Role of Proteins in Oncology: Advances in Cancer Diagnosis, Prognosis, and Targeted Therapy—A Narrative Review
Abstract
:1. Introduction
2. Importance of Proteins in Cancer Diagnostics
2.1. Examples of Protein Biomarkers
2.2. Advantages and Limitations of Biomarkers
3. Role of Proteins in Cancer Prognosis
3.1. Examples of Prognostic Proteins
3.2. Prognostic Proteins in Personalizing Therapy
4. Proteins in Targeted Therapy in Oncology
4.1. Mechanisms of Action of Targeted Therapies
4.2. Inhibition of Tyrosine Kinases
4.3. Membrane Receptor Inhibition
4.4. Kinase Degraders and Molecular Glues
4.5. Use of Monoclonal Antibodies
4.6. Interference with Angiogenesis Signaling Pathways
4.7. Delivery of Toxins with the Assistance of Antibodies—Immunotoxins
5. Summary and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pessoa, J.; Martins, M.; Casimiro, S.; Pérez-Plasencia, C.; Shoshan-Barmatz, V. Editorial: Altered Expression of Proteins in Cancer: Function and Potential Therapeutic Targets. Front. Oncol. 2022, 12, 949139. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Cui, L.; Lu, S.; Xu, S. Amino Acid Metabolism in Tumor Biology and Therapy. Cell Death Dis. 2024, 15, 42. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, S. Protein Mislocalization: Mechanisms, Functions and Clinical Applications in Cancer. Biochim. Biophys. Acta Rev. Cancer 2014, 1846, 13–25. [Google Scholar] [CrossRef] [PubMed]
- White-Gilbertson, S.; Kurtz, D.T.; Voelkel-Johnson, C. The Role of Protein Synthesis in Cell Cycling and Cancer. Mol. Oncol. 2009, 3, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Tao, L.; Qiu, J.; Xu, J.; Yang, X.; Zhang, Y.; Tian, X.; Guan, X.; Cen, X.; Zhao, Y. Tumor Biomarkers for Diagnosis, Prognosis and Targeted Therapy. Signal Transduct. Target. Ther. 2024, 9, 132. [Google Scholar] [CrossRef]
- Poste, G. Bring on the Biomarkers. Nature 2011, 469, 156–157. [Google Scholar] [CrossRef]
- Cui, M.; Cheng, C.; Zhang, L. High-Throughput Proteomics: A Methodological Mini-Review. Lab. Investig. 2022, 102, 1170–1181. [Google Scholar] [CrossRef]
- Messner, C.B.; Demichev, V.; Wang, Z.; Hartl, J.; Kustatscher, G.; Mülleder, M.; Ralser, M. Mass Spectrometry-Based High-Throughput Proteomics and Its Role in Biomedical Studies and Systems Biology. Proteomics 2023, 23, 2200013. [Google Scholar] [CrossRef]
- Birhanu, A.G. Mass Spectrometry-Based Proteomics as an Emerging Tool in Clinical Laboratories. Clin. Proteom. 2023, 20, 32. [Google Scholar] [CrossRef]
- Pretelli, G.; Spagnolo, C.C.; Ciappina, G.; Santarpia, M.; Pasello, G. Overview on Therapeutic Options in Uncommon EGFR Mutant Non-Small Cell Lung Cancer (NSCLC): New Lights for an Unmet Medical Need. Int. J. Mol. Sci. 2023, 24, 8878. [Google Scholar] [CrossRef]
- Chan, T.A.; Yarchoan, M.; Jaffee, E.; Swanton, C.; Quezada, S.A.; Stenzinger, A.; Peters, S. Development of Tumor Mutation Burden as an Immunotherapy Biomarker: Utility for the Oncology Clinic. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2019, 30, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Janku, F.; Yap, T.A.; Meric-Bernstam, F. Targeting the PI3K Pathway in Cancer: Are We Making Headway? Nat. Rev. Clin. Oncol. 2018, 15, 273–291. [Google Scholar] [CrossRef] [PubMed]
- Slamon, D.J.; Leyland-Jones, B.; Shak, S.; Fuchs, H.; Paton, V.; Bajamonde, A.; Fleming, T.; Eiermann, W.; Wolter, J.; Pegram, M.; et al. Use of Chemotherapy plus a Monoclonal Antibody against HER2 for Metastatic Breast Cancer That Overexpresses HER2. N. Engl. J. Med. 2001, 344, 783–792. [Google Scholar] [CrossRef]
- Baselga, J.; Swain, S.M. Novel Anticancer Targets: Revisiting ERBB2 and Discovering ERBB3. Nat. Rev. Cancer 2009, 9, 463–475. [Google Scholar] [CrossRef]
- Druker, B.J.; Talpaz, M.; Resta, D.J.; Peng, B.; Buchdunger, E.; Ford, J.M.; Lydon, N.B.; Kantarjian, H.; Capdeville, R.; Ohno-Jones, S.; et al. Efficacy and Safety of a Specific Inhibitor of the BCR-ABL Tyrosine Kinase in Chronic Myeloid Leukemia. N. Engl. J. Med. 2001, 344, 1031–1037. [Google Scholar] [CrossRef]
- Lu, H.; Zhou, Q.; He, J.; Jiang, Z.; Peng, C.; Tong, R.; Shi, J. Recent Advances in the Development of Protein–Protein Interactions Modulators: Mechanisms and Clinical Trials. Signal Transduct. Target. Ther. 2020, 5, 213. [Google Scholar] [CrossRef]
- Yi, M.; Jiao, D.; Qin, S.; Chu, Q.; Wu, K.; Li, A. Synergistic Effect of Immune Checkpoint Blockade and Anti-Angiogenesis in Cancer Treatment. Mol. Cancer 2019, 18, 60. [Google Scholar] [CrossRef] [PubMed]
- Fares, J.; Fares, M.Y.; Khachfe, H.H.; Salhab, H.A.; Fares, Y. Molecular Principles of Metastasis: A Hallmark of Cancer Revisited. Signal Transduct. Target. Ther. 2020, 5, 28. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Cao, D.; Qu, L.; Cao, X.; Jia, Z.; Zhao, T.; Wang, Q.; Jiang, J. PD-1 and PD-L1 Co-Expression Predicts Favorable Prognosis in Gastric Cancer. Oncotarget 2017, 8, 64066–64082. [Google Scholar] [CrossRef]
- Hudis, C.A. Trastuzumab--Mechanism of Action and Use in Clinical Practice. N. Engl. J. Med. 2007, 357, 39–51. [Google Scholar] [CrossRef]
- Sharma, P.; Allison, J.P. The Future of Immune Checkpoint Therapy. Science 2015, 348, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Sokoll, L.J.; Chan, D.W. Prostate-Specific Antigen. Its Discovery and Biochemical Characteristics. Urol. Clin. N. Am. 1997, 24, 253–259. [Google Scholar] [CrossRef]
- Scandolara, T.B.; Barreto Pires, B.R.; Vacario, B.; de Amorim, I.S.S.; Siqueira, P.B.; Serpeloni, J.M.; Mencalha, A.L.; Bonvicino, C.R.; Panis, C. An Overview Regarding Pharmacogenomics and Biomarkers Discovery: Focus on Breast Cancer. Curr. Top. Med. Chem. 2022, 22, 1654–1673. [Google Scholar] [CrossRef] [PubMed]
- Diamandis, E.P. Cancer Biomarkers: Can We Turn Recent Failures into Success? J. Natl. Cancer Inst. 2010, 102, 1462–1467. [Google Scholar] [CrossRef] [PubMed]
- Vogelstein, B.; Kinzler, K.W. Cancer Genes and the Pathways They Control. Nat. Med. 2004, 10, 789–799. [Google Scholar] [CrossRef]
- Topalian, S.L.; Drake, C.G.; Pardoll, D.M. Immune Checkpoint Blockade: A Common Denominator Approach to Cancer Therapy. Cancer Cell 2015, 27, 450–461. [Google Scholar] [CrossRef]
- Sarhadi, V.K.; Armengol, G. Molecular Biomarkers in Cancer. Biomolecules 2022, 12, 1021. [Google Scholar] [CrossRef] [PubMed]
- Landegren, U.; Hammond, M. Cancer Diagnostics Based on Plasma Protein Biomarkers: Hard Times but Great Expectations. Mol. Oncol. 2021, 15, 1715–1726. [Google Scholar] [CrossRef]
- Barker, A.D.; Alba, M.M.; Mallick, P.; Agus, D.B.; Lee, J.S.H. An Inflection Point in Cancer Protein Biomarkers: What Was and What’s Next. Mol. Cell. Proteom. 2023, 22, 100569. [Google Scholar] [CrossRef]
- Oto, J.; Fernández-Pardo, Á.; Royo, M.; Hervás, D.; Martos, L.; Vera-Donoso, C.D.; Martínez, M.; Heeb, M.J.; España, F.; Medina, P.; et al. A Predictive Model for Prostate Cancer Incorporating PSA Molecular Forms and Age. Sci. Rep. 2020, 10, 2463. [Google Scholar] [CrossRef]
- Saini, S. PSA and beyond: Alternative Prostate Cancer Biomarkers. Cell. Oncol. 2016, 39, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-Y.; Wang, P.-Y.; Liu, M.-Z.; Lyu, F.; Ma, M.-W.; Ren, X.-Y.; Gao, X.-S. Biomarkers for Prostate Cancer: From Diagnosis to Treatment. Diagnostics 2023, 13, 3350. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Ibave, D.C.; Burciaga-Flores, C.H.; Elizondo-Riojas, M.-Á. Prostate-Specific Antigen (PSA) as a Possible Biomarker in Non-Prostatic Cancer: A Review. Cancer Epidemiol. 2018, 54, 48–55. [Google Scholar] [CrossRef]
- Moradi, A.; Srinivasan, S.; Clements, J.; Batra, J. Beyond the Biomarker Role: Prostate-Specific Antigen (PSA) in the Prostate Cancer Microenvironment. Cancer Metastasis Rev. 2019, 38, 333–346. [Google Scholar] [CrossRef]
