD14 as a Diagnostic and Prognostic Biomarker in Hematological Patients with Febrile Neutropenia. Dis. Markers 2017, 2017, 9805609. [Google Scholar] [CrossRef] [PubMed]
- Bellos, I.; Fitrou, G.; Pergialiotis, V.; Thomakos, N.; Perrea, D.N.; Daskalakis, G. The diagnostic accuracy of presepsin in neonatal sepsis: A meta-analysis. Eur. J. Pediatr. 2018, 177, 625–632. [Google Scholar] [CrossRef]
- Baraka, A.; Zakaria, M. Presepsin as a diagnostic marker of bacterial infections in febrile neutropenic pediatric patients with hematological malignancies. Int. J. Hematol. 2018, 108, 184–191. [Google Scholar] [CrossRef]
- Yoon, S.H.; Kim, E.H.; Kim, H.Y.; Ahn, J.G. Presepsin as a diagnostic marker of sepsis in children and adolescents: A systemic review and meta-analysis. BMC Infect. Dis. 2019, 19, 760. [Google Scholar] [CrossRef]
- Puspaningtyas, N.W.; Karyanti, M.R.; Paramita, T.N.; Sjakti, H.A.; Putri, N.D.; Tridjaja, B.; Yanuarso, P.B.; Rinaldhy, K.; Yani, A.; Gayatri, P. Presepsin as a promising biomarker for early detection of post-operative infection in children. Front. Pediatr. 2023, 11, 1036993. [Google Scholar] [CrossRef]
- Shozushima, T.; Takahashi, G.; Matsumoto, N.; Kojika, M.; Okamura, Y.; Endo, S. Usefulness of presepsin (sCD14-ST) measurements as a marker for the diagnosis and severity of sepsis that satisfied diagnostic criteria of systemic inflammatory response syndrome. J. Infect. Chemother. 2011, 17, 764–769. [Google Scholar] [CrossRef]
- Endo, S.; Suzuki, Y.; Takahashi, G.; Shozushima, T.; Ishikura, H.; Murai, A.; Nishida, T.; Irie, Y.; Miura, M.; Iguchi, H.; et al. Usefulness of presepsin in the diagnosis of sepsis in a multicenter prospective study. J. Infect. Chemother. 2012, 18, 891–897. [Google Scholar] [CrossRef]
- Giavarina, D.; Carta, M. Determination of reference interval for presepsin, an early marker for sepsis. Biochem. Med. 2015, 25, 64–68. [Google Scholar] [CrossRef]
- Ali, F.T.; Ali, M.A.M.; Elnakeeb, M.M.; Bendary, H.N.M. Presepsin is an early monitoring biomarker for predicting clinical outcome in patients with sepsis. Clin. Chim. Acta 2016, 460, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Qi, Z.; Hang, C.; Fang, Y.; Shao, R.; Li, C. Evaluating the value of dynamic procalcitonin and presepsin measurements for patients with severe sepsis. Am. J. Emerg. Med. 2017, 35, 835–841. [Google Scholar] [CrossRef] [PubMed]
- Claessens, Y.-E.; Trabattoni, E.; Grabar, S.; Quinquis, L.; Der Sahakian, G.; Anselmo, M.; Schmidt, J.; de la Coussaye, J.-E.; Plaisance, P.; Casalino, E.; et al. Plasmatic presepsin (sCD14-ST) concentrations in acute pyelonephritis in adult patients. Clin. Chim. Acta 2017, 464, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, T.; Kamohara, H.; Suda, S.; Nagura, T.; Tomino, M.; Sugi, M.; Wajima, Z. Comparative evaluation of endotoxin activity level and various biomarkers for infection and outcome of ICU-admitted patients. Biomedicines 2019, 7, 47. [Google Scholar] [CrossRef] [PubMed]
