Assessing Cardiovascular Risk in Geriatric Patients Without Atherosclerotic Cardiovascular Disease
Abstract
:1. Introduction
2. Patients and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
6. Limitation of the Study
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Ageing and Health. Available online: https://www.who.int/news-room/fact-sheets/detail/ageing-and-health (accessed on 1 October 2022).
- Lettino, M.; Mascherbauer, J.; Nordaby, M.; Ziegler, A.; Collet, J.P.; Derumeaux, G.; Hohnloser, S.H.; Leclercq, C.; E O’Neill, D.; Visseren, F.; et al. Cardiovascular disease in the elderly: Proceedings of the European Society of Cardiology—Cardiovascular Round Table. Eur. J. Prev. Cardiol. 2022, 29, 1412–1424. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.S.; Singer, B.D.; Vaughan, D.E. Molecular and physiological manifestations and measurement of aging in humans. Aging Cell 2017, 16, 624–633. [Google Scholar] [CrossRef] [PubMed]
- Paneni, F.; Diaz Cañestro, C.; Libby, P.; Lüscher, T.F.; Camici, G.G. The Aging Cardiovascular System: Understanding It at the Cellular and Clinical Levels. J. Am. Coll. Cardiol. 2017, 69, 1952–1967. [Google Scholar] [CrossRef] [PubMed]
- Hom Nath Chalise. Aging: Basic Concept. Am. J. Biomed. Sci. Res. 2019, 1, 8–10. [Google Scholar] [CrossRef]
- Lee, S.B.; Oh, J.H.; Park, J.H.; Choi, S.P.; Wee, H. Differences in youngest-old, middle-old, and oldest-old patients who visit the emergency department. Clin. Exp. Emerg. Med. 2018, 5, 249–255. [Google Scholar] [CrossRef]
- Alterovitz, S.S.; Mendelsohn, G.A. Relationship goals of middle-aged, young-old, and old-old Internet daters: An analysis of online personal ads. J. Aging Stud. 2013, 27, 159–165. [Google Scholar] [CrossRef]
- O’Neill, D.E.; Forman, D.E. Cardiovascular care of older adults. BMJ 2021, 374, 1593. [Google Scholar] [CrossRef]
- Jackson, C.F.; Wenger, N.K. Cardiovascular disease in the elderly. Rev. Esp. Cardiol. 2011, 64, 697–712. [Google Scholar] [CrossRef]
- Wilson, P.W.; D’Agostino, R.B.; Levy, D.; Belanger, A.M.; Silbershatz, H.; Kannel, W.B. Prediction of coronary heart disease using risk factor categories. Circulation 1998, 97, 1837–1847. [Google Scholar] [CrossRef]
- Piepoli, M.F.; Hoes, A.W.; Agewall, S.; Albus, C.; Brotons, C.; Catapano, A.L.; Cooney, M.T.; Corra, U.; Cosyns, B.; Deaton, C.; et al. ESC Scientific Document Group. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts) Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur. Heart J. 2016, 37, 2315–2381. [Google Scholar]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.-M.; Capodanno, D.; et al. ESC National Cardiac Societies; ESC Scientific Document Group. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.M.; Soubhi, H.; Fortin, M.; Hudon, C.; O’dowd, T. Managing patients with multimorbidity: Systematic review of interventions in primary care and community settings. BMJ 2012, 345, 5205. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Parish, A.L. Polypharmacy and Medication Management in Older Adults. Nurs. Clin. N. Am. 2017, 52, 457–468. [Google Scholar] [CrossRef]