- Cazanave Mora, J.M.; del Valle García, R.; Pérez López, L.; Bequer Ariza, D.C.; Zulueta Rodríguez, O.; Melchor Rodríguez, A.; Hernández Pérez, L.; López Cisneros, R.; Arteaga Yera, A.L.; Silva Cabrera, E.; et al. Measurement of Total and Free Prostate Specific Antigen (PSA) in Human Serum Samples Using an Ultra-Microanalytical System. J. Pharm. Biomed. Anal. 2022, 208, 114470. [Google Scholar] [CrossRef]
- Phiri-Ramongane, B.; Khine, A. Performance of Free Prostate-Specific Antigen Ratio in Differentiating between Prostatic Cancer and Benign Prostatic Lesions at a Referral Hospital in South Africa. S. Afr. Fam. Pract. 2018, 60, 103–106. [Google Scholar] [CrossRef]
- Prcic, A.; Begic, E.; Hiros, M. Actual Contribution of Free to Total PSA Ratio in Prostate Diseases Differentiation. Med. Arch. 2016, 70, 288–292. [Google Scholar] [CrossRef]
- Omar, J.; Jaafar, Z.; Abdullah, M.R. A Pilot Study on Percent Free Prostate Specific Antigen as an Additional Tool in Prostate Cancer Screening. Malays. J. Med. Sci. 2009, 16, 44–47. [Google Scholar]
- Tosoian, J.; Loeb, S. PSA and beyond: The Past, Present, and Future of Investigative Biomarkers for Prostate Cancer. Sci. World J. 2010, 10, 1919–1931. [Google Scholar] [CrossRef]
- Filella, X.; Foj, L. Prostate Cancer Detection and Prognosis: From Prostate Specific Antigen (PSA) to Exosomal Biomarkers. Int. J. Mol. Sci. 2016, 17, 1784. [Google Scholar] [CrossRef]
- Tosoian, J.J.; Zhang, Y.; Xiao, L.; Xie, C.; Samora, N.L.; Niknafs, Y.S.; Chopra, Z.; Siddiqui, J.; Zheng, H.; Herron, G.; et al. Development and Validation of an 18-Gene Urine Test for High-Grade Prostate Cancer. JAMA Oncol. 2024, 10, 726–736. [Google Scholar] [CrossRef] [PubMed]
- Yoneyama, T.; Yamamoto, H.; Sutoh Yoneyama, M.; Tobisawa, Y.; Hatakeyama, S.; Narita, T.; Kodama, H.; Momota, M.; Ito, H.; Narita, S.; et al. Characteristics of A2,3-Sialyl N-Glycosylated PSA as a Biomarker for Clinically Significant Prostate Cancer in Men with Elevated PSA Level. Prostate 2021, 81, 1411–1427. [Google Scholar] [CrossRef] [PubMed]
- Moasser, M.M. The Oncogene HER2: Its Signaling and Transforming Functions and Its Role in Human Cancer Pathogenesis. Oncogene 2007, 26, 6469–6487. [Google Scholar] [CrossRef] [PubMed]
- Sauter, G.; Lee, J.; Bartlett, J.M.S.; Slamon, D.J.; Press, M.F. Guidelines for Human Epidermal Growth Factor Receptor 2 Testing: Biologic and Methodologic Considerations. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2009, 27, 1323–1333. [Google Scholar] [CrossRef]
- Iqbal, N.; Iqbal, N. Human Epidermal Growth Factor Receptor 2 (HER2) in Cancers: Overexpression and Therapeutic Implications. Mol. Biol. Int. 2014, 2014, 852748. [Google Scholar] [CrossRef]
- Luque-Cabal, M.; García-Teijido, P.; Fernández-Pérez, Y.; Sánchez-Lorenzo, L.; Palacio-Vázquez, I. Mechanisms Behind the Resistance to Trastuzumab in HER2-Amplified Breast Cancer and Strategies to Overcome It. Clin. Med. Insights Oncol. 2016, 10, 21–30. [Google Scholar] [CrossRef]
- Li, B.T.; Ross, D.S.; Aisner, D.L.; Chaft, J.E.; Hsu, M.; Kako, S.L.; Kris, M.G.; Varella-Garcia, M.; Arcila, M.E. HER2 Amplification and HER2 Mutation Are Distinct Molecular Targets in Lung Cancers. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 2016, 11, 414–419. [Google Scholar] [CrossRef]
- Valabrega, G.; Montemurro, F.; Aglietta, M. Trastuzumab: Mechanism of Action, Resistance and Future Perspectives in HER2-Overexpressing Breast Cancer. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2007, 18, 977–984. [Google Scholar] [CrossRef]
- Tanaka, R.; Sasajima, Y.; Tsuda, H.; Namikawa, K.; Tsutsumida, A.; Otsuka, F.; Yamazaki, N. Human Epidermal Growth Factor Receptor 2 Protein Overexpression and Gene Amplification in Extramammary Paget Disease. Br. J. Dermatol. 2013, 168, 1259–1266. [Google Scholar] [CrossRef]
- Lee, S.; de Boer, W.B.; Fermoyle, S.; Platten, M.; Kumarasinghe, M.P. Human Epidermal Growth Factor Receptor 2 Testing in Gastric Carcinoma: Issues Related to Heterogeneity in Biopsies and Resections. Histopathology 2011, 59, 832–840. [Google Scholar] [CrossRef]
- Pourmadadi, M.; Moammeri, A.; Shamsabadipour, A.; Moghaddam, Y.F.; Rahdar, A.; Pandey, S. Application of Various Optical and Electrochemical Nanobiosensors for Detecting Cancer Antigen 125 (CA-125): A Review. Biosensors 2023, 13, 99. [Google Scholar] [CrossRef]
- Song, Y.; Yuan, M.; Wang, G. Update Value and Clinical Application of MUC16 (Cancer Antigen 125). Expert Opin. Ther. Targets 2023, 27, 745–756. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, T.; Higashi, M.; Sugiyama, H.; Morozumi, M.; Momose, S.; Tamaru, J.-I. Cancer Antigen 125 Expression Enhances the Gemcitabine/Cisplatin-Resistant Tumor Microenvironment in Bladder Cancer. Am. J. Pathol. 2023, 193, 350–361. [Google Scholar] [CrossRef] [PubMed]
- Cheema, H.; Bargman, J.M. Cancer Antigen 125 as a Biomarker in Peritoneal Dialysis: Mesothelial Cell Health or Death? Perit. Dial. Int. J. Int. Soc. Perit. Dial. 2013, 33, 349–352. [Google Scholar] [CrossRef] [PubMed]
- Charkhchi, P.; Cybulski, C.; Gronwald, J.; Wong, F.O.; Narod, S.A.; Akbari, M.R. CA125 and Ovarian Cancer: A Comprehensive Review. Cancers 2020, 12, 3730. [Google Scholar] [CrossRef] [PubMed]
- Saad, H.M.; Tourky, G.F.; Al-kuraishy, H.M.; Al-Gareeb, A.I.; Khattab, A.M.; Elmasry, S.A.; Alsayegh, A.A.; Hakami, Z.H.; Alsulimani, A.; Sabatier, J.-M.; et al. The Potential Role of MUC16 (CA125) Biomarker in Lung Cancer: A Magic Biomarker but with Adversity. Diagnostics 2022, 12, 2985. [Google Scholar] [CrossRef]
- Funston, G.; Hamilton, W.; Abel, G.; Crosbie, E.J.; Rous, B.; Walter, F.M. The Diagnostic Performance of CA125 for the Detection of Ovarian and Non-Ovarian Cancer in Primary Care: A Population-Based Cohort Study. PLoS Med. 2020, 17, e1003295. [Google Scholar] [CrossRef]
- Skates, S.J.; Greene, M.H.; Buys, S.S.; Mai, P.L.; Brown, P.; Piedmonte, M.; Rodriguez, G.; Schorge, J.O.; Sherman, M.; Daly, M.B.; et al. Early Detection of Ovarian Cancer Using the Risk of Ovarian Cancer Algorithm with Frequent CA125 Testing in Women at Increased Familial Risk—Combined Results from Two Screening Trials. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2017, 23, 3628–3637. [Google Scholar] [CrossRef]
- Partheen, K.; Kristjansdottir, B.; Sundfeldt, K. Evaluation of Ovarian Cancer Biomarkers HE4 and CA-125 in Women Presenting with a Suspicious Cystic Ovarian Mass. J. Gynecol. Oncol. 2011, 22, 244–252. [Google Scholar] [CrossRef]
- Visintin, I.; Feng, Z.; Longton, G.; Ward, D.C.; Alvero, A.B.; Lai, Y.; Tenthorey, J.; Leiser, A.; Flores-Saaib, R.; Yu, H.; et al. Diagnostic Markers for Early Detection of Ovarian Cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2008, 14, 1065–1072. [Google Scholar] [CrossRef]
- Kobayashi, E.; Ueda, Y.; Matsuzaki, S.; Yokoyama, T.; Kimura, T.; Yoshino, K.; Fujita, M.; Kimura, T.; Enomoto, T. Biomarkers for Screening, Diagnosis, and Monitoring of Ovarian Cancer. Cancer Epidemiol. Biomark. Prev. Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 2012, 21, 1902–1912. [Google Scholar] [CrossRef] [PubMed]
- Berek, J.S.; Bast, R.C.J. Ovarian Cancer Screening. The Use of Serial Complementary Tumor Markers to Improve Sensitivity and Specificity for Early Detection. Cancer 1995, 76, 2092–2096. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Siu, M.K.Y.; Ngan, H.Y.S.; Chan, K.K.L. Molecular Biomarkers for the Early Detection of Ovarian Cancer. Int. J. Mol. Sci. 2022, 23, 12041. [Google Scholar] [CrossRef] [PubMed]
- Hanif, H.; Ali, M.J.; Susheela, A.T.; Khan, I.W.; Luna-Cuadros, M.A.; Khan, M.M.; Lau, D.T.-Y. Update on the Applications and Limitations of Alpha-Fetoprotein for Hepatocellular Carcinoma. World J. Gastroenterol. 2022, 28, 216–229. [Google Scholar] [CrossRef] [PubMed]