- Zvyagin, A.A.; Demidova, V.S.; Smirnov, G.V. Dinamika biomarkerov sepsisa kak pokazatel’ éffektivnosti intensivnoĭ terapii. Khirurgiia 2019, 2, 53–57. [Google Scholar] [CrossRef]
- Dragoş, D.; Ghenu, M.I.; Timofte, D.; Balcangiu-Stroescu, A.E.; Ionescu, D.; Manea, M.M. The cutoff value of presepsin for diagnosing sepsis increases with kidney dysfunction, a cross-sectional observational study. Medicine 2023, 102, E32620. [Google Scholar] [CrossRef]
- Imai, Y.; Taniguchi, K.; Iida, R.; Nitta, M.; Uchiyma, K.; Takasu, A. Diagnostic accuracy of presepsin in predicting bacteraemia in elderly patients admitted to the emergency department: Prospective study in Japan. BMJ Open 2019, 9, e030421. [Google Scholar] [CrossRef]
- Ruangsomboon, O.; Panjaikaew, P.; Monsomboon, A.; Chakorn, T.; Permpikul, C.; Limsuwat, C. Diagnostic and prognostic utility of presepsin for sepsis in very elderly patients in the emergency department. Clin. Chim. Acta 2020, 510, 723–732. [Google Scholar] [CrossRef]
- Schuetz, P.; Beishuizen, A.; Broyles, M.; Ferrer, R.; Gavazzi, G.; Gluck, E.H.; del Castillo, J.G.; Jensen, J.-U.; Kanizsai, P.L.; Kwa, A.L.H.; et al. Procalcitonin (PCT)-guided antibiotic stewardship: An international experts consensus on optimized clinical use. Clin. Chem. Lab. Med. 2019, 57, 1308–1318. [Google Scholar] [CrossRef]
- Vincent, J.L.; van der Poll, T.; Marshall, J.C. The End of “One Size Fits All” Sepsis Therapies: Toward an Individualized Approach. Biomedicines 2022, 10, 2260. [Google Scholar] [CrossRef]
- Bulatova, Y.Y.; Maltabarova, N.A.; Zhumabayev, M.B.; Li, T.A.; Ivanova, M.P. Modern Diagnostics of Sepsis and Septic Shock in Children. Electron. J. Gen. Med. 2020, 17, em216. [Google Scholar] [CrossRef] [PubMed]
- Lanziotti, V.S.; Póvoa, P.; Soares, M.; e Silva, J.R.L.; Barbosa, A.P.; Salluh, J.I.F. Use of biomarkers in pediatric sepsis: Literature review. Rev. Bras. Ter. Intensiv. 2016, 28, 472–482. [Google Scholar] [CrossRef] [PubMed]
- Schuh, A.M.; Leger, K.J.; Summers, C.; Uspal, N.G. Lactic Acidosis in a Critically Ill Patient. Pediatr. Emerg. Care 2018, 34, e165–e167. [Google Scholar] [CrossRef] [PubMed]
- Kustán, P.; Horváth-Szalai, Z.; Mühl, D. Nonconventional Markers of Sepsis. EJIFCC 2017, 28, 122–133. [Google Scholar] [PubMed]
- Hung, S.K.; Lan, H.M.; Han, S.T.; Wu, C.C.; Chen, K.F. Current Evidence and Limitation of Biomarkers for Detecting Sepsis and Systemic Infection. Biomedicines 2020, 8, 494. [Google Scholar] [CrossRef]
- Teggert, A.; Datta, H.; Ali, Z. Biomarkers for Point-of-Care Diagnosis of Sepsis. Micromachines 2020, 11, 286. [Google Scholar] [CrossRef]
- Wagner, K.H.; Cameron-Smith, D.; Wessner, B.; Franzke, B. Biomarkers of Aging: From Function to Molecular Biology. Nutrients 2016, 8, 338. [Google Scholar] [CrossRef]
- Franceschi, C.; Bonafe, M.; Valensin, S.; Olivieri, F.; De Luca, M.; Ottaviani, E.; De Benedictis, G. Inflamm-aging: An Evolutionary Perspective on Immunosenescence. Ann. N. Y. Acad. Sci. 2000, 908, 244–254. [Google Scholar] [CrossRef]