- Ng, C.D. Stratification of BMI categories among older adults within and across countries. Public Health Nutr. 2020, 23, 254–263. [Google Scholar] [CrossRef]
- Cederholm, T.; Bosaeus, I.; Barazzoni, R.; Bauer, J.; Van Gossum, A.; Klek, S.; Muscaritoli, M.; Nyulasi, I.; Ockenga, J.; Schneider, S.; et al. Diagnostic criteria for malnutrition-An ESPEN Consensus Statement. Clin. Nutr. 2015, 34, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Fiuza-Luces, C.; Santos-Lozano, A.; Joyner, M.; Carrera-Bastos, P.; Picazo, O.; Zugaza, J.L.; Izquierdo, M.; Ruilope, L.M.; Lucia, A. Exercise benefits in cardiovascular disease: Beyond attenuation of traditional risk factors. Nat. Rev. Cardiol. 2018, 15, 731–743. [Google Scholar] [CrossRef]
- Polonsky, T.S.; Khera, A.; Miedema, M.D.; Schocken, D.D.; Wilson, P.W.F. Highlights in ASCVD Primary Prevention for 2021. J. Am. Heart Assoc. 2022, 11, 025973. [Google Scholar] [CrossRef]
- Bambrick, P.; Tan, W.S.; Mulcahy, R.; Pope, G.; Cooke, J. Vascular risk assessment in older adults without a history of cardiovascular disease. Exp. Gerontol. 2016, 79, 37–45. [Google Scholar] [CrossRef]
- Kannel, W.B.; D’Agostino, R.B. The Importance of Cardiovascular Risk Factors in the Elderly. Am. J. Geriatr. Cardiol. 1995, 4, 10–23. [Google Scholar]
- Forman, D.E.; Maurer, M.S.; Boyd, C.; Brindis, R.; Salive, M.E.; Horne, F.M.; Bell, S.P.; Fulmer, T.; Reuben, D.B.; Zieman, S.; et al. Multimorbidity in Older Adults with Cardiovascular Disease. J. Am. Coll. Cardiol. 2018, 71, 2149–2161. [Google Scholar] [CrossRef]
- Santulli, G.; Visco, V.; Ciccarelli, M.; Ferrante, M.N.V.; De Masi, P.; Pansini, A.; Virtuoso, N.; Pirone, A.; Guerra, G.; Verri, V.; et al. Frail hypertensive older adults with prediabetes and chronic kidney disease: Insights on organ damage and cognitive performance-preliminary results from the CARYATID study. Cardiovasc. Diabetol. 2024, 23, 125. [Google Scholar] [CrossRef] [PubMed]
- Zieleniewicz, P.; Wierucki, Ł.; Kalarus, Z.; Stokwiszewski, J.; Grodzicki, T.; Opolski, G.; Sokal, A.; Zdrojewski, T. Hypertension in the Polish elderly: Insights into prevalence, awareness, treatment, and control from the NOMED-AF study. Kardiol. Pol. 2024, 82, 727–732. [Google Scholar] [CrossRef] [PubMed]
- Corrao, G.; Rea, F.; Monzio Compagnoni, M.; Merlino, L.; Mancia, G. Protective effects of antihypertensive treatment in patients aged 85 years or older. J. Hypertens. 2017, 35, 1432–1441. [Google Scholar] [CrossRef]
- Dent, E.; Wright, O.R.L.; Woo, J.; Hoogendijk, E.O. Malnutrition in older adults. Lancet 2023, 401, 951–966. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, E.; Miller, M.; Yaxley, A.; Isenring, E. Malnutrition in the elderly: A narrative review. Maturitas 2013, 76, 296–302. [Google Scholar] [CrossRef]