- Yeo, Y.H.; Lee, Y.-T.; Tseng, H.-R.; Zhu, Y.; You, S.; Agopian, V.G.; Yang, J.D. Alpha-Fetoprotein: Past, Present, and Future. Hepatol. Commun. 2024, 8, e0422. [Google Scholar] [CrossRef]
- Chaudhuri, A.G.; Samanta, S.; Dey, M.; Raviraja, N.S.; Dey, S. Role of Alpha-Fetoprotein in the Pathogenesis of Cancer. J. Environ. Pathol. Toxicol. Oncol. Off. Organ Int. Soc. Environ. Toxicol. Cancer 2024, 43, 57–76. [Google Scholar] [CrossRef]
- Munson, P.V.; Adamik, J.; Butterfield, L.H. Immunomodulatory Impact of α-Fetoprotein. Trends Immunol. 2022, 43, 438–448. [Google Scholar] [CrossRef]
- Lok, A.S.; Sterling, R.K.; Everhart, J.E.; Wright, E.C.; Hoefs, J.C.; Di Bisceglie, A.M.; Morgan, T.R.; Kim, H.-Y.; Lee, W.M.; Bonkovsky, H.L.; et al. Des-Gamma-Carboxy Prothrombin and Alpha-Fetoprotein as Biomarkers for the Early Detection of Hepatocellular Carcinoma. Gastroenterology 2010, 138, 493–502. [Google Scholar] [CrossRef]
- Trevisani, F.; D’Intino, P.E.; Morselli-Labate, A.M.; Mazzella, G.; Accogli, E.; Caraceni, P.; Domenicali, M.; De Notariis, S.; Roda, E.; Bernardi, M. Serum Alpha-Fetoprotein for Diagnosis of Hepatocellular Carcinoma in Patients with Chronic Liver Disease: Influence of HBsAg and Anti-HCV Status. J. Hepatol. 2001, 34, 570–575. [Google Scholar] [CrossRef]
- Liu, H.; Xu, Y.; Xiang, J.; Long, L.; Green, S.; Yang, Z.; Zimdahl, B.; Lu, J.; Cheng, N.; Horan, L.H.; et al. Targeting Alpha-Fetoprotein (AFP)-MHC Complex with CAR T-Cell Therapy for Liver Cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2017, 23, 478–488. [Google Scholar] [CrossRef]
- Chen, E.; Tang, C.; Peng, K.; Cheng, X.; Wei, Y.; Liu, T. ANGPTL6-Mediated Angiogenesis Promotes Alpha Fetoprotein-Producing Gastric Cancer Progression. Pathol. Res. Pract. 2019, 215, 152454. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.-Y.; Cen, W.-J.; Tang, W.-T.; Deng, L.; Wang, F.; Ji, X.-M.; Yang, J.-J.; Zhang, R.-J.; Zhang, X.-H.; Du, Z.-M. Alpha-Fetoprotein Ratio Predicts Alpha-Fetoprotein Positive Hepatocellular Cancer Patient Prognosis after Hepatectomy. Dis. Markers 2022, 2022, 7640560. [Google Scholar] [CrossRef]
- Grunnet, M.; Sorensen, J.B. Carcinoembryonic Antigen (CEA) as Tumor Marker in Lung Cancer. Lung Cancer 2012, 76, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Xiang, W.; Lv, Q.; Shi, H.; Xie, B.; Gao, L. Aptamer-Based Biosensor for Detecting Carcinoembryonic Antigen. Talanta 2020, 214, 120716. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Y.; Wu, Y.; Bi, R.; Wu, X.; Ke, G.; Zhu, J. Identifying Tumor Markers-Stratified Subtypes (CA-125/CA19-9/Carcinoembryonic Antigen) in Cervical Adenocarcinoma. Int. J. Biol. Markers 2023, 38, 223–232. [Google Scholar] [CrossRef]
- Kamada, T.; Ohdaira, H.; Takahashi, J.; Aida, T.; Nakashima, K.; Ito, E.; Hata, T.; Yoshida, M.; Eto, K.; Suzuki, Y. Novel Tumor Marker Index Using Carcinoembryonic Antigen and Carbohydrate Antigen 19-9 Is a Significant Prognostic Factor for Resectable Colorectal Cancer. Sci. Rep. 2024, 14, 4192. [Google Scholar] [CrossRef] [PubMed]
- Locker, G.Y.; Hamilton, S.; Harris, J.; Jessup, J.M.; Kemeny, N.; Macdonald, J.S.; Somerfield, M.R.; Hayes, D.F.; Bast, R.C.J. ASCO 2006 Update of Recommendations for the Use of Tumor Markers in Gastrointestinal Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2006, 24, 5313–5327. [Google Scholar] [CrossRef]
- Goldstein, M.J.; Mitchell, E.P. Carcinoembryonic Antigen in the Staging and Follow-up of Patients with Colorectal Cancer. Cancer Investig. 2005, 23, 338–351. [Google Scholar] [CrossRef] [PubMed]
- van der Willik, K.D.; Schagen, S.B.; Ikram, M.A. Association Between the Tumor Marker Carcinoembryonic Antigen and the Risk of Dementia. J. Alzheimers. Dis. 2020, 76, 845–851. [Google Scholar] [CrossRef]
- Jozghorbani, M.; Fathi, M.; Kazemi, S.H.; Alinejadian, N. Determination of Carcinoembryonic Antigen as a Tumor Marker Using a Novel Graphene-Based Label-Free Electrochemical Immunosensor. Anal. Biochem. 2021, 613, 114017. [Google Scholar] [CrossRef]
- Osumi, H.; Shinozaki, E.; Ooki, A.; Shimozaki, K.; Kamiimabeppu, D.; Nakayama, I.; Wakatsuki, T.; Ogura, M.; Takahari, D.; Chin, K.; et al. Correlation between Circulating Tumor DNA and Carcinoembryonic Antigen Levels in Patients with Metastatic Colorectal Cancer. Cancer Med. 2021, 10, 8820–8828. [Google Scholar] [CrossRef] [PubMed]
- Todor, S.B.; Ichim, C.; Boicean, A.; Mihaila, R.G. Cardiovascular Risk in Philadelphia-Negative Myeloproliferative Neoplasms: Mechanisms and Implications—A Narrative Review. Curr. Issues Mol. Biol. 2024, 46, 8407–8423. [Google Scholar] [CrossRef]
- Vainchenker, W.; Constantinescu, S.N. JAK/STAT Signaling in Hematological Malignancies. Oncogene 2013, 32, 2601–2613. [Google Scholar] [CrossRef] [PubMed]
- Nangalia, J.; Massie, C.E.; Baxter, E.J.; Nice, F.L.; Gundem, G.; Wedge, D.C.; Avezov, E.; Li, J.; Kollmann, K.; Kent, D.G.; et al. Somatic CALR Mutations in Myeloproliferative Neoplasms with Nonmutated JAK2. N. Engl. J. Med. 2013, 369, 2391–2405. [Google Scholar] [CrossRef]
- Klampfl, T.; Gisslinger, H.; Harutyunyan, A.S.; Nivarthi, H.; Rumi, E.; Milosevic, J.D.; Them, N.C.C.; Berg, T.; Gisslinger, B.; Pietra, D.; et al. Somatic Mutations of Calreticulin in Myeloproliferative Neoplasms. N. Engl. J. Med. 2013, 369, 2379–2390. [Google Scholar] [CrossRef]
- Hu, Z.; Sun, Y.; Wang, W.; Medeiros, L.J.; Kanagal-Shamanna, R. Refractory Hairy Cell Leukemia-Variant. Am. J. Hematol. 2017, 92, 1398–1399. [Google Scholar] [CrossRef]
- Garcia-Montero, A.C.; Jara-Acevedo, M.; Teodosio, C.; Sanchez, M.L.; Nunez, R.; Prados, A.; Aldanondo, I.; Sanchez, L.; Dominguez, M.; Botana, L.M.; et al. KIT Mutation in Mast Cells and Other Bone Marrow Hematopoietic Cell Lineages in Systemic Mast Cell Disorders: A Prospective Study of the Spanish Network on Mastocytosis (REMA) in a Series of 113 Patients. Blood 2006, 108, 2366–2372. [Google Scholar] [CrossRef] [PubMed]
- Mayeux, R. Biomarkers: Potential Uses and Limitations. NeuroRx 2004, 1, 182–188. [Google Scholar] [CrossRef]
- Bodaghi, A.; Fattahi, N.; Ramazani, A. Biomarkers: Promising and Valuable Tools towards Diagnosis, Prognosis and Treatment of Covid-19 and Other Diseases. Heliyon 2023, 9, e13323. [Google Scholar] [CrossRef]
- Nimse, S.B.; Sonawane, M.D.; Song, K.-S.; Kim, T. Biomarker Detection Technologies and Future Directions. Analyst 2016, 141, 740–755. [Google Scholar] [CrossRef]
- Iweala, E.E.J.; Amuji, D.N.; Nnaji, F.C. Protein Biomarkers for Diagnosis of Breast Cancer. Sci. Afr. 2024, 25, e02308. [Google Scholar] [CrossRef]
- Hedrick, V.E.; Dietrich, A.M.; Estabrooks, P.A.; Savla, J.; Serrano, E.; Davy, B.M. Dietary Biomarkers: Advances, Limitations and Future Directions. Nutr. J. 2012, 11, 109. [Google Scholar] [CrossRef]
- Kim, S.-H.; Weiß, C.; Hoffmann, U.; Borggrefe, M.; Akin, I.; Behnes, M. Advantages and Limitations of Current Biomarker Research: From Experimental Research to Clinical Application. Curr. Pharm. Biotechnol. 2017, 18, 445–455. [Google Scholar] [CrossRef]
- Solier, C.; Langen, H. Antibody-Based Proteomics and Biomarker Research—Current Status and Limitations. Proteomics 2014, 14, 774–783. [Google Scholar] [CrossRef] [PubMed]
- Surinova, S.; Schiess, R.; Hüttenhain, R.; Cerciello, F.; Wollscheid, B.; Aebersold, R. On the Development of Plasma Protein Biomarkers. J. Proteome Res. 2011, 10, 5–16. [Google Scholar] [CrossRef]
- Urban, N.; Thorpe, J.; Karlan, B.Y.; McIntosh, M.W.; Palomares, M.R.; Daly, M.B.; Paley, P.; Drescher, C.W. Interpretation of Single and Serial Measures of HE4 and CA125 in Asymptomatic Women at High Risk for Ovarian Cancer. Cancer Epidemiol. Biomark. Prev. 2012, 21, 2087–2094. [Google Scholar] [CrossRef]