- Ginde, A.A.; Blatchford, P.J.; Trzeciak, S.; Hollander, J.E.; Birkhahn, R.; Otero, R.; Osborn, T.M.; Moretti, E.; Nguyen, H.B.; Gunnerson, K.J.; et al. Age-Related Differences in Biomarkers of Acute Inflammation During Hospitalization for Sepsis. Shock 2014, 42, 99–107. [Google Scholar] [CrossRef]
- Yende, S.; D’Angelo, G.; Kellum, J.A.; Weissfeld, L.; Fine, J.; Welch, R.D.; Kong, L.; Carter, M.; Angus, D.C. Inflammatory Markers at Hospital Discharge Predict Subsequent Mortality after Pneumonia and Sepsis. Am. J. Respir. Crit. Care Med. 2008, 177, 1242–1247. [Google Scholar] [CrossRef]
- Velissaris, D.; Zareifopoulos, N.; Karamouzos, V.; Karanikolas, E.; Pierrakos, C.; Koniari, I.; Karanikolas, M. Presepsin as a Diagnostic and Prognostic Biomarker in Sepsis. Cureus 2021, 13, e15019. [Google Scholar] [CrossRef] [PubMed]
- Yaegashi, Y.; Sato, N.; Suzuki, Y.; Kojika, M.; Imai, S.; Takahashi, G.; Miyata, M.; Endo, S.; Shirakawa, K.; Furusako, S. Evaluation of a newly identified soluble CD14 subtype as a marker for sepsis. J. Infect. Chemother. 2005, 11, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Arai, Y.; Mizugishi, K.; Nonomura, K.; Naitoh, K.; Takaori-Kondo, A.; Yamashita, K. Phagocytosis by human monocytes is required for the secretion of presepsin. J. Infect. Chemother. 2015, 21, 564–569. [Google Scholar] [CrossRef] [PubMed]
- MDsave. Blood Culture. Published 24 July 2023. Available online: https://www.mdsave.com/procedures/blood-culture/d787ffc9 (accessed on 5 January 2024).
- Truehealthlabs. (Culture). 2023. Available online: https://truehealthlabs.com/product/blood-culture/ (accessed on 5 January 2024).
- Henriquez-Camacho, C.; Losa, J. Biomarkers for sepsis. BioMed Res. Int. 2014, 2014, 547818. [Google Scholar] [CrossRef]
- Park, J.; Yoon, J.H.; Ki, H.K.; Ko, J.H.; Moon, H.W. Performance of presepsin and procalcitonin predicting culture-proven bacterial infection and 28-day mortality: A cross sectional study. Front. Med. 2022, 9, 954114. [Google Scholar] [CrossRef]
- Pierrakos, C.; Velissaris, D.; Bisdorff, M.; Marshall, J.C.; Vincent, J.L. Biomarkers of sepsis: Time for a reappraisal. Crit. Care 2020, 24, 287. [Google Scholar] [CrossRef]
- Piccioni, A.; Santoro, M.C.; de Cunzo, T.; Tullo, G.; Cicchinelli, S.; Saviano, A.; Valletta, F.; Pascale, M.M.; Candelli, M.; Covino, M.; et al. Presepsin as Early Marker of Sepsis in Emergency Department: A Narrative Review. Medicina 2021, 57, 770. [Google Scholar] [CrossRef]
- Kim, H.; Hur, M.; Moon, H.-W.; Yun, Y.-M.; Di Somma, S.; on behalf of GREAT Network. Multi-marker approach using procalcitonin, presepsin, galectin-3, and soluble suppression of tumorigenicity 2 for the prediction of mortality in sepsis. Ann. Intensive Care 2017, 7, 27. [Google Scholar] [CrossRef]