- Kanda, D.; Ohishi, M. Malnutrition is one of new risk factors in patients with hypertension: The message form Fukushima Cohort Study. Hypertens. Res. 2024, 47, 2589–2591. [Google Scholar] [CrossRef]
- Tanaka, K.; Kimura, H.; Ejiri, H.; Saito, H.; Watanabe, K.; Kazama, S.; Shimabukuro, M.; Asahi, K.; Watanabe, T.; Kazama, J.J. Geriatric Nutritional Risk Index is associated with adverse outcomes in patients with hypertension: The Fukushima Cohort study. Hypertens. Res. 2024, 47, 2041–2052. [Google Scholar] [CrossRef]
- Farid, K.; Zhang, Y.; Bachelier, D.; Gilson, P.; Teixeira, A.; Safar, M.E.; Blacher, J. Cognitive impairment and malnutrition, predictors of all-cause mortality in hospitalized elderly subjects with cardiovascular disease. Arch. Cardiovasc. Dis. 2013, 106, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Cereda, E.; Pedrolli, C.; Zagami, A.; Gilson, P.; Teixeira, A.; Safar, M.E.; Blacher, J. Body mass index and mortality in institutionalized elderly. J. Am. Med. Dir. Assoc. 2011, 12, 174–178. [Google Scholar] [CrossRef]
- Dobrowolski, P.; Prejbisz, A.; Kuryłowicz, A.; Baska, A.; Burchardt, P.; Chlebus, K.; Dzida, G.; Jankowski, P.; Jaroszewicz, J.; Jaworski, P.; et al. Metabolic syndrome—A new definition and management guidelines. Arter. Hypertens 2022, 26, 99–122. [Google Scholar] [CrossRef]
- Suwała, S.; Junik, R. Body Mass Index and Waist Circumference as Predictors of Above-Average Increased Cardiovascular Risk Assessed by the SCORE2 and SCORE2-OP Calculators and the Proposition of New Optimal Cut-Off Values: Cross-Sectional Single-Center Study. J. Clin. Med. 2024, 13, 1931. [Google Scholar] [CrossRef] [PubMed]
- van Trier, T.J.; Snaterse, M.; Boekholdt, S.M.; Scholte Op Reimer, W.J.M.; Hageman, S.H.J.; Visseren, F.L.J.; Dorresteijn, J.A.N.; Peters, R.J.G.; Jørstad, H.T. Validation of Systematic Coronary Risk Evaluation 2 (SCORE2) and SCORE2-Older Persons in the EPIC-Norfolk prospective population cohort. Eur. J. Prev. Cardiol. 2024, 31, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Midão, L.; Brochado, P.; Almada, M.; Duarte, M.; Paúl, C.; Costa, E. Frailty Status and Polypharmacy Predict All-Cause Mortality in Community Dwelling Older Adults in Europe. Int. J. Environ. Res. Public Health 2021, 18, 3580. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.J.; Sha, S.; Brenner, H.; Schöttker, B. Longitudinal associations of polypharmacy and frailty with major cardiovascular events and mortality among more than half a million middle-aged participants of the UK Biobank. Maturitas 2024, 185, 107998. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, T.; Su, Q.; Luo, H.; Lou, L.; Zhao, L.; Kang, X.; Pan, Y.; Nie, Y. Prevalence of Polypharmacy in Elderly Population Worldwide: A Systematic Review and Meta-Analysis. Pharmacoepidemiol. Drug Saf. 2024, 33, e5880. [Google Scholar] [CrossRef]