- Van Gorp, T.; Cadron, I.; Despierre, E.; Daemen, A.; Leunen, K.; Amant, F.; Timmerman, D.; De Moor, B.; Vergote, I. HE4 and CA125 as a Diagnostic Test in Ovarian Cancer: Prospective Validation of the Risk of Ovarian Malignancy Algorithm. Br. J. Cancer 2011, 104, 863–870. [Google Scholar] [CrossRef]
- Wan, J.C.M.; Massie, C.; Garcia-Corbacho, J.; Mouliere, F.; Brenton, J.D.; Caldas, C.; Pacey, S.; Baird, R.; Rosenfeld, N. Liquid Biopsies Come of Age: Towards Implementation of Circulating Tumour DNA. Nat. Rev. Cancer 2017, 17, 223–238. [Google Scholar] [CrossRef] [PubMed]
- Bettegowda, C.; Sausen, M.; Leary, R.J.; Kinde, I.; Wang, Y.; Agrawal, N.; Bartlett, B.R.; Wang, H.; Luber, B.; Alani, R.M.; et al. Detection of Circulating Tumor DNA in Early- and Late-Stage Human Malignancies. Sci. Transl. Med. 2014, 6, 224ra24. [Google Scholar] [CrossRef]
- Van Gool, A.; Corrales, F.; Čolović, M.; Krstić, D.; Oliver-Martos, B.; Martínez-Cáceres, E.; Jakasa, I.; Gajski, G.; Brun, V.; Kyriacou, K.; et al. Analytical Techniques for Multiplex Analysis of Protein Biomarkers. Expert Rev. Proteom. 2020, 17, 257–273. [Google Scholar] [CrossRef]
- Spisak, S.; Tulassay, Z.; Molnar, B.; Guttman, A. Protein Microchips in Biomedicine and Biomarker Discovery. Electrophoresis 2007, 28, 4261–4273. [Google Scholar] [CrossRef] [PubMed]
- Bittla, P.; Kaur, S.; Sojitra, V.; Zahra, A.; Hutchinson, J.; Folawemi, O.; Khan, S. Exploring Circulating Tumor DNA (CtDNA) and Its Role in Early Detection of Cancer: A Systematic Review. Cureus 2023, 15, e45784. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.; Pu, H.; Liu, Q.; Guo, Z.; Luo, D. Circulating Tumor DNA-A Novel Biomarker of Tumor Progression and Its Favorable Detection Techniques. Cancers 2022, 14, 6025. [Google Scholar] [CrossRef]
- Rifai, N.; Gillette, M.A.; Carr, S.A. Protein Biomarker Discovery and Validation: The Long and Uncertain Path to Clinical Utility. Nat. Biotechnol. 2006, 24, 971–983. [Google Scholar] [CrossRef]
- Hewitt, S.M.; Dear, J.; Star, R.A. Discovery of Protein Biomarkers for Renal Diseases. J. Am. Soc. Nephrol. 2004, 15, 1677–1689. [Google Scholar] [CrossRef]
- Tso, E.; Elson, P.; VanLente, F.; Markman, M. The “Real-Life” Variability of CA-125 in Ovarian Cancer Patients. Gynecol. Oncol. 2006, 103, 141–144. [Google Scholar] [CrossRef]
- Markman, M.; Webster, K.; Zanotti, K.; Peterson, G.; Kulp, B.; Belinson, J. Examples of the Marked Variability in the Relationship between the Serum CA-125 Antigen Level and Cancer-Related Symptoms in Ovarian Cancer. Gynecol. Oncol. 2004, 93, 715–717. [Google Scholar] [CrossRef]
- Wilder, J.L.; Pavlik, E.; Straughn, J.M.; Kirby, T.; Higgins, R.V.; DePriest, P.D.; Ueland, F.R.; Kryscio, R.J.; Whitley, R.J.; Nagell, J. van Clinical Implications of a Rising Serum CA-125 within the Normal Range in Patients with Epithelial Ovarian Cancer: A Preliminary Investigation. Gynecol. Oncol. 2003, 89, 233–235. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.-L.; Lu, Z.; Bast, R.C.J. The Role of Biomarkers in the Management of Epithelial Ovarian Cancer. Expert Rev. Mol. Diagn. 2017, 17, 577–591. [Google Scholar] [CrossRef]
- Atallah, G.A.; Abd Aziz, N.H.; Teik, C.K.; Shafiee, M.N.; Kampan, N.C. New Predictive Biomarkers for Ovarian Cancer. Diagnostics 2021, 11, 465. [Google Scholar] [CrossRef]
- Xie, P.; Yin, Q.; Wang, S.; Song, D. Prognostic Protein Biomarker Screening for Thyroid Carcinoma Based on Cancer Proteomics Profiles. Biomedicines 2024, 12, 2066. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.; Xu, T.; Yang, H. Protein-Based Prognostic Signature for Predicting the Survival and Immunotherapeutic Efficiency of Endometrial Carcinoma. BMC Cancer 2022, 22, 325. [Google Scholar] [CrossRef] [PubMed]
- Hassin, O.; Oren, M. Drugging P53 in Cancer: One Protein, Many Targets. Nat. Rev. Drug Discov. 2023, 22, 127–144. [Google Scholar] [CrossRef] [PubMed]
- Duffy, M.J.; Synnott, N.C.; O’Grady, S.; Crown, J. Targeting P53 for the Treatment of Cancer. Semin. Cancer Biol. 2022, 79, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, C.; Bertoli, H.; Sand, F.; Kjær, A.; Thomsen, L.; Kjær, S. The Prognostic Significance of HPV, P16, and P53 Protein Expression in Vaginal Cancer: A Systematic Review. Acta Obstet. Gynecol. Scand. 2021, 100, 2144–2156. [Google Scholar] [CrossRef]
- Marei, H.E.; Althani, A.; Afifi, N.; Hasan, A.; Caceci, T.; Pozzoli, G.; Morrione, A.; Giordano, A.; Cenciarelli, C. P53 Signaling in Cancer Progression and Therapy. Cancer Cell Int. 2021, 21, 703. [Google Scholar] [CrossRef]
- Ben Rejeb, S.; Kouki, N.; Elfekih, S.; Cherif, I.; Khouni, H. Prognostic Significance of Tumor Suppressor Protein P53 in Prostate Cancer Valeur Pronostique de La Protéine P53 Dans Le Cancer de La Prostate. Tunis. Med. 2024, 102, 111–115. [Google Scholar] [CrossRef]
- Kim, K.; Ahn, A.-R.; Park, H.; Jang, K.Y.; Moon, W.; Kang, M.; Ha, G.; Lee, M.; Chung, M.J. Clinical Significance of P53 Protein Expression and TP53 Variation Status in Colorectal Cancer. BMC Cancer 2022, 22, 940. [Google Scholar] [CrossRef]
- Schaafsma, E.; Takacs, E.M.; Kaur, S.; Cheng, C.; Kurokawa, M. Predicting Clinical Outcomes of Cancer Patients with a P53 Deficiency Gene Signature. Sci. Rep. 2022, 12, 1317. [Google Scholar] [CrossRef]
- Zhao, Y.; Varn, F.S.; Cai, G.; Xiao, F.; Amos, C.I.; Cheng, C. A P53-Deficiency Gene Signature Predicts Recurrence Risk of Patients with Early-Stage Lung Adenocarcinoma. Cancer Epidemiol. Biomark. Prev. Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 2018, 27, 86–95. [Google Scholar] [CrossRef]
- Zonneville, J.; Wang, M.; Alruwaili, M.M.; Smith, B.; Melnick, M.; Eng, K.H.; Melendy, T.; Park, B.H.; Iyer, R.; Fountzilas, C.; et al. Selective Therapeutic Strategy for P53-Deficient Cancer by Targeting Dysregulation in DNA Repair. Commun. Biol. 2021, 4, 862. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Li, Y.; Wang, M.; Luo, L.; Sun, R.; Chen, Y.; Bai, Y.; Ding, C.; Wang, Y. P53 Deficiency Mediates Cisplatin Resistance by Upregulating RRM2 and Crotonylation of RRM2(K283) through the Downregulation of SIRT7. Front. Mol. Biosci. 2024, 11, 1423594. [Google Scholar] [CrossRef] [PubMed]
- Rojas, E.; Corchete Sánchez, L.; De Ramón Sánchez, C.; Krzeminski, P.; Quwaider, D.; Garcia-Sanz, R.; Martinez-Lopez, J.; Oriol, A.; Rosiñol, L.; Bladé, J.; et al. Expression of P53 Protein Isoforms Predicts Survival in Patients with Multiple Myeloma. Am. J. Hematol. 2022, 97, 700–710. [Google Scholar] [CrossRef] [PubMed]
- Yerushalmi, R.; Woods, R.; Ravdin, P.M.; Hayes, M.M.; Gelmon, K.A. Ki67 in Breast Cancer: Prognostic and Predictive Potential. Lancet Oncol. 2010, 11, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Berlin, A.; Castro-Mesta, J.F.; Rodriguez-Romo, L.; Hernandez-Barajas, D.; González-Guerrero, J.F.; Rodríguez-Fernández, I.A.; González-Conchas, G.; Verdines-Perez, A.; Vera-Badillo, F.E. Prognostic Role of Ki-67 Score in Localized Prostate Cancer: A Systematic Review and Meta-Analysis. Urol. Oncol. Semin. Orig. Investig. 2017, 35, 499–506. [Google Scholar] [CrossRef]
- Li, L.T.; Jiang, G.; Chen, Q.; Zheng, J.N. Ki67 Is a Promising Molecular Target in the Diagnosis of Cancer (Review). Mol. Med. Rep. 2015, 11, 1566–1572. [Google Scholar] [CrossRef]
- Menon, S.S.; Guruvayoorappan, C.; Sakthivel, K.M.; Rasmi, R.R. Ki-67 Protein as a Tumour Proliferation Marker. Clin. Chim. Acta 2019, 491, 39–45. [Google Scholar] [CrossRef]
- Mighri, N.; Mejri, N.; Boujemaa, M.; Berrazega, Y.; Rachdi, H.; El Benna, H.; Labidi, S.; Benna, F.; Boubaker, S.; Boussen, H.; et al. Association between Epidemiological and Clinico-Pathological Features of Breast Cancer with Prognosis, Family History, Ki-67 Proliferation Index and Survival in Tunisian Breast Cancer Patients. PLoS ONE 2022, 17, e0269732. [Google Scholar] [CrossRef]