- Lee, S.; Song, J.; Park, D.W.; Seok, H.; Ahn, S.; Kim, J.; Park, J.; Cho, H.J.; Moon, S. Diagnostic and prognostic value of presepsin and procalcitonin in non-infectious organ failure, sepsis, and septic shock: A prospective observational study according to the Sepsis-3 definitions. BMC Infect. Dis. 2022, 22, 8. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, B.; Chen, Y.X.; Yin, Q.; Zhao, Y.Z.; Li, C.S. Diagnostic value and prognostic evaluation of Presepsin for sepsis in an emergency department. Crit. Care 2013, 17, R244. [Google Scholar] [CrossRef]
- Ulla, M.; Pizzolato, E.; Lucchiari, M.; Loiacono, M.; Soardo, F.; Forno, D.; Morello, F.; Lupia, E.; Moiraghi, C.; Mengozzi, G.; et al. Diagnostic and prognostic value of presepsin in the management of sepsis in the emergency department: A multicenter prospective study. Crit. Care 2013, 17, R168. [Google Scholar] [CrossRef] [PubMed]
- Memar, M.Y.; Baghi, H.B. Presepsin: A promising biomarker for the detection of bacterial infections. Biomed. Pharmacother. 2019, 111, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Maruna, P.; Nedelníková, K.; Gurlich, R. Physiology and genetics of procalcitonin. Physiol. Res. 2000, 49, S57–S61. [Google Scholar] [PubMed]
- Dong, R.; Wan, B.; Lin, S.; Wang, M.; Huang, J.; Wu, Y.; Wu, Y.; Zhang, N.; Zhu, Y. Procalcitonin and Liver Disease: A Literature Review. J. Clin. Transl. Hepatol. 2019, 7, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Oberhoffer, M.; Stonans, I.; Russwurm, S.; Stonane, E.; Vogelsang, H.; Junker, U.; Jäger, L.; Reinhart, K. Procalcitonin expression in human peripheral blood mononuclear cells and its modulation by lipopolysaccharides and sepsis-related cytokines in vitro. J. Lab. Clin. Med. 1999, 134, 49–55. [Google Scholar] [CrossRef]
- Pepys, M.B.; Hirschfield, G.M. C-reactive protein: A critical update. J. Clin. Investig. 2003, 111, 1805–1812. [Google Scholar] [CrossRef]
- Ragán, D.; Horváth-Szalai, Z.; Szirmay, B.; Mühl, D. Novel Damage Biomarkers of Sepsis-Related Acute Kidney Injury. EJIFCC 2022, 33, 11–22. [Google Scholar] [PubMed] [PubMed Central]
- Shimoyama, Y.; Umegaki, O.; Kadono, N.; Minami, T. Presepsin and prognostic nutritional index are predictors of septic acute kidney injury, renal replacement therapy initiation in sepsis patients, and prognosis in septic acute kidney injury patients: A pilot study. BMC Nephrol. 2021, 22, 219. [Google Scholar] [CrossRef]
- Takahashi, G.; Shibata, S.; Fukui, Y.; Okamura, Y.; Inoue, Y. Diagnostic accuracy of procalcitonin and presepsin for infectious disease in patients with acute kidney injury. Diagn. Microbiol. Infect. Dis. 2016, 86, 205–210. [Google Scholar] [CrossRef]
- Klouche, K.; Cristol, J.P.; Devin, J.; Gilles, V.; Kuster, N.; Larcher, R.; Amigues, L.; Corne, P.; Jonquet, O.; Dupuy, A.M. Diagnostic and prognostic value of soluble CD14 subtype (Presepsin) for sepsis and community-acquired pneumonia in ICU patients. Ann. Intensiv. Care 2016, 6, 59. [Google Scholar] [CrossRef]
- Maddaloni, C.; De Rose, D.U.; Santisi, A.; Martini, L.; Caoci, S.; Bersani, I.; Ronchetti, M.P.; Auriti, C. The Emerging Role of Presepsin (P-SEP) in the Diagnosis of Sepsis in the Critically Ill Infant: A Literature Review. Int. J. Mol. Sci. 2021, 22, 12154. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, T.; Candido, M.A.; Soriano, F.G. Sepsis biomarkers: A review of the diagnostic value of presepsin. Rev. Med. 2023, 102, e-182916. [Google Scholar] [CrossRef]