- Chen, Y.Z.; Huang, S.T.; Wen, Y.W.; Chen, L.K.; Hsiao, F.Y. Combined Effects of Frailty and Polypharmacy on Health Outcomes in Older Adults: Frailty Outweighs Polypharmacy. J. Am. Med. Dir. Assoc. 2021, 22, 606.e7–606.e18. [Google Scholar] [CrossRef]
- Afilalo, J.; Alexander, K.P.; Mack, M.J.; Maurer, M.S.; Green, P.; Allen, L.A.; Popma, J.J.; Ferrucci, L.; Forman, D.E. Frailty assessment in the cardiovascular care of older adults. J. Am. Coll. Cardiol. 2014, 63, 747–762. [Google Scholar] [CrossRef]
- Bencivenga, L.; Piotrowicz, K. Editorial: Frailty: Risks and management. Front. Med. 2023, 10, 1100557. [Google Scholar] [CrossRef]
- Kojima, G. Frailty as a predictor of disabilities among community-dwelling older people: A systematic review and meta-analysis. Disabil. Rehabil. 2017, 39, 1897–1908. [Google Scholar] [CrossRef]
- Arantes, F.S.; Rosa Oliveira, V.; Leão, A.K.M.; Afonso, J.P.R.; Fonseca, A.L.; Fonseca, D.R.P.; Mello, D.A.C.P.G.; Costa, I.P.; Oliveira, L.V.F.; da Palma, R.K. Heart rate variability: A biomarker of frailty in older adults? Front. Med. 2022, 9, 1008970. [Google Scholar] [CrossRef]
- Hippisley-Cox, J.; Coupland, C.; Brindle, P. Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: Prospective cohort study. BMJ 2017, 357, j2099. [Google Scholar] [CrossRef] [PubMed]
- Manuel, D.G.; Tuna, M.; Bennett, C.; Hennessy, D.; Rosella, L.; Sanmartin, C.; Tu, J.V.; Perez, R.; Fisher, S.; Taljaard, M. Development and validation of a cardiovascular disease risk-prediction model using population health surveys: The Cardiovascular Disease Population Risk Tool (CVDPoRT). Can. Med. Assoc. J. 2018, 190, E871–E882. [Google Scholar] [CrossRef] [PubMed]
- Goff, D.C., Jr.; Lloyd-Jones, D.M.; Bennett, G.; Coady, S.; D’Agostino, R.B.; Gibbons, R.; Greenland, P.; Lackland, D.T.; Levy, D.; O’Donnell, C.J.; et al. American College of Cardiology/American Heart Association Task Force on Practice Guidelines. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 2014, 129, 49–73. [Google Scholar]
- WHO CVD Risk Chart Working Group. World Health Organization cardiovascular disease risk charts: Revised models to estimate risk in 21 global regions. Lancet Glob. Health 2019, 7, 1332–1345. [Google Scholar] [CrossRef]
- Mortensen, M.B.; Fuster, V.; Muntendam, P.; Mehran, R.; Baber, U.; Sartori, S.; Falk, E. Negative Risk Markers for Cardiovascular Events in the Elderly. J. Am. Coll. Cardiol. 2019, 74, 1–11. [Google Scholar] [CrossRef]
- Kasim, S.S.; Ibrahim, N.; Malek, S.; Ibrahim, K.S.; Aziz, M.F.; Song, C.; Chia, Y.C.; Ramli, A.S.; Negishi, K.; Mat Nasir, N. Validation of the general Framingham Risk Score (FRS), SCORE2, revised PCE and WHO CVD risk scores in an Asian population. Lancet Reg. Health West. Pac. 2023, 35, 100742. [Google Scholar] [CrossRef]
Variable | Group 1 70–74 Years (n = 61) | Group 2 75–79 Years (n = 73) | Group 3 80–84 Years (n = 76) | Group 4 85–89 Years (n = 43) | p-Value |