- Erić, I.; Erić, A.; Kristek, J.; Koprivčić, I.; Babić, M. Breast Cancer in Young Women: Pathologic and Immunohistochemical Features. Acta Clin. Croat. 2018, 57, 497–502. [Google Scholar] [CrossRef]
- Blessin, N.C.; Yang, C.; Mandelkow, T.; Raedler, J.B.; Li, W.; Bady, E.; Simon, R.; Vettorazzi, E.; Lennartz, M.; Bernreuther, C.; et al. Automated Ki-67 Labeling Index Assessment in Prostate Cancer Using Artificial Intelligence and Multiplex Fluorescence Immunohistochemistry. J. Pathol. 2023, 260, 5–16. [Google Scholar] [CrossRef]
- Sanchez, M.; Soler-Monsó, T.; Petit, A.; Azcarate, J.; Lasheras, A.; Artal, C.; Gil, M.; Falo, C.; Pla Farnós, M.J.; Matias-Guiu, X. Digital Quantification of KI-67 in Breast Cancer. Virchows Arch. 2019, 474, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Jia, M.; Jiang, P.; Huang, Z.; Hu, J.; Deng, Y.; Hu, Z. The Combined Ratio of Estrogen, Progesterone, Ki-67, and P53 to Predict the Recurrence of Endometrial Cancer. J. Surg. Oncol. 2020, 122, 1808–1814. [Google Scholar] [CrossRef] [PubMed]
- He, W.L.; Li, Y.H.; Yang, D.J.; Song, W.; Chen, X.L.; Liu, F.K.; Wang, Z.; Li, W.; Chen, W.; Chen, C.Y.; et al. Combined Evaluation of Centromere Protein H and Ki-67 as Prognostic Biomarker for Patients with Gastric Carcinoma. Eur. J. Surg. Oncol. J. Eur. Soc. Surg. Oncol. Br. Assoc. Surg. Oncol. 2013, 39, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Liu, D.; Li, L. PD-1/PD-L1 Pathway: Current Researches in Cancer. Am. J. Cancer Res. 2020, 10, 727–742. [Google Scholar] [PubMed]
- Shiri Aghbash, P.; Mehdizadeh, F.; Pourbeiragh, G.; Yazdani, Y.; Bannazadeh Baghi, H.; Jafari Sales, A.; Pashazadeh, M.; Kangari, P. PD-L1 and PD-1 in Immune Regulation and Their Implications in Blood Cancers. Adv. Cancer Biol. Metastasis 2024, 11, 100125. [Google Scholar] [CrossRef]
- Xu, Y.; Song, G.; Xie, S.; Jiang, W.; Chen, X.; Chu, M.; Hu, X.; Wang, Z. The Roles of PD-1/PD-L1 in the Prognosis and Immunotherapy of Prostate Cancer. Mol. Ther. 2021, 29, 1958–1969. [Google Scholar] [CrossRef]
- Eichhorn, F.; Kriegsmann, M.; Klotz, L.V.; Kriegsmann, K.; Muley, T.; Zgorzelski, C.; Christopoulos, P.; Winter, H.; Eichhorn, M.E. Prognostic Impact of PD-L1 Expression in PN1 NSCLC: A Retrospective Single-Center Analysis. Cancers 2021, 13, 2046. [Google Scholar] [CrossRef]
- Tuminello, S.; Sikavi, D.; Veluswamy, R.; Gamarra, C.; Lieberman-Cribbin, W.; Flores, R.; Taioli, E. PD-L1 as a Prognostic Biomarker in Surgically Resectable Non-Small Cell Lung Cancer: A Meta-Analysis. Transl. Lung Cancer Res. 2020, 9, 1343–1360. [Google Scholar] [CrossRef]
- Chen, L.; Huang, S.; Liu, Q.; Kong, X.; Su, Z.; Zhu, M.; Fang, Y.; Zhang, L.; Li, X.; Wang, J. PD-L1 Protein Expression Is Associated With Good Clinical Outcomes and Nomogram for Prediction of Disease Free Survival and Overall Survival in Breast Cancer Patients Received Neoadjuvant Chemotherapy. Front. Immunol. 2022, 13, 849468. [Google Scholar] [CrossRef]
- Kaloni, D.; Diepstraten, S.T.; Strasser, A.; Kelly, G.L. BCL-2 Protein Family: Attractive Targets for Cancer Therapy. Apoptosis 2023, 28, 20–38. [Google Scholar] [CrossRef]
- Adams, J.M.; Cory, S. The BCL-2 Arbiters of Apoptosis and Their Growing Role as Cancer Targets. Cell Death Differ. 2018, 25, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.F.V.e.; Caponio, V.C.A.; Camolesi, G.C.V.; Padín-Iruegas, M.E.; Lorenzo-Pouso, A.I.; Lima, K.C.; Vieira, S.L.S.; Chamorro-Petronacci, C.M.; Suaréz-Peñaranda, J.M.; Pérez-Sayáns, M. Correlation of Bcl-2 Expression with Prognosis and Survival in Patients with Head and Neck Cancer: A Systematic Review and Meta-Analysis. Crit. Rev. Oncol. Hematol. 2023, 187, 104021. [Google Scholar] [CrossRef] [PubMed]
- Qian, S.; Wei, Z.; Yang, W.; Huang, J.; Yang, Y.; Wang, J. The Role of BCL-2 Family Proteins in Regulating Apoptosis and Cancer Therapy. Front. Oncol. 2022, 12, 985363. [Google Scholar] [CrossRef]
- Quentmeier, H.; Drexler, H.G.; Hauer, V.; MacLeod, R.A.F.; Pommerenke, C.; Uphoff, C.C.; Zaborski, M.; Berglund, M.; Enblad, G.; Amini, R.-M. Diffuse Large B Cell Lymphoma Cell Line U-2946: Model for MCL1 Inhibitor Testing. PLoS ONE 2016, 11, e0167599. [Google Scholar] [CrossRef]
- Gamboa-Cedeño, A.M.; Díaz, M.; Cristaldo, N.; Otero, V.; Schutz, N.; Fantl, D.; Cugliari, S.; Zerga, M.; Rojas-Bilbao, E.; Jauk, F.; et al. Apoptotic Regulator BCL-2 Blockade as a Potential Therapy in Classical Hodgkin Lymphoma. Life Sci. 2021, 268, 118979. [Google Scholar] [CrossRef]
- Brown-Burke, F.; Hwang, I.; Sloan, S.; Hinterschied, C.; Helmig-Mason, J.; Long, M.; Chan, W.K.; Prouty, A.; Chung, J.-H.; Zhang, Y.; et al. PRMT5 Inhibition Drives Therapeutic Vulnerability to Combination Treatment with BCL-2 Inhibition in Mantle Cell Lymphoma. Blood Adv. 2023, 7, 6211–6224. [Google Scholar] [CrossRef] [PubMed]
- Anagnostou, V.K.; Lowery, F.J.; Zolota, V.; Tzelepi, V.; Gopinath, A.; Liceaga, C.; Panagopoulos, N.; Frangia, K.; Tanoue, L.; Boffa, D.; et al. High Expression of BCL-2 Predicts Favorable Outcome in Non-Small Cell Lung Cancer Patients with Non Squamous Histology. BMC Cancer 2010, 10, 186. [Google Scholar] [CrossRef]
- Dawson, S.-J.; Makretsov, N.; Blows, F.M.; Driver, K.E.; Provenzano, E.; Le Quesne, J.; Baglietto, L.; Severi, G.; Giles, G.G.; McLean, C.A.; et al. BCL2 in Breast Cancer: A Favourable Prognostic Marker across Molecular Subtypes and Independent of Adjuvant Therapy Received. Br. J. Cancer 2010, 103, 668–675. [Google Scholar] [CrossRef]
- Al-Alem, U.; Rauscher, G.H.; Al Alem, Q.; Kajdacsy-Balla, A.; Mahmoud, A.M. Prognostic Value of SGK1 and Bcl-2 in Invasive Breast Cancer. Cancers 2023, 15, 3151. [Google Scholar] [CrossRef]
- Bilalović, N.; Vranić, S.; Hasanagić, S.; Basić, H.; Tatarević, A.; Beslija, S.; Selak, I. The Bcl-2 Protein: A Prognostic Indicator Strongly Related to ER and PR in Breast Cancer. Bosn. J. Basic Med. Sci. 2004, 4, 5–12. [Google Scholar] [CrossRef]
- Koulis, C.; Yap, R.; Engel, R.; Jardé, T.; Wilkins, S.; Solon, G.; Shapiro, J.D.; Abud, H.; McMurrick, P. Personalized Medicine—Current and Emerging Predictive and Prognostic Biomarkers in Colorectal Cancer. Cancers 2020, 12, 812. [Google Scholar] [CrossRef] [PubMed]
- Burkhart, R.A.; Ronnekleiv-Kelly, S.M.; Pawlik, T.M. Personalized Therapy in Hepatocellular Carcinoma: Molecular Markers of Prognosis and Therapeutic Response. Surg. Oncol. 2017, 26, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Dey, M.K.; Devireddy, R.; Gartia, M.R. Biomarkers in Cancer Detection, Diagnosis, and Prognosis. Sensors 2024, 24, 37. [Google Scholar] [CrossRef]
- Chen, S.-F.; Wang, L.-Y.; Lin, Y.-S.; Chen, C.-Y. Novel Protein-Based Prognostic Signature Linked to Immunotherapeutic Efficiency in Ovarian Cancer. J. Ovarian Res. 2024, 17, 190. [Google Scholar] [CrossRef] [PubMed]
- Verdaguer, H.; Saurí, T.; Macarulla, T. Predictive and Prognostic Biomarkers in Personalized Gastrointestinal Cancer Treatment. J. Gastrointest. Oncol. 2017, 8, 405–417. [Google Scholar] [CrossRef]
- Xie, X.-P.; Xie, Y.-F.; Liu, Y.-T.; Wang, H.-Q. Adaptively Capturing the Heterogeneity of Expression for Cancer Biomarker Identification. BMC Bioinform. 2018, 19, 401. [Google Scholar] [CrossRef]
- Khan, S.U.; Fatima, K.; Aisha, S.; Malik, F. Unveiling the Mechanisms and Challenges of Cancer Drug Resistance. Cell Commun. Signal. 2024, 22, 109. [Google Scholar] [CrossRef]
- Allott, E.H.; Geradts, J.; Sun, X.; Cohen, S.M.; Zirpoli, G.R.; Khoury, T.; Bshara, W.; Chen, M.; Sherman, M.E.; Palmer, J.R.; et al. Intratumoral Heterogeneity as a Source of Discordance in Breast Cancer Biomarker Classification. Breast Cancer Res. 2016, 18, 68. [Google Scholar] [CrossRef] [PubMed]
