Impact of the Order of Movement on the Median Nerve Root Function: A Neurophysiological Study with Implications for Neurodynamic Exercise Sequencing
Abstract
:1. Introduction
2. Methods
2.1. Participants
- -
- Standard neurodynamic sequence: this group received the standard exercise for median nerve entrapment [26];
- -
- Distal-to-proximal neurodynamic sequence (DTP): this group received a treatment that involved moving the median nerve from the distal end (near the hand) to the proximal end (near the shoulder);
- -
- Proximal-to-distal neurodynamic sequence (PTD): this group received a treatment that involved moving the median nerve from the proximal end to the distal end.
2.2. Interventions
2.2.1. Standard Neural Tensioning Mobilization
2.2.2. Proximal-to-Distal Neural Tensioning Mobilization
2.2.3. Distal-to-Proximal Neural Tensioning Mobilization
2.3. Outcome Measures
2.4. Sample Size Determination
2.5. Data Analysis
3. Results
3.1. Participant Flow and Characteristics
3.2. Neurophysiological Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ellis, R.; Carta, G.; Andrade, R.J.; Coppieters, M.W. Neurodynamics: Is Tension Contentious? J. Man. Manip. Ther. 2022, 30, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Coppieters, M.W.; Butler, D.S. Do “sliders” Slide and “Tensioners” Tension? An Analysis of Neurodynamic Techniques and Considerations Regarding Their Application. Man. Ther. 2008, 13, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Coppieters, M.W.; Andersen, L.S.; Johansen, R.; Giskegjerde, P.K.; Hivik, M.; Vestre, S.; Nee, R.J. Excursion of the Sciatic Nerve during Nerve Mobilization Exercises: An in Vivo Cross-Sectional Study Using Dynamic Ultrasound Imaging. J. Orthop. Sports Phys. Ther. 2015, 45, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Coppieters, M.W.; Alshami, A.M.; Babri, A.S.; Souvlis, T.; Kippers, V.; Hodges, P.W. Strain and Excursion of the Sciatic, Tibial and Plantar Nerves during a Modified Straight Leg Raising Test. J. Orthop. Res. 2006, 24, 1883–1889. [Google Scholar] [CrossRef] [PubMed]
- Ellis, R.F.; Hing, W.A.; McNair, P.J. Comparison of Longitudinal Sciatic Nerve Movement with Different Mobilization Exercises: An in Vivo Study Utilizing Ultrasound Imaging. J. Orthop. Sports Phys. Ther. 2012, 42, 667–675. [Google Scholar] [CrossRef] [PubMed]
- Shacklock, M. Clinical Neurodynamics A New System of Neuromusculoskeletal Treatment; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Maitland, G.D. Negative Disc Exploration: Positive Canal Signs. Aust. J. Physiother. 1979, 25, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Zorn, P.; Shacklock, M.; Trott, P.; Hall, R. The Effect of Sequencing the Movements of the Upper Limb Tension Test on the Area of Symptom Production. In Proceedings of the Manipulative Physiotherapist’s Association of Australia 9th Biennial Conference, Gold Coast, Australia, 22–25 November 1995; pp. 166–167. [Google Scholar]
- David, B.; Gifford, L. The Concept of Adverse Mechanical Tension in the Nervous System. Physiotherapy 1989, 75, 622–636. [Google Scholar]
- Basson, A.; Olivier, B.; Ellis, R.; Coppieters, M.; Stewart, A.; Mudzi, W. The Effectiveness of Neural Mobilizations in the Treatment of Musculoskeletal Conditions: A Systemic Review Protocol. JBI Evid. Synth. 2015, 13, 65–75. [Google Scholar] [CrossRef]
- Nee, R.J.; Yang, C.H.; Liang, C.C.; Tseng, G.F.; Coppieters, M.W. Impact of Order of Movement on Nerve Strain and Longitudinal Excursion:A Biomechanical Study with Implications for Neurodynamic Test Sequencing. Man. Ther. 2010, 15, 376–381. [Google Scholar] [CrossRef]