- Kyriazopoulou, E.; Leventogiannis, K.; Tavoulareas, G.; Mainas, E.; Toutouzas, K.; Mathas, C.; Prekates, A.; Sakka, V.; Panagopoulos, P.; Syrigos, K.; et al. Presepsin as a diagnostic and prognostic biomarker of severe bacterial infections and COVID-19. Sci. Rep. 2023, 13, 3814. [Google Scholar] [CrossRef]
- Tzialla, C.; Manzoni, P.; Achille, C.; Bollani, L.; Stronati, M.; Borghesi, A. New Diagnostic Possibilities for Neonatal Sepsis. Am. J. Perinatol. 2018, 35, 575–577. [Google Scholar] [CrossRef] [PubMed]
- Ruan, L.; Chen, G.-Y.; Liu, Z.; Zhao, Y.; Xu, G.-Y.; Li, S.-F.; Li, C.-N.; Chen, L.-S.; Tao, Z. The combination of procalcitonin and C-reactive protein or presepsin alone improves the accuracy of diagnosis of neonatal sepsis: A meta-analysis and systematic review. Crit. Care 2018, 22, 316. [Google Scholar] [CrossRef] [PubMed]
- Olad, E.; Sedighi, I.; Mehrvar, A.; Tashvighi, M.; Fallahazad, V.; Hedayatiasl, A.; Esfahani, H. Presepsin (scd14) as a marker of serious bacterial infections in chemotherapy induced severe neutropenia. Iran. J. Pediatr. 2014, 24, 715–722. [Google Scholar] [PubMed]
- Fischer, P.; Grigoras, C.; Bugariu, A.; Nicoara-Farcau, O.; Stefanescu, H.; Benea, A.; Hadade, A.; Margarit, S.; Sparchez, Z.; Tantau, M.; et al. Are presepsin and resistin better markers for bacterial infection in patients with decompensated liver cirrhosis? Dig. Liver Dis. 2019, 51, 1685–1691. [Google Scholar] [CrossRef]
- Fujii, E.; Fujino, K.; Eguchi, Y. An evaluation of clinical inflammatory and coagulation markers in patients with sepsis: A pilot study. Acute Med. Surg. 2019, 6, 158–164. [Google Scholar] [CrossRef]
- Chen, J.; Huang, Z.-B.; Li, H.; Zheng, X.; Chen, J.-J.; Wang, X.-B.; Qian, Z.-P.; Liu, X.-X.; Fan, X.-G.; Hu, X.-W.; et al. Early Diagnostic Biomarkers of Sepsis for Patients with Acute-on-Chronic Liver Failure: A Multicenter Study. Infect. Dis. Ther. 2021, 10, 281–290. [Google Scholar] [CrossRef]
- Tsujimoto, K.; Hata, A.; Fujita, M.; Hatachi, S.; Yagita, M. Presepsin and procalcitonin as biomarkers of systemic bacterial infection in patients with rheumatoid arthritis. Int. J. Rheum. Dis. 2018, 21, 1406–1413. [Google Scholar] [CrossRef]
- Koizumi, Y.; Shimizu, K.; Shigeta, M.; Okuno, T.; Minamiguchi, H.; Kito, K.; Hodohara, K.; Yamagishi, Y.; Andoh, A.; Fujiyama, Y.; et al. Plasma presepsin level is an early diagnostic marker of severe febrile neutropenia in hematologic malignancy patients. BMC Infect. Dis. 2017, 17, 27. [Google Scholar] [CrossRef] [PubMed]
- Kang, T.; Yoo, J.; Choi, H.; Lee, S.; Jekarl, D.W.; Kim, Y. Performance evaluation of presepsin using a Sysmex HISCL-5000 analyzer and determination of reference interval. J. Clin. Lab. Anal. 2022, 36, e24618. [Google Scholar] [CrossRef] [PubMed]