- Al-Lazikani, B.; Banerji, U.; Workman, P. Combinatorial Drug Therapy for Cancer in the Post-Genomic Era. Nat. Biotechnol. 2012, 30, 679–692. [Google Scholar] [CrossRef]
- Holohan, C.; Van Schaeybroeck, S.; Longley, D.B.; Johnston, P.G. Cancer Drug Resistance: An Evolving Paradigm. Nat. Rev. Cancer 2013, 13, 714–726. [Google Scholar] [CrossRef]
- Robert, C.; Karaszewska, B.; Schachter, J.; Rutkowski, P.; Mackiewicz, A.; Stroiakovski, D.; Lichinitser, M.; Dummer, R.; Grange, F.; Mortier, L.; et al. Improved Overall Survival in Melanoma with Combined Dabrafenib and Trametinib. N. Engl. J. Med. 2015, 372, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Wang, T. Editorial: Recent Advances in Discovering Molecular Targets for Cancer Therapy. Front. Med. 2024, 11, 1403466. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Xu, J.; Wang, Q.; Lin, F.; Zhang, X.; Tang, L.; Xue, J.; Li, J. A Dual-Targeted Small-Molecule Photosensitizer with Enhanced Dual Antitumor and Anti-Vascular Effect for Metastatic Advanced Prostate Cancer Photodynamic Therapy. Dye. Pigment. 2025, 232, 112476. [Google Scholar] [CrossRef]
- Gharehbaba, A.M.; Omidi, Y.; Barar, J.; Eskandani, M.; Adibkia, K. Synergistic PH-Responsive MUC-1 Aptamer-Conjugated Ag/MSN Janus Nanoparticles for Targeted Chemotherapy, Photothermal Therapy, and Gene Therapy in Breast Cancer. Biomater. Adv. 2025, 166, 214081. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Sui, M.; Chen, Q.; Guo, J.; Yang, H.; Zhou, Y.; Ji, M.; Cheng, Y.; Hou, P. Engineering PD-L1 Targeted Liposomal Canagliflozin Achieves Multimodal Synergistic Cancer Therapy. Chem. Eng. J. 2024, 498, 155074. [Google Scholar] [CrossRef]
- Punekar, S.R.; Velcheti, V.; Neel, B.G.; Wong, K.-K. The Current State of the Art and Future Trends in RAS-Targeted Cancer Therapies. Nat. Rev. Clin. Oncol. 2022, 19, 637–655. [Google Scholar] [CrossRef]
- Lev, S. Targeted Therapy and Drug Resistance in Triple-Negative Breast Cancer: The EGFR Axis. Biochem. Soc. Trans. 2020, 48, 657–665. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, J.; Huang, Y.; You, T.; Huang, Q.; Shen, X.; Xue, X.; Feng, S. Comprehensive Landscape of Gastric Cancer-Targeted Therapy and Identification of CSNK2A1 as a Potential Target. Heliyon 2024, 10, e36205. [Google Scholar] [CrossRef]
- Kumar, R.; Goel, H.; Solanki, R.; Rawat, L.; Tabasum, S.; Tanwar, P.; Pal, S.; Sabarwal, A. Recent Developments in Receptor Tyrosine Kinase Inhibitors: A Promising Mainstay in Targeted Cancer Therapy. Med. Drug Discov. 2024, 23, 100195. [Google Scholar] [CrossRef]
- Tomuleasa, C.; Tigu, A.-B.; Munteanu, R.; Moldovan, C.-S.; Kegyes, D.; Onaciu, A.; Gulei, D.; Ghiaur, G.; Einsele, H.; Croce, C.M. Therapeutic Advances of Targeting Receptor Tyrosine Kinases in Cancer. Signal Transduct. Target. Ther. 2024, 9, 201. [Google Scholar] [CrossRef]
- Ebrahimi, N.; Fardi, E.; Ghaderi, H.; Palizdar, S.; Khorram, R.; Vafadar, R.; Ghanaatian, M.; Rezaei-Tazangi, F.; Baziyar, P.; Ahmadi, A.; et al. Receptor Tyrosine Kinase Inhibitors in Cancer. Cell. Mol. Life Sci. 2023, 80, 104. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Jiang, S.; Shi, Y. Tyrosine Kinase Inhibitors for Solid Tumors in the Past 20 Years (2001–2020). J. Hematol. Oncol. 2020, 13, 143. [Google Scholar] [CrossRef]
- Pottier, C.; Fresnais, M.; Gilon, M.; Jérusalem, G.; Longuespée, R.; Sounni, N.E. Tyrosine Kinase Inhibitors in Cancer: Breakthrough and Challenges of Targeted Therapy. Cancers 2020, 12, 731. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Gong, C.; Zhou, H.; Liu, J.; Xia, X.; Ha, W.; Jiang, Y.; Liu, Q.; Xiong, H. Kinase Inhibitors and Kinase-Targeted Cancer Therapies: Recent Advances and Future Perspectives. Int. J. Mol. Sci. 2024, 25, 5489. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Peng, L.; Liang, F.; Chu, L.; Chu, X.; Yang, X.; Zhang, J.; Guo, T.; Jiang, S.; Pang, Y.; et al. Safety and Efficacy of Consolidative Stereotactic Radiotherapy for Oligo-Residual EGFR-Mutant Non-Small Cell Lung Cancer after First-Line Third-Generation EGFR-Tyrosine Kinase Inhibitors: A Single-Arm, Phase 2 Trial. eClinicalMedicine 2024, 76, 102853. [Google Scholar] [CrossRef]
- Li, Y.; Zeng, H.; Qi, C.; Tan, S.; Huang, Q.; Pu, X.; Li, W.; Planchard, D.; Tian, P. Features and Efficacy of Triple-Targeted Therapy for Patients with EGFR-Mutant Non-Small-Cell Lung Cancer with Acquired BRAF Alterations Who Are Resistant to Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors. ESMO Open 2024, 9, 103935. [Google Scholar] [CrossRef]
- Toh, S.Y.; Leong, H.S.; Chong, F.T.; Rodrigues-Junior, D.M.; Ren, M.J.; Kwang, X.L.; Lau, D.P.X.; Lee, P.-H.; Vettore, A.L.; Teh, B.T.; et al. Therapeutic Application of Extracellular Vesicular EGFR Isoform D as a Co-Drug to Target Squamous Cell Cancers with Tyrosine Kinase Inhibitors. Dev. Cell 2024, 59, 2189–2202.e8. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, C.; Appert-Collin, A.; Bagnard, D.; Blaise, S.; Romier-Crouzet, B.; Efremov, R.G.; Sartelet, H.; Duca, L.; Maurice, P.; Bennasroune, A. Transmembrane Peptides as Inhibitors of Protein-Protein Interactions: An Efficient Strategy to Target Cancer Cells? Front. Oncol. 2020, 10, 519. [Google Scholar] [CrossRef]
- Roslan, A.; Sulaiman, N.; Mohd Ghani, K.A.; Nurdin, A. Cancer-Associated Membrane Protein as Targeted Therapy for Bladder Cancer. Pharmaceutics 2022, 14, 2218. [Google Scholar] [CrossRef]
- Prajapati, A.; Rangra, S.; Patil, R.; Desai, N.; Jyothi, V.G.S.S.; Salave, S.; Amate, P.; Benival, D.; Kommineni, N. Receptor-Targeted Nanomedicine for Cancer Therapy. Receptors 2024, 3, 323–361. [Google Scholar] [CrossRef]
- Liang, Z.; Lu, Z.; Zhang, Y.; Shang, D.; Li, R.; Liu, L.; Zhao, Z.; Zhang, P.; Lin, Q.; Feng, C.; et al. Targeting Membrane Receptors of Ovarian Cancer Cells for Therapy. Curr. Cancer Drug Targets 2019, 19, 449–467. [Google Scholar] [CrossRef] [PubMed]
- Nasarre, C.; Roth, M.; Jacob, L.; Roth, L.; Koncina, E.; Thien, A.; Labourdette, G.; Poulet, P.; Hubert, P.; Crémel, G.; et al. Peptide-Based Interference of the Transmembrane Domain of Neuropilin-1 Inhibits Glioma Growth in Vivo. Oncogene 2010, 29, 2381–2392. [Google Scholar] [CrossRef] [PubMed]
- Jacob, L.; Sawma, P.; Garnier, N.; Meyer, L.; Fritz, J.; Hussenet, T.; Spenlé, C.; Goetz, J.; Vermot, J.; Fernandez, A.; et al. Inhibition of PlexA1-Mediated Brain Tumor Growth and Tumor-Associated Angiogenesis Using a Transmembrane Domain Targeting Peptide. Oncotarget 2016, 7, 57851–57865. [Google Scholar] [CrossRef] [PubMed]
- Arpel, A.; Gamper, C.; Spenlé, C.; Fernandez, A.; Jacob, L.; Baumlin, N.; Laquerrière, P.; Orend, G.; Crémel, G.; Bagnard, D. Inhibition of Primary Breast Tumor Growth and Metastasis Using a Neuropilin-1 Transmembrane Domain Interfering Peptide. Oncotarget 2016, 7, 54723–54732. [Google Scholar] [CrossRef] [PubMed]
- Torres-Ayuso, P.; Brognard, J. Degraders: The Ultimate Weapon Against Amplified Driver Kinases in Cancer. Mol. Pharmacol. 2022, 101, 191–200. [Google Scholar] [CrossRef]
- Gollner, A.; Heine, C.; Hofbauer, K.S. Kinase Degraders, Activators, and Inhibitors: Highlights and Synthesis Routes to the Chemical Probes on OpnMe.Com, Part 1. ChemMedChem 2023, 18, e202300031. [Google Scholar] [CrossRef]
- Kelm, J.M.; Pandey, D.S.; Malin, E.; Kansou, H.; Arora, S.; Kumar, R.; Gavande, N.S. PROTAC’ing Oncoproteins: Targeted Protein Degradation for Cancer Therapy. Mol. Cancer 2023, 22, 62. [Google Scholar] [CrossRef]
- Békés, M.; Langley, D.R.; Crews, C.M. PROTAC Targeted Protein Degraders: The Past Is Prologue. Nat. Rev. Drug Discov. 2022, 21, 181–200. [Google Scholar] [CrossRef]