- Bueno-Gracia, E.; Fanlo-Mazas, P.; Malo-Urriés, M.; Rodriguez-Mena, D.; Montaner-Cuello, A.; Ciuffreda, G.; Shacklock, M.; Estébanez-de-Miguel, E. Diagnostic Accuracy of the Upper Limb Neurodynamic Test 1 Using Neurodynamic Sequencing in Diagnosis of Carpal Tunnel Syndrome. Musculoskelet. Sci. Pr. 2024, 69, 102897. [Google Scholar] [CrossRef]
- Kwan, M.K.; Wall, E.J.; Massie, J.; Garfin, S.R. Strain, Stress and Stretch of Peripheral Nerve. Rabbit Experiments in Vitro and Vivo. Acta Orthop. Scand. 1992, 63, 267–272. [Google Scholar] [CrossRef]
- McLellan, D.L.; Swash, M. Longitudinal Sliding of the Median Nerve during Movements of the Upper Limb. J. Neurol. Neurosurg. Psychiatry 1976, 39, 566–570. [Google Scholar] [CrossRef]
- Low, P.; Marchand, G.; Knox, F.; Dyck, P.J. Measurement of Endoneurial Fluid Pressure with Polyethylene Matrix Capsules. Brain Res. 1977, 122, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Mark, T. Walsh Upper Limb Neural Tension Testing and Mobilization: Fact, Fiction, and Approach. J. Hand Ther. 2005, 18, 241–258. [Google Scholar]
- Knezevic, W.; Bajada, S. Peripheral Autonomic Surface Potential. A Quantitative Technique for Recording Sympathetic Conduction in Man. J. Neurol. Sci. 1985, 67, 239–251. [Google Scholar] [CrossRef] [PubMed]
- Ochs, S.; Pourmand, R.; Si, K.; Friedman, R.N. Stretch of Mammalian Nerve in Vitro: Effect on Compound Action Potentials. J. Peripher. Nerv. Syst. 2000, 5, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Sylvain, J.; Reiman, M.P. Differential Diagnosis and Management of an Older Runner with an Atypical Neurodynamic Presentation: A Case for Clinical Reasoning. Int. J. Sports Phys. Ther. 2015, 10, 234. [Google Scholar] [PubMed]
- Dilley, A.; Lynn, B.; See, J.P. Pressure and Stretch Mechanosensitivity of Peripheral Nerve Fibres Following Local Inflammation of the Nerve Trunk. Pain 2005, 117, 462–472. [Google Scholar] [CrossRef]
- Bueno, F.R.; Shah, S.B. Implications of Tensile Loading for the Tissue Engineering of Nerves. Tissue Eng. Part B Rev. 2008, 14, 219–233. [Google Scholar] [CrossRef]
- Wall, E.; Massie, J.; Kwan, M.; Rydevik, B.; Myers, R. Garfin Experimental Stretch Neuropathy. Changes in Nerve Conduction under Tension. J. Bone Jt. Surg. Br. 1992, 74-B, 126–129. [Google Scholar] [CrossRef]
- Ogata, K.; Naito, M. Blood Flow of Peripheral Nerve Effects of Dissection Stretching and Compression. J. Hand Surg. J. Br. Soc. Surg. Hand 1986, 11, 10–14. [Google Scholar] [CrossRef]
- Pagnez, M.A.M.; Corrêa, L.A.; Almeida, R.S.; Meziat-Filho, N.A.; Mathieson, S.; Ricard, F.; Nogueira, L.A.C. The Variation of Cross-Sectional Area of the Sciatic Nerve in Flexion-Distraction Technique: A Cross-Sectional Study. J. Manip. Physiol. Ther. 2019, 42, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Ellis, R.; Richards, N.; Archer, L.; Whittington, C.; Mawston, G. Assessing Sciatic Nerve Excursion and Strain with Ultrasound Imaging during Forward Bending. Ultrasound Med. Biol. 2021, 47, 2560–2569. [Google Scholar] [CrossRef] [PubMed]
- Coppieters, M.W.; Alshami, A.M. Longitudinal Excursion and Strain in the Median Nerve during Novel Nerve Gliding Exercises for Carpal Tunnel Syndrome. J. Orthop. Res. 2007, 25, 972–980. [Google Scholar] [CrossRef] [PubMed]