- Musso, C.G.; Oreopoulos, D.G. Aging and Physiological Changes of the Kidneys Including Changes in Glomerular Filtration Rate. Nephron Physiol. 2011, 119 (Suppl. S1), 1–5. [Google Scholar] [CrossRef] [PubMed]
- Chenevier-Gobeaux, C.; Trabattoni, E.; Roelens, M.; Borderie, D.; Claessens, Y.E. Presepsin (sCD14-ST) in emergency department: The need for adapted threshold values? Clin. Chim. Acta. 2014, 427, 34–36. [Google Scholar] [CrossRef] [PubMed]
- Nagata, T.; Yasuda, Y.; Ando, M.; Abe, T.; Katsuno, T.; Kato, S.; Tsuboi, N.; Matsuo, S.; Maruyama, S. Clinical impact of kidney function on presepsin levels. PLoS ONE 2015, 10, e0129159. [Google Scholar] [CrossRef]
- Kim, H.; Song, J.; Lee, S.; Park, D.W.; Ahn, S.; Kim, J.; Park, J.; Cho, H.-J.; Moon, S.; Choi, S.-H. Presepsin levels for discriminating sepsis and predicting mortality among organ failure patients stratified by hypercreatinemia. Signa Vitae 2023, 19, 109–118. [Google Scholar] [CrossRef]
- van Maldeghem, I.; Nusman, C.M.; Visser, D.H. Soluble CD14 subtype (sCD14-ST) as biomarker in neonatal early-onset sepsis and late-onset sepsis: A systematic review and meta-analysis. BMC Immunol. 2019, 20, 17. [Google Scholar] [CrossRef]
- Wu, C.-C.; Lan, H.-M.; Han, S.-T.; Chaou, C.-H.; Yeh, C.-F.; Liu, S.-H.; Li, C.-H.; Blaney, G.N.; Liu, Z.-Y.; Chen, K.-F. Comparison of diagnostic accuracy in sepsis between presepsin, procalcitonin, and C-reactive protein: A systematic review and meta-analysis. Ann. Intensive Care 2017, 7, 91. [Google Scholar] [CrossRef]
- Zheng, Z.; Jiang, L.; Ye, L.; Gao, Y.; Tang, L.; Zhang, M. The accuracy of presepsin for the diagnosis of sepsis from SIRS: A systematic review and meta-analysis. Ann. Intensive Care 2015, 5, 48. [Google Scholar] [CrossRef]
- Liu, Y.; Hou, J.-H.; Li, Q.; Chen, K.-J.; Wang, S.-N.; Wang, J.-M. Biomarkers for diagnosis of sepsis in patients with systemic inflammatory response syndrome: A systematic review and meta-analysis. SpringerPlus 2016, 5, 2091. [Google Scholar] [CrossRef]
- Kondo, Y.; Umemura, Y.; Hayashida, K.; Hara, Y.; Aihara, M.; Yamakawa, K. Diagnostic value of procalcitonin and presepsin for sepsis in critically ill adult patients: A systematic review and meta-analysis. J. Intensiv. Care 2019, 7, 22. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.S.; Hur, M.; Yi, A.; Kim, H.; Lee, S.; Kim, S.N. Prognostic value of presepsin in adult patients with sepsis: Systematic review and meta-analysis. PLoS ONE 2018, 13, e0191486. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Li, X.; Guo, P.; Chen, Y.; Li, J.; Tao, T. The accuracy assessment of presepsin (sCD14-ST) for mortality prediction in adult patients with sepsis and a head-to-head comparison to PCT: A meta-analysis. Ther. Clin. Risk Manag. 2019, 15, 741–753. [Google Scholar] [CrossRef] [PubMed]
- Boyd, C.M.; Landefeld, C.S.; Counsell, S.R.; Palmer, R.M.; Fortinsky, R.H.; Kresevic, D.; Burant, C.; Covinsky, K.E. Recovery of Activities of Daily Living in Older Adults After Hospitalization for Acute Medical Illness. J. Am. Geriatr. Soc. 2008, 56, 2171–2179. [Google Scholar] [CrossRef] [PubMed]