---|---|---|---|---|---|
10-year ASCVD, median (IQR) | 14 (12–17) | 20 (17–23) | 30 (26–33) | 42 (35–50) | <0.001 |
10-year ASCVD risk categories, n (%) | <0.001 | ||||
Low risk (<7.5%) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | |
High risk (7.5–14.9%) | 34 (55.7) | 6 (8.2) | 1 (1.3) | 0 (0.0) | |
Very high risk (≥15%) | 27 (44.3) | 67 (91.2) | 75 (98.7) | 43 (100) | |
Age, years, mean (SD) | 72 ± 1 | 77 ± 1 | 82 ± 1 | 87 ± 2 | <0.001 |
Hypertension, n (%) | 51 (83.6) | 55 (75.3) | 66 (86.8) | 35 (81.4) | 0.3 |
Hypercholesterolemia, n (%) | 14 (29.5) | 19 (26.0% | 13 (17.1) | 9 (20.9) | 0.6 |
Multimorbidity, n (%) | 40 (65.6) | 56 (76.7) | 63 (82.9) | 38 (88.4) | 0.02 |
Polypharmacy, n (%) | 38 (62.3) | 50 (68.5) | 60 (78.9) | 36 (83.7) | 0.02 |
Malnutrition, n (%) | 12 (19.7) | 18 (24.7) | 25 (32.9) | 15 (34.9) | 0.02 |
Smoking, n (%) | 9 (15.3) | 4 (5.7) | 5 (6.9) | 2 (4.8) | 0.2 |
Weight, kg, mean (SD) | 74 ± 15 | 70 ± 16 | 65 ± 12 | 64 ± 11 | <0.001 |
Systolic blood pressure, mmHg, mean (SD) | 138 ± 12 | 145 ± 9 | 150 ± 8 | 155 ± 8 | 0.03 |
BMI, kg/m2, mean (SD) | 29 ± 5 | 28 ± 6 | 27 ± 4 | 26 ± 4 | 0.001 |
BMI categories, n (%) | 0.04 | ||||
Underweight | 1 (1.6) | 3 (4.1) | 1 (1.3) | 0 (0.0) | |
Normal weight | 14 (23.0) | 16 (21.9) | 30 (39.5) | 14 (32.6) | |
Overweight | 19 (31.1) | 32 (43.8) | 30 (39.5) | 19 (44.2) | |
Obesity | 27 (44.3) | 22 (30.1) | 15 (19.7) | 10 (23.2) |
Variable | Group 1 70–74 Years (n = 61) | Group 2 75–79 Years (n = 73) | Group 3 80–84 Years (n = 76) | Group 4 85–89 Years (n = 43) | p-Value |
---|---|---|---|---|---|
TSH, µIU/mL, median (IQR) | 1.15 (0.85–1.71) | 1.15 (0.59–2.04) | 1.18 (0.66–1.7) | 1.12 (0.74–1.89) | 0.99 |
Glucose, mg/dL, median (IQR) | 104.5 (91.5–129) | 97 (90–114) | 100 (87–105) | 95 (87–105) | 0.08 |
Na, mmol/L, median (IQR) | 141 (139.5–143) | 140 (138–142) | 141 (139–143) | 140 (138–142) | 0.12 |
K, mmol/L, median (IQR) | 4.5 (4.2–4.7) | 4.3 (4.0–4.6) | 4.3 (4.0–4.7) | 4.4 (4.1–4.6) | 0.11 |
Total cholesterol, mg/dL, median (IQR) | 187 (171–216) | 174 (145–213) | 173.5 (155–208.5) | 169 (142–206) | 0.05 |
HDL cholesterol, mg/dL, median (IQR) | 54 (42–67) | 52 (41–63) | 52 (44–65.5) | 55 (43–64) | 0.91 |
LDL cholesterol, mg/dL, median (IQR) | 109.2 (93–132.2) | 105.6 (80.8–137.4) | 101.4 (79.5–128.5) | 96 (70.6–130.4) | 0.19 |
Triglycerides, mg/dL, median (IQR) | 117 (94–156) | 98 (79–126) | 101 (80–130) | 96 (78–110) | <0.01 |
Glomerular filtration, mL/min/1.73 m2, median (IQR) | 78.5 (67.8–91) | 76 (55–84) | 73 (59–83) | 66 (41–81) | <0.01 |
Creatinine, mg/dL, median (IQR) | 0.81 (0.7–0.9) | 0.87 (0.72–1.04) | 0.87 (0.69–1.07) | 0.93 (0.74–1.21) | 0.08 |
Aspartate aminotransferase, U/liter, median (IQR) | 19 (16–23) | 18 (14–22) | 17 (13–21.5) | 18 (16–24) | 0.26 |
Alanine aminotransferase, U/liter, median (IQR) | 17 (14–25) | 14 (12–20) | 15.5 (11–20) | 15 (11–18) | 0.03 |