- Dilley, A.; Lynn, B.; Greening, J.; DeLeon, N. Quantitative in Vivo Studies of Median Nerve Sliding in Response to Wrist, Elbow, Shoulder and Neck Movements. Clin. Biomech. 2003, 18, 899–907. [Google Scholar] [CrossRef] [PubMed]
- Beddaa, H.; Kably, B.; Marzouk, B.; Mouhi, I.; Marfak, A.; Azemmour, Y.; Alaoui, I.B.; Birouk, N. The Effectiveness of the Median Nerve Neurodynamic Mobilisation Techniques in Women with Mild or Moderate Bilateral Carpal Tunnel Syndrome: A Single-Blind Clinical Randomised Trial. South Afr. J. Physiother. 2022, 78, a1823. [Google Scholar] [CrossRef] [PubMed]
- Alharmoodi, B.Y.; Arumugam, A.; Ahbouch, A.; Moustafa, I.M. Comparative Effects of Tensioning and Sliding Neural Mobilization on Peripheral and Autonomic Nervous System Function: A Randomized Controlled Trial. Hong Kong Physiother. J. 2022, 42, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Rodríguez de Gil, P.; Chen, Y.H.; Kromrey, J.D.; Kim, E.S.; Pham, T.; Nguyen, D.; Romano, J.L. Comparing the Performance of Approaches for Testing the Homogeneity of Variance Assumption in One-Factor ANOVA Models. Educ. Psychol. Meas. 2017, 77, 305–329. [Google Scholar] [CrossRef]
- Schacklock, M. Clinical Neurodynamics in Sports Injuries—Origins and New Developments. Aspetar Sports Med. J. 2014, 50–56. [Google Scholar]
- Nee, R.J.; Jull, G.A.; Vicenzino, B.; Coppieters, M.W. The Validity of Upper-Limb Neurodynamic Tests for Detecting Peripheral Neuropathic Pain. J. Orthop. Sports Phys. Ther. 2012, 42, 413–424. [Google Scholar] [CrossRef]
- Butler, D.S. The Sensitive Nervous System; Noigroup Publications: Adelaide, Australia, 2000. [Google Scholar]
- Lundborg, G.; Rydevik, B. Effects of Stretching the Tibial Nerve of the Rabbit. A Preliminary Study of the Intraneural Circulation and the Barrier Function of the Perineurium. J. Bone Jt. Surg. Br. 1973, 55, 390–401. [Google Scholar] [CrossRef]
- Breig, A. Adverse Mechanical Tension in the Central Nervous System: An Analysis of Cause and Effect: Relief by Functional Neurosurgery; John Wiley & Sons: Hoboken, NJ, USA, 1978; p. 130. [Google Scholar]
- Phillips, J.B.; Smit, X.; De Zoysa, N.; Afoke, A.; Brown, R.A. Peripheral Nerves in the Rat Exhibit Localized Heterogeneity of Tensile Properties during Limb Movement. J. Physiol. 2004, 557, 879–887. [Google Scholar] [CrossRef] [PubMed]
- Shacklock, M. Improving Application of Neurodynamic (Neural Tension) Testing and Treatments: A Message to Researchers and Clinicians. Man. Ther. 2005, 10, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Alshami, A.M.; Bamhair, D.A. Effect of Manual Therapy with Exercise in Patients with Chronic Cervical Radiculopathy: A Randomized Clinical Trial. Trials 2021, 22, 716. [Google Scholar] [CrossRef] [PubMed]
- Burgess, N.E.; Gilbert, K.K.; Sobczak, S.; Sizer, P.S.; Homen, D.; Lierly, M.; Kearns, G.A.; Brismée, J.M. Upper Limb Neurodynamic Mobilization Disperses Intraneural Fluid in Cervical Nerve Roots: A Human Cadaveric Investigation. Musculoskelet. Sci. Pr. 2023, 68, 102876. [Google Scholar] [CrossRef] [PubMed]
- Khademi, S.; Yoosefinejad, A.K.; Motealleh, A.; Rezaei, I.; Abbasi, L.; Jalli, R. The Sono-Elastography Evaluation of the Immediate Effects of Neurodynamic Mobilization Technique on Median Nerve Stiffness in Patients with Carpal Tunnel Syndrome. J. Bodyw. Mov. Ther. 2023, 36, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Krishnan, J.; Ruckmani, K. Cigarette Smoke and Related Risk Factors in Neurological Disorders: An Update. Biomed. Pharmacother. 2017, 85, 79–86. [Google Scholar] [CrossRef]