- Wynn, J.L.; Wong, H.R. 152-Pathophysiology of Neonatal Sepsis. Fetal Neonatal Physiol. (Fifth Ed.) 2017, 2, 1536–1552.e10. [Google Scholar] [CrossRef]
- Sampson, D.; Yager, T.D.; Fox, B.; Shallcross, L.; McHugh, L.; Seldon, T.; Rapisarda, A.; Hendriks, R.A.; Brandon, R.B.; Navalkar, K.; et al. Blood transcriptomic discrimination of bacterial and viral infections in the emergency department: A multi-cohort observational validation study. BMC Med. 2020, 18, 185. [Google Scholar] [CrossRef]
- Kwizera, A.; Baelani, I.; Mer, M.; Kissoon, N.; Schultz, M.J.; Patterson, A.J.; Musa, N.; Farmer, J.C.; Dünser, M.W. The long sepsis journey in low- and middle-income countries begins with a first step...but on which road? Crit. Care 2018, 22, 64. [Google Scholar] [CrossRef]
Age Group | Author | Number of Patients (n) | Septic Group Mortality—% (Period in Days) | Admission Medium PSP Levels (ng/mL) | Cutoff Values (ng/mL) | |||
---|---|---|---|---|---|---|---|---|
Sepsis | Non sepsis | Survivor | Non Survivor | |||||
Neonates & children | Poggi et al. 2015 [51] | 40 | 21 | 1295 | 562 | - | - | 885 |
Pugni et al. 2015 [52] | 684 | - | - | 649 | - | - | - | |
Montaldo et al. 2016 [53] | 70 | 9 | 598 | 328 | - | - | 788 * | |
Korpelainen et al. 2017 [54] | 87 | 3 (in-hospital) | 1432 | - | - | - | - | |
Bellos et al. 2018 [55] | 783 | - | - | - | - | - | 650–850 ** | |
Baraka et al. 2018 [56] | 60 | - | 1014 | 178 | - | - | Multiple | |
Yoon et al. 2019 [57] | 308 | - | - | - | - | - | 650 ** | |
Puspaningtyas et al. 2023 [58] | 100 | 5,6 | 806.5 | 717 | - | - | 761 * | |
Adults | Shozushima et al. 2011 [59] | 169 | - | 817.9 | 190 | - | - | 399 |
Endo et al. 2012 [60] | 185 | - | 1579 | 312 | - | - | Multiple | |
Giavarina et al. 2015 [61] | 200 | - | 55–184 | - | - | - | - | |
Ali et al. 2016 [62] | 76 | 57.6 (28) | 1183 | 472 | 615.5 | 1301 | Multiple | |
Yu et al. 2017 [63] | 109 | 59.6 (90) | - | - | 1230.5 | 1269 | - | |
Claessens et al. 2017 [64] | 359 | - | 476 | 200 | - | - | - | |
Ikeda et al. 2019 [65] | 129 | 22.5 (28) | - | - | 3251 | 1108 | - | |
Zvyagyn et al. 2019 [66] | 41 | - | - | 1718 | 3266 | - | ||
Dragoş et al. 2023 [67] | 510 | 45 | 1039 | 372 | - | - | - | |
Old adults | Imai et al. 2019 [68] | 46 | - | 639.93 | 866.56 | - | - | 285 |
Ruangsomboon et al. 2020 [69] | 250 | 48,2 (30) | 746 | 316 | 470 | 795 | Multiple |
Aspects | Pediatric | Adult | Elderly |
---|---|---|---|
Positive | Early elevation, affordable cost, better diagnostic performance (PCT and CRP) and prognostic validity (30-day mortality), monitoring of antibiotic therapy, levels not influenced by gestational age, predictor of clinical evolution in febrile neutropenics | Better prognostic validity (PCT, CRP, ESR), correlation with hospital mortality in sepsis and septic shock, prognostic validity (28-day mortality), correlation with clinical outcomes, stable in different clinical scenarios (cirrhosis, rheumatoid arthritis, febrile neutropenia) | A better predictor of bacteremia in the Emergency Department (PCT, CRP), similar diagnostic accuracy to PCT, similar prognostic accuracy (qSOFA, SIRS) |