Serum albumin, g/L, median (IQR) | 36 (31.5–39.5) | 35 (31–38) | 34 (32–37) | 33 (3.7–36) | 0.02 |
Total protein, g/L, median (IQR) | 67 (64–69.3) | 65.5 (62.5–67) | 60.6 (58–64.7) | 65.8 (57.8–67.1) | <0.01 |
White cell count, 10³/µL, median (IQR) | 6.6 (5.1–8.3) | 6.2 (5.0–7.6) | 5.8 (5.05–7.25) | 6.6 (5.3–7.8) | 0.41 |
Red cell count, 10⁶/µL, median (IQR) | 4,38 (4.2–4.77) | 4,24 (3.81–4.52) | 4,13 (3.85–4.5) | 4,11 (3.85–4.42) | 0.02 |
Hemoglobin, g/dL, median (IQR) | 12.9 (12.1–13.9) | 12.5 (11.1–13.6) | 12.6 (11.6–13.25) | 12.1 (11.0–13.1) | 0.02 |
Hematocrit, %, median (IQR) | 39.5 (37.6–42.3) | 38.4 (34.1–41.5) | 37.55 (35.55–41.05) | 37.3 (34.6–40.8) | 0.02 |
Platelet count, 10³/µL, median (IQR) | 210 (173–269) | 220 (179–267) | 212.5 (165–253) | 211 (160–242) | 0.64 |
SCORE2-OP | Variable | n | R | p |
Weight, kg | 253 | −0.27 | <0.001 | |
Height, cm | 253 | −0.18 | 0.004 | |
BMI, kg/m2 | 253 | −0.19 | 0.003 | |
TSH (µIU/L) | 243 | 0.01 | 0.85 | |
Serum glucose, mg/dL | 252 | −0.07 | 0.24 | |
Serum sodium, mmol/L | 253 | −0.02 | 0.71 | |
Serum potassium, mmol/L | 253 | −0.03 | 0.59 | |
Triglycerides, mg/dL | 252 | −0.02 | 0.72 | |
Vitamin B₁₂ | 146 | 0.07 | 0.40 | |
Glomerular filtration, mL/min | 219 | −0.23 | <0.001 | |
Serum creatinine, mg/dl | 252 | 0.12 | 0.06 | |
Aspartate aminotransferase, U/L | 253 | −0.01 | 0.9 | |
Alanine aminotransferase, U/L | 253 | −0.08 | 0.19 | |
Bilirubin, mg/dL | 249 | 0.05 | 0.46 | |
Serum albumin, g/dL | 124 | −0.2 | 0.03 | |
Total protein, g/dL | 144 | −0.17 | 0.04 | |
Number of diseases | 253 | 0.18 | 0.04 |
Age, Years | Variable | n | R | p |
Weight, kg | 253 | −0.29 | <0.001 | |
Height, cm | 253 | −0.20 | <0.01 | |
BMI, kg/m2 | 253 | −0.20 | <0.01 | |
TSH (µIU/L) | 243 | −0.01 | 0.88 | |
Serum glucose, mg/dL | 252 | −0.14 | 0.02 | |
Serum sodium, mmol/L | 253 | −0.08 | 0.18 | |
Serum potassium, mmol/L | 253 | −0.09 | 0.14 | |
Total cholesterol, mg/dL | 253 | −0.14 | 0.02 | |
HDL cholesterol, mg/dL | 253 | 0.01 | 0.87 | |
LDL cholesterol, mg/dL | 253 | −0.13 | 0.03 | |
Triglycerides, mg/dL | 252 | −0.19 | <0.01 | |
Non-HDL cholesterol, mg/dL | 253 | −0.15 | 0.01 | |
Glomerular filtration, ml/min | 219 | -0.24 | <0.001 | |
Serum creatinine, mg/dl | 252 | 0.15 | 0.02 | |
Aspartate aminotransferase, U/L | 253 | −0.03 | 0.63 | |
Alanine aminotransferase, U/L | 253 | −0.12 | 0.06 | |
Bilirubin, mg/dl | 249 | 0.08 | 0.20 | |
Serum albumin, g/dL | 144 | −0.20 | 0.01 | |
Total protein, g/dL | 124 | −0.29 | <0.001 | |
White blood cells, 103/µL | 253 | −0.02 | 0.68 | |
Hemoglobin, g/dL | 253 | −0.16 | <0.001 | |
Red blood cells, 106/µL | 253 | −0.20 | <0.02 | |
Hematocrit, % | 253 | −0.16 | 0.01 | |
Platelet count, 103/µL | 253 | −0.09 | 0.16 | |
Mean corpuscular volume, fl | 250 | 0.10 | 0.10 | |
Mean corpuscular hemoglobin, pg | 250 | 0.09 | 0.14 | |
Mean corpuscular hemoglobin concentration, g/dL | 250 | −0.03 | 0.65 | |
Lymphocytes | 251 | −0.06 | 0.30 | |