Standard Group (n = 30) | DTP Group (n = 30) | PTD Group (n = 30) | p Value | |
---|---|---|---|---|
Age (Yrs) | 22 ± 3 | 21 ± 4 | 23 ± 2 | F = 2.86 p = 0.06 |
Weight (kg) | 67 ± 6 | 64 ± 7 | 68 ± 5 | F = 2.61 p = 0.07 |
Gender | ||||
Male | 13 | 12 | 14 | χ² = 0.27 p = 0.80 |
Female | 17 | 18 | 16 | |
Smoking status | ||||
Nonsmoker | 19 | 20 | 17 | χ² = 0.66 p = 0.71 |
Smoker | 11 | 10 | 13 | |
C6 (µV) | 2.30 ± 0.60 | 3.00 ± 0.70 | 2.80 ± 0.80 | <0.001 |
C7 (µV) | 2.20 ± 0.50 | 2.20 ± 0.30 | 2.60 ± 0.60 | <0.001 |
C8 (µV) | 2.00 ± 0.30 | 2.40 ± 0.50 | 2.70 ± 0.40 | <0.001 |
T1 (µV) | 1.90 ± 0.30 | 2.50 ± 0.50 | 2.80 ± 0.40 | <0.001 |
Pre | Post | Follow | p | ||||
---|---|---|---|---|---|---|---|
G | T | G vs. T | |||||
C6 (µV) | Standard | 2.30 ± 0.60 | 2.40 ± 0.50 | 2.90 ± 0.50 | <0.001 | <0.001 | <0.001 |
PTD | 3.00 ± 0.70 | 2.20 ± 0.40 | 2.20 ± 0.50 | ||||
DTP | 2.80 ± 0.80 | 2.90 ± 0.50 | 2.90 ± 0.70 | ||||
C7 (µV) | Standard | 2.20 ± 0.50 | 2.40 ± 0.50 | 2.50 ± 0.70 | <0.001 | <0.001 | <0.001 |
PTD | 2.20 ± 0.30 | 1.80 ± 0.60 | 1.90 ± 0.50 | ||||
DTP | 2.60 ± 0.60 | 2.70 ± 0.40 | 2.70 ± 0.70 | ||||
C8 (µV) | Standard | 2.00 ± 0.30 | 2.30 ± 0.60 | 2.20 ± 0.70 | <0.001 | <0.001 | <0.001 |
PTD | 2.40 ± 0.50 | 2.00 ± 0.30 | 2.10 ± 0.40 | ||||
DTP | 2.70 ± 0.40 | 2.80 ± 0.30 | 2.70 ± 0.80 | ||||
T1 (µV) | Standard | 1.90 ± 0.30 | 2.00 ± 0.90 | 2.10 ± 0.50 | <0.001 | <0.001 | <0.001 |
PTD | 2.50 ± 0.50 | 2.01 ± 0.60 | 2.10 ± 0.60 | ||||
DTP | 2.80 ± 0.40 | 2.90 ± 0.70 | 3.00 ± 0.60 |
(I) Groups | (J) Groups | Mean Difference (I–J) | Std. Error | Sig. | 95% Confidence Interval | ||
---|---|---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||||
C6 (µV) | Standard | DTP | 0.50 * | 0.15 | 0.002 | −0.50 | 0.25 |
PTD | 0.70 * | 0.14 | 0.010 | 0.08 | 0.84 | ||
C7 (µV) | Standard | DTP | −0.47 * | 0.14 | 0.005 | −0.83 | −0.11 |
PTD | 0.70 * | 0.18 | 0.001 | 0.25 | 1.15 | ||
C8 (µV) | Standard | DTP | −0.62 * | 0.12 | 0.000 | −0.93 | −0.31 |
PTD | 0.45 * | 0.12 | 0.002 | 0.14 | 0.76 | ||
T1 (µV) | Standard | DTP | −0.16 | 0.10 | 0.400 | −0.45 | 0.11 |
PTD | 0.40 * | 0.11 | 0.002 | 0.12 | 0.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibrahim, D.; Ahbouch, A.; Qadah, R.M.; Kim, M.; Alrawaili, S.M.; Moustafa, I.M. Impact of the Order of Movement on the Median Nerve Root Function: A Neurophysiological Study with Implications for Neurodynamic Exercise Sequencing. J. Clin. Med. 2024, 13, 913. https://doi.org/10.3390/jcm13030913
Ibrahim D, Ahbouch A, Qadah RM, Kim M, Alrawaili SM, Moustafa IM. Impact of the Order of Movement on the Median Nerve Root Function: A Neurophysiological Study with Implications for Neurodynamic Exercise Sequencing. Journal of Clinical Medicine. 2024; 13(3):913. https://doi.org/10.3390/jcm13030913
Chicago/Turabian StyleIbrahim, Dalia, Amal Ahbouch, Raneen Mohammed Qadah, Meeyoung Kim, Saud M. Alrawaili, and Ibrahim M. Moustafa. 2024. "Impact of the Order of Movement on the Median Nerve Root Function: A Neurophysiological Study with Implications for Neurodynamic Exercise Sequencing" Journal of Clinical Medicine 13, no. 3: 913. https://doi.org/10.3390/jcm13030913
APA StyleIbrahim, D., Ahbouch, A., Qadah, R. M., Kim, M., Alrawaili, S. M., & Moustafa, I. M. (2024). Impact of the Order of Movement on the Median Nerve Root Function: A Neurophysiological Study with Implications for Neurodynamic Exercise Sequencing. Journal of Clinical Medicine, 13(3), 913. https://doi.org/10.3390/jcm13030913