Negative | Poor predictor of bacterial infection (PCT), non-standardized cutoff points, inaccessible in most scenarios | Poor predictor of bacterial infection (PCT), requires adjustments when kidney function is altered | Diagnostic and prognostic accuracy lower than combination (PCT + CRP + PSP), major renal dysfunction in older adults, specific cutoff point (immunosenescence) |
Period | Authors | Studies Included (Number of Patients, n) | Main Conclusions | |
---|---|---|---|---|
Neonatal | Early-onset | Hincu et al., 2020 [20] | 28 | PSP increases in the first 24 h; not influenced by GA, postnatal age or by other perinatal factors; monitoring the response to therapy; high accuracy. |
Late-onset | Yoon et al., 2019 [57] | 4 (308) | PSP showed higher sensitivity and accuracy but relatively lower specificity for the diagnosis of pediatric sepsis than either PCT or CRP. | |
Maldeghem et al., 2019 [120] | 10 (1369) | PSP is a promising diagnostic biomarker for EOS and LOS. | ||
Adults | Wu et al., 2017 [121] | 9 (2159) | PSP is a promising marker for diagnosis of sepsis as PCT or CRP; it cannot be recommended as a single test for sepsis diagnosis. | |
Zheng et al., 2015 [122] | 8 (1757) | PSP has moderate diagnostic capacity for the detection of sepsis. | ||
Liu et al., 2016 [123] | 86 (10,438) | PSP has moderate diagnostic utility in differentiating sepsis from SIRS. | ||
Kondo et al., 2019 [124] | 19 (3012) | PSP has similar diagnostic accuracy to PCT in detecting infection, and is useful for early diagnosis of sepsis and subsequent reduction of mortality. | ||
Yang et al., 2018 [125] | 10 (1617) | PSP first day levels had prognostic value to predict mortality in adult patients with sepsis, especially in-hospital or 30-day mortality. | ||
Zhu et al., 2019 [126] | 9 (1561) | PSP is a promising biomarker for the prognosis of mortality in sepsis. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moura, E.L.B.d.; Pereira, R.W. Crossing Age Boundaries: The Unifying Potential of Presepsin in Sepsis Diagnosis Across Diverse Age Groups. J. Clin. Med. 2024, 13, 7038. https://doi.org/10.3390/jcm13237038
Moura ELBd, Pereira RW. Crossing Age Boundaries: The Unifying Potential of Presepsin in Sepsis Diagnosis Across Diverse Age Groups. Journal of Clinical Medicine. 2024; 13(23):7038. https://doi.org/10.3390/jcm13237038
Chicago/Turabian StyleMoura, Edmilson Leal Bastos de, and Rinaldo Wellerson Pereira. 2024. "Crossing Age Boundaries: The Unifying Potential of Presepsin in Sepsis Diagnosis Across Diverse Age Groups" Journal of Clinical Medicine 13, no. 23: 7038. https://doi.org/10.3390/jcm13237038
APA StyleMoura, E. L. B. d., & Pereira, R. W. (2024). Crossing Age Boundaries: The Unifying Potential of Presepsin in Sepsis Diagnosis Across Diverse Age Groups. Journal of Clinical Medicine, 13(23), 7038. https://doi.org/10.3390/jcm13237038