- Liu, J.O. Targeting Cancer with Molecular Glues. Science 2023, 381, 729–730. [Google Scholar] [CrossRef]
- Sasso, J.M.; Tenchov, R.; Wang, D.; Johnson, L.S.; Wang, X.; Zhou, Q.A. Molecular Glues: The Adhesive Connecting Targeted Protein Degradation to the Clinic. Biochemistry 2023, 62, 601–623. [Google Scholar] [CrossRef]
- Tan, X.; Huang, Z.; Pei, H.; Jia, Z.; Zheng, J. Molecular Glue-Mediated Targeted Protein Degradation: A Novel Strategy in Small-Molecule Drug Development. iScience 2024, 27, 110712. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Lin, P.; Lin, J. Molecular Glues Targeting GSPT1 in Cancers: A Potent Therapy. Bioorg. Chem. 2024, 143, 107000. [Google Scholar] [CrossRef] [PubMed]
- Ebell, M.H.; Barry, H.C.; Baduni, K.; Grasso, G. Clinically Important Benefits and Harms of Monoclonal Antibodies Targeting Amyloid for the Treatment of Alzheimer Disease: A Systematic Review and Meta-Analysis. Ann. Fam. Med. 2024, 22, 50–62. [Google Scholar] [CrossRef]
- Gillmann, K.M.; Temme, J.S.; Marglous, S.; Brown, C.E.; Gildersleeve, J.C. Anti-Glycan Monoclonal Antibodies: Basic Research and Clinical Applications. Curr. Opin. Chem. Biol. 2023, 74, 102281. [Google Scholar] [CrossRef]
- Delgado, M.; Garcia-Sanz, J.A. Therapeutic Monoclonal Antibodies against Cancer: Present and Future. Cells 2023, 12, 2837. [Google Scholar] [CrossRef]
- Kinch, M.S.; Kraft, Z.; Schwartz, T. Monoclonal Antibodies: Trends in Therapeutic Success and Commercial Focus. Drug Discov. Today 2023, 28, 103415. [Google Scholar] [CrossRef] [PubMed]
- Swain, S.M.; Shastry, M.; Hamilton, E. Targeting HER2-Positive Breast Cancer: Advances and Future Directions. Nat. Rev. Drug Discov. 2023, 22, 101–126. [Google Scholar] [CrossRef]
- Chang, J.; Xu, M.; Wang, C.; Huang, D.; Zhang, Z.; Chen, Z.; Zhu, X.; Li, W. Dual HER2 Targeted Therapy With Pyrotinib and Trastuzumab in Refractory HER2 Positive Metastatic Colorectal Cancer: A Result From HER2-FUSCC-G Study. Clin. Color. Cancer 2022, 21, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Kobzev, D.; Prasad, C.; Walunj, D.; Gotman, H.; Semenova, O.; Bazylevich, A.; Patsenker, L.; Gellerman, G. Synthesis and Biological Evaluation of Theranostic Trastuzumab–SN38 Conjugate for Near-IR Fluorescence Imaging and Targeted Therapy of HER2+ Breast Cancer. Eur. J. Med. Chem. 2023, 252, 115298. [Google Scholar] [CrossRef]
- Deken, M.M.; Kijanka, M.M.; Beltrán Hernández, I.; Slooter, M.D.; de Bruijn, H.S.; van Diest, P.J.; van Bergen en Henegouwen, P.M.P.; Lowik, C.W.G.M.; Robinson, D.J.; Vahrmeijer, A.L.; et al. Nanobody-Targeted Photodynamic Therapy Induces Significant Tumor Regression of Trastuzumab-Resistant HER2-Positive Breast Cancer, after a Single Treatment Session. J. Control. Release 2020, 323, 269–281. [Google Scholar] [CrossRef]
- Oh, D.-Y.; Bang, Y.-J. HER2-Targeted Therapies—A Role beyond Breast Cancer. Nat. Rev. Clin. Oncol. 2020, 17, 33–48. [Google Scholar] [CrossRef] [PubMed]
- Garcia, J.; Hurwitz, H.I.; Sandler, A.B.; Miles, D.; Coleman, R.L.; Deurloo, R.; Chinot, O.L. Bevacizumab (Avastin®) in Cancer Treatment: A Review of 15 Years of Clinical Experience and Future Outlook. Cancer Treat. Rev. 2020, 86, 102017. [Google Scholar] [CrossRef] [PubMed]
- Chitoran, E.; Rotaru, V.; Ionescu, S.-O.; Gelal, A.; Capsa, C.-M.; Bohiltea, R.-E.; Mitroiu, M.-N.; Serban, D.; Gullo, G.; Stefan, D.-C.; et al. Bevacizumab-Based Therapies in Malignant Tumors—Real-World Data on Effectiveness, Safety, and Cost. Cancers 2024, 16, 2590. [Google Scholar] [CrossRef] [PubMed]
- Takamatsu, S.; Nakai, H.; Yamaguchi, K.; Hamanishi, J.; Mandai, M.; Matsumura, N. Time-Dependent Changes in Risk of Progression During Use of Bevacizumab for Ovarian Cancer. JAMA Netw. Open 2023, 6, e2326834. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhou, C.; Yu, L.; Hou, Z.; Liu, H.; Kong, L.; Xu, Y.; He, J.; Lan, J.; Ou, Q.; et al. Tumor-Derived Lactate Promotes Resistance to Bevacizumab Treatment by Facilitating Autophagy Enhancer Protein RUBCNL Expression through Histone H3 Lysine 18 Lactylation (H3K18la) in Colorectal Cancer. Autophagy 2023, 20, 114–130. [Google Scholar] [CrossRef]
- Socinski, M.; Nishio, M.; Jotte, R.; Cappuzzo, F.; Orlandi, F.; Stroyakovskiy, D.; Nogami, N.; Rodriguez-Abreu, D.; Moro-Sibilot, D.; Thomas, C.; et al. IMpower150 Final Overall Survival Analyses for Atezolizumab plus Bevacizumab and Chemotherapy in First-Line Metastatic Nonsquamous Non-Small Cell Lung Cancer. J. Thorac. Oncol. 2021, 16, 1909–1924. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhou, R.; Cai, J.; Yang, N.; Wen, Z.; Zhang, Z.; Sun, H.; Huang, G.; Guan, Y.; Huang, N.; et al. Matrix Stiffness Triggers Lipid Metabolic Cross-Talk between Tumor and Stromal Cells to Mediate Bevacizumab Resistance in Colorectal Cancer Liver Metastases. Cancer Res. 2023, 83, 3577–3592. [Google Scholar] [CrossRef]
- Fallah, A.; Sadeghinia, A.; Kahroba, H.; Samadi, A.; Heidari, H.R.; Bradaran, B.; Zeinali, S.; Molavi, O. Therapeutic Targeting of Angiogenesis Molecular Pathways in Angiogenesis-Dependent Diseases. Biomed. Pharmacother. 2019, 110, 775–785. [Google Scholar] [CrossRef]
- Rajabi, M.; Mousa, S.A. The Role of Angiogenesis in Cancer Treatment. Biomedicines 2017, 5, 34. [Google Scholar] [CrossRef]
- Saravanan, S.; Vimalraj, S.; Pavani, K.; Nikarika, R.; Sumantran, V.N. Intussusceptive Angiogenesis as a Key Therapeutic Target for Cancer Therapy. Life Sci. 2020, 252, 117670. [Google Scholar] [CrossRef]
- Comunanza, V.; Bussolino, F. Therapy for Cancer: Strategy of Combining Anti-Angiogenic and Target Therapies. Front. Cell Dev. Biol. 2017, 5, 101. [Google Scholar] [CrossRef] [PubMed]
- Ansari, M.J.; Bokov, D.; Markov, A.; Jalil, A.T.; Shalaby, M.N.; Suksatan, W.; Chupradit, S.; AL-Ghamdi, H.S.; Shomali, N.; Zamani, A.; et al. Cancer Combination Therapies by Angiogenesis Inhibitors; a Comprehensive Review. Cell Commun. Signal. 2022, 20, 49. [Google Scholar] [CrossRef] [PubMed]
- Ayoub, N.M.; Jaradat, S.K.; Al-Shami, K.M.; Alkhalifa, A.E. Targeting Angiogenesis in Breast Cancer: Current Evidence and Future Perspectives of Novel Anti-Angiogenic Approaches. Front. Pharmacol. 2022, 13, 838133. [Google Scholar] [CrossRef] [PubMed]
- Somani, R.R.; Bhanushali, U. V Targeting Angiogenesis for Treatment of Human Cancer. Indian J. Pharm. Sci. 2013, 75, 3–10. [Google Scholar] [CrossRef]
- Liu, Z.-L.; Chen, H.-H.; Zheng, L.-L.; Sun, L.-P.; Shi, L. Angiogenic Signaling Pathways and Anti-Angiogenic Therapy for Cancer. Signal Transduct. Target. Ther. 2023, 8, 198. [Google Scholar] [CrossRef]
- Ferrara, N.; Adamis, A.P. Ten Years of Anti-Vascular Endothelial Growth Factor Therapy. Nat. Rev. Drug Discov. 2016, 15, 385–403. [Google Scholar] [CrossRef]
- Vasudev, N.S.; Reynolds, A.R. Anti-Angiogenic Therapy for Cancer: Current Progress, Unresolved Questions and Future Directions. Angiogenesis 2014, 17, 471–494. [Google Scholar] [CrossRef]
- Huang, Y.; Yuan, J.; Righi, E.; Kamoun, W.S.; Ancukiewicz, M.; Nezivar, J.; Santosuosso, M.; Martin, J.D.; Martin, M.R.; Vianello, F.; et al. Vascular Normalizing Doses of Antiangiogenic Treatment Reprogram the Immunosuppressive Tumor Microenvironment and Enhance Immunotherapy. Proc. Natl. Acad. Sci. USA 2012, 109, 17561–17566. [Google Scholar] [CrossRef]
- Hegde, P.S.; Chen, D.S. Top 10 Challenges in Cancer Immunotherapy. Immunity 2020, 52, 17–35. [Google Scholar] [CrossRef]
- Reck, M.; Mok, T.S.K.; Nishio, M.; Jotte, R.M.; Cappuzzo, F.; Orlandi, F.; Stroyakovskiy, D.; Nogami, N.; Rodríguez-Abreu, D.; Moro-Sibilot, D.; et al. Atezolizumab plus Bevacizumab and Chemotherapy in Non-Small-Cell Lung Cancer (IMpower150): Key Subgroup Analyses of Patients with EGFR Mutations or Baseline Liver Metastases in a Randomised, Open-Label Phase 3 Trial. Lancet Respir. Med. 2019, 7, 387–401. [Google Scholar] [CrossRef]