Monocytes | 238 | 0.06 | 0.37 | |
Eosinophils | 34 | −0.14 | 0.42 | |
Number of diseases | 253 | 0.36 | 0.01 |
Variable | Univariate | Multivariate | ||||
---|---|---|---|---|---|---|
OR | 95% CI | p | OR | 95% CI | p | |
Age | 1.71 | 1.44–2.04 | <0.001 | 1.85 | 1.51–2.26 | <0.001 |
HDL cholesterol | 0.98 | 0.96–0.99 | <0.01 | 0.94 | 0.91–0.98 | <0.001 |
eGFR | 0.98 | 0.96–0.99 | <0.01 | - | - | - |
MCV | 1.04 | 1.00–1.08 | 0.05 | - | - | - |
MCHC | 1.13 | 1.00–1.29 | 0.05 | - | - | - |
Variable | Cut-Off | AUC | 95% CI | Sensitivity (%) | Specificity (%) | PPV (%) | NPV (%) | p |
---|---|---|---|---|---|---|---|---|
Age | >75 | 0.92 | 0.88–0.95 | 83 | 97 | 99 | 52 | <0.001 |
BMI | <28 | 0.55 | 0.48–0.61 | - | - | - | - | 0.35 |
eGFR | <55 | 0.63 | 0.56–0.69 | 27 | 95 | 96 | 21 | <0.01 |
Hemoglobin | <13 | 0.51 | 0.45–0.57 | - | - | - | - | 0.83 |
HDL cholesterol | <59 | 0.65 | 0.59–0.71 | 68 | 61 | 90 | 26 | <0.001 |
Hematocrit | <35 | 0.53 | 0.47–0.59 | - | - | - | - | 0.5 |
LDL cholesterol | >90 | 0.54 | 0.48–0.61 | - | - | - | - | 0.35 |
MCH | <30.5 | 0.62 | 0.56–0.68 | 34 | 88 | 93 | 21 | <0.01 |
MCHC | <32.6 | 0.57 | 0.49–0.63 | 0.14 | ||||
MCV | <90 | 0.62 | 0.55–0.68 | 61 | 61 | 89 | 23 | 0.01 |
Non-HDL cholesterol | >108 | 0.52 | 0.46–0.58 | - | - | - | - | 0.67 |
Platelet count | >251 | 0.56 | 0.49–0.63 | - | - | - | - | 0.14 |
RBC | <4.1 | 0.55 | 0.49–0.61 | - | - | - | - | 0.24 |
Serum albumin | <39 | 0.52 | 0.44–0.60 | - | - | - | - | 0.78 |
Serum glucose | >120 | 0.5 | 0.44–0.57 | - | - | - | - | 0.93 |
Total cholesterol | >175 | 0.57 | 0.48–0.63 | - | - | - | - | 0.18 |
Triglycerides | >100 | 0.53 | 0.47–0.59 | - | - | - | - | 0.5 |
WBC | >4.5 | 0.5 | 0.44–0.56 | - | - | - | - | 0.97 |
Weight | >71 | 0.54 | 0.47–0.60 | - | - | - | - | 0.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Żurański, W.; Nowak, J.; Danikiewicz, A.; Zubelewicz-Szkodzińska, B.; Hudzik, B. Assessing Cardiovascular Risk in Geriatric Patients Without Atherosclerotic Cardiovascular Disease. J. Clin. Med. 2024, 13, 7133. https://doi.org/10.3390/jcm13237133
Żurański W, Nowak J, Danikiewicz A, Zubelewicz-Szkodzińska B, Hudzik B. Assessing Cardiovascular Risk in Geriatric Patients Without Atherosclerotic Cardiovascular Disease. Journal of Clinical Medicine. 2024; 13(23):7133. https://doi.org/10.3390/jcm13237133
Chicago/Turabian StyleŻurański, Witold, Justyna Nowak, Aleksander Danikiewicz, Barbara Zubelewicz-Szkodzińska, and Bartosz Hudzik. 2024. "Assessing Cardiovascular Risk in Geriatric Patients Without Atherosclerotic Cardiovascular Disease" Journal of Clinical Medicine 13, no. 23: 7133. https://doi.org/10.3390/jcm13237133
APA StyleŻurański, W., Nowak, J., Danikiewicz, A., Zubelewicz-Szkodzińska, B., & Hudzik, B. (2024). Assessing Cardiovascular Risk in Geriatric Patients Without Atherosclerotic Cardiovascular Disease. Journal of Clinical Medicine, 13(23), 7133. https://doi.org/10.3390/jcm13237133