- Hurwitz, H.; Fehrenbacher, L.; Novotny, W.; Cartwright, T.; Hainsworth, J.; Heim, W.; Berlin, J.; Baron, A.; Griffing, S.; Holmgren, E.; et al. Bevacizumab plus Irinotecan, Fluorouracil, and Leucovorin for Metastatic Colorectal Cancer. N. Engl. J. Med. 2004, 350, 2335–2342. [Google Scholar] [CrossRef] [PubMed]
- Peters, C.; Brown, S. Antibody-Drug Conjugates as Novel Anti-Cancer Chemotherapeutics. Biosci. Rep. 2015, 35, e00225. [Google Scholar] [CrossRef] [PubMed]
- Reiter, Y. Recombinant Immunotoxins in Targeted Cancer Cell Therapy. Adv. Cancer Res. 2001, 81, 93–124. [Google Scholar] [CrossRef] [PubMed]
- Akbari, B.; Farajnia, S.; Ahdi Khosroshahi, S.; Safari, F.; Yousefi, M.; Dariushnejad, H.; Rahbarnia, L. Immunotoxins in Cancer Therapy: Review and Update. Int. Rev. Immunol. 2017, 36, 207–219. [Google Scholar] [CrossRef]
- Kreitman, R.J. Immunotoxins for Targeted Cancer Therapy. AAPS J. 2006, 8, E532–E551. [Google Scholar] [CrossRef]
- Mathew, M.; Verma, R.S. Humanized Immunotoxins: A New Generation of Immunotoxins for Targeted Cancer Therapy. Cancer Sci. 2009, 100, 1359–1365. [Google Scholar] [CrossRef]
- Xi, X.; Wang, Y.; An, G.; Feng, S.; Zhu, Q.; Wu, Z.; Chen, J.; Zuo, Z.; Wang, Q.; Wang, M.-W.; et al. A Novel Shark VNAR Antibody-Based Immunotoxin Targeting TROP-2 for Cancer Therapy. Acta Pharm. Sin. B 2024, 14, 4806–4818. [Google Scholar] [CrossRef]
- Barazesh, M.; Mohammadi, S.; Jalili, S.; Kavousipour, S.; Faraji, S.N.; Mokarram, P.; Pirhadi, S. Design and Characterization of a Recombinant Immunotoxin for Targeted Therapy of Breast Cancer Cells: In Vitro and in Silico Analyses. Life Sci. 2021, 265, 118866. [Google Scholar] [CrossRef]
- Faraz, A.; Amani, J.; Arbabian, S.; Karizi, S.Z.; Torbati, M.B. In Vitro Analysis of Single Chain Variable Fragment-Based Immunotoxins against Erythropoietin-Producing Hepatocellular A2 Receptor Overexpressed in Breast Cancer Cells. J. Immunol. Methods 2024, 533, 113732. [Google Scholar] [CrossRef]
- Jang, J.; Nguyen, M.Q.; Park, S.; Ryu, D.; Park, H.; Lee, G.; Kim, C.J.; Jang, Y.J.; Choe, H. Crotamine-Based Recombinant Immunotoxin Targeting HER2 for Enhanced Cancer Cell Specificity and Cytotoxicity. Toxicon 2023, 230, 107157. [Google Scholar] [CrossRef]
- Cerise, A.; Bera, T.K.; Liu, X.; Wei, J.; Pastan, I. Anti-Mesothelin Recombinant Immunotoxin Therapy for Colorectal Cancer. Clin. Color. Cancer 2019, 18, 192–199.e1. [Google Scholar] [CrossRef] [PubMed]
- Engelman, J.A.; Zejnullahu, K.; Mitsudomi, T.; Song, Y.; Hyland, C.; Park, J.O.; Lindeman, N.; Gale, C.-M.; Zhao, X.; Christensen, J.; et al. MET Amplification Leads to Gefitinib Resistance in Lung Cancer by Activating ERBB3 Signaling. Science 2007, 316, 1039–1043. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- Aebersold, R.; Mann, M. Mass-Spectrometric Exploration of Proteome Structure and Function. Nature 2016, 537, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Beck, A.; Goetsch, L.; Dumontet, C.; Corvaïa, N. Strategies and Challenges for the next Generation of Antibody–Drug Conjugates. Nat. Rev. Drug Discov. 2017, 16, 315–337. [Google Scholar] [CrossRef]
- Topol, E.J. High-Performance Medicine: The Convergence of Human and Artificial Intelligence. Nat. Med. 2019, 25, 44–56. [Google Scholar] [CrossRef]
Criterion | Advantages | Limitations |
---|---|---|
Early detection | Allows for cancer detection at an early stage before clinical symptoms appear | Some biomarkers may not be present in early stages, leading to potential false-negative results |
Monitoring therapy | Assists in assessing treatment effectiveness and detecting recurrences | Variability in biomarker levels among patients may complicate assessment of treatment response |
Minimally invasive | Enables biomarker analysis in bodily fluids (e.g., blood, urine) | Biomarkers can sometimes be present in low concentrations in fluids, requiring highly sensitive assays |
Specificity | Certain biomarkers are specific to particular cancers (e.g., HER2 in breast cancer) | Low specificity of some markers (e.g., PSA) can lead to false-positive results |
Personalized therapy | Helps in tailoring targeted therapies based on specific biomarkers (e.g., HER2, PD-L1) | Limited access to certain biomarkers (costs and technology) restricts personalization in some cases |
Cost and accessibility | Widely available biomarker tests in many oncology centers | High costs and limited availability of certain advanced tests |
Standardization of methods | Standardization allows for result comparability across different laboratories | Lack of standardization in some cases results in discrepancies in results between facilities |
Mechanism | Description | Example Drugs | Primary Cancer Types | Advantages | Limitations |
---|---|---|---|---|---|
Inhibition of Tyrosine Kinases | Blocks tyrosine kinases involved in growth and survival pathways, stopping tumor cell proliferation. | Imatinib, Gefitinib, Erlotinib | CML, lung cancer, colorectal cancer | High specificity; effective in mutation-driven cancers | Resistance can develop; limited to kinase mutations |
Blocking Membrane Receptors | Prevents growth signals by targeting overexpressed receptors on cancer cells. | Trastuzumab, Cetuximab | Breast cancer, head and neck cancer, colorectal cancer | Effective in receptor-driven cancers; enhances immune response | Requires receptor overexpression; limited to receptor-specific cancers |
Monoclonal Antibodies | Targets specific proteins on cancer cells, triggering immune response or blocking growth. | Rituximab, Bevacizumab, Cetuximab | Lymphoma, colorectal cancer, lung cancer | Can deliver toxins selectively; immune-mediated action | High cost; potential for immune-related side effects |
Angiogenesis Inhibition | Blocks vascular growth factor (VEGF) to starve tumors of nutrients and oxygen. | Bevacizumab, Sunitinib | Renal, lung, and colorectal cancers | Limits tumor growth by cutting off blood supply | Limited effect if tumor adapts; potential for resistance |
Checkpoint Inhibition (Immunotherapy) | Reactivates T-cells to recognize and attack cancer cells by blocking immune checkpoints (e.g., PD-1/PD-L1). | Pembrolizumab, Nivolumab, Atezolizumab | Melanoma, lung cancer, kidney cancer | Long-lasting responses; high efficacy in immune-reactive tumors | High cost; immune-related adverse effects |
Immunotoxins (Toxin Delivery) | Antibodies deliver toxins directly to cancer cells, leading to targeted cell death. | Brentuximab vedotin | Hodgkin lymphoma, leukemia | High specificity; limited impact on healthy cells | Can be limited to blood cancers; potential toxicity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kędzierska, M.; Bańkosz, M. Role of Proteins in Oncology: Advances in Cancer Diagnosis, Prognosis, and Targeted Therapy—A Narrative Review. J. Clin. Med. 2024, 13, 7131. https://doi.org/10.3390/jcm13237131
Kędzierska M, Bańkosz M. Role of Proteins in Oncology: Advances in Cancer Diagnosis, Prognosis, and Targeted Therapy—A Narrative Review. Journal of Clinical Medicine. 2024; 13(23):7131. https://doi.org/10.3390/jcm13237131
Chicago/Turabian StyleKędzierska, Magdalena, and Magdalena Bańkosz. 2024. "Role of Proteins in Oncology: Advances in Cancer Diagnosis, Prognosis, and Targeted Therapy—A Narrative Review" Journal of Clinical Medicine 13, no. 23: 7131. https://doi.org/10.3390/jcm13237131
APA StyleKędzierska, M., & Bańkosz, M. (2024). Role of Proteins in Oncology: Advances in Cancer Diagnosis, Prognosis, and Targeted Therapy—A Narrative Review. Journal of Clinical Medicine, 13(23), 7131. https://doi.org/10.3390/jcm13237131