Efficacy and Safety of a Probiotic Containing Saccharomyces boulardii CNCM I-745 in the Treatment of Small Intestinal Bacterial Overgrowth in Decompensated Cirrhosis: Randomized, Placebo-Controlled Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Intervention and Controls
2.3. Outcomes
2.4. Investigations
2.5. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ginès, P.; Krag, A.; Abraldes, J.G.; Solà, E.; Fabrellas, N.; Kamath, P.S. Liver cirrhosis. Lancet 2021, 398, 1359–1376. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Wong, G.; Anstee, Q.M.; Henry, L. The Global Burden of Liver Disease. Clin. Gastroenterol. Hepatol. 2023, 21, 1978–1991. [Google Scholar] [CrossRef] [PubMed]
- GBD 2017 Cirrhosis Collaborators. The global, regional, and national burden of cirrhosis by cause in 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol. 2020, 5, 245–266. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Qian, A.S.; Nguyen, N.H.; Stukalin, I.; Congly, S.E.; Shaheen, A.A.; Swain, M.G.; Teriaky, A.; Asrani, S.K.; Singh, S. Trends in the economic burden of chronic liver diseases and cirrhosis in the United States: 1996–2016. Am. J. Gastroenterol. 2021, 116, 2060–2067. [Google Scholar] [CrossRef] [PubMed]
- Bushyhead, D.; Quigley, E.M.M. Small Intestinal Bacterial Overgrowth-Pathophysiology and Its Implications for Definition and Management. Gastroenterology 2022, 163, 593–607. [Google Scholar] [CrossRef]
- Efremova, I.; Maslennikov, R.; Poluektova, E.; Vasilieva, E.; Zharikov, Y.; Suslov, A.; Letyagina, Y.; Kozlov, E.; Levshina, A.; Ivashkin, V. Epidemiology of small intestinal bacterial overgrowth. World J. Gastroenterol. 2023, 29, 3400–3421. [Google Scholar] [CrossRef]
- Ghoshal, U.C.; Sachdeva, S.; Ghoshal, U.; Misra, A.; Puri, A.S.; Pratap, N.; Shah, A.; Rahman, M.M.; Gwee, K.A.; Tan, V.P.Y.; et al. Asian-Pacific consensus on small intestinal bacterial overgrowth in gastrointestinal disorders: An initiative of the Indian Neurogastroenterology and Motility Association. Indian J. Gastroenterol. 2022, 41, 483–507. [Google Scholar] [CrossRef]
- Skrzydło-Radomańska, B.; Cukrowska, B. How to Recognize and Treat. Small Intestinal Bacterial Overgrowth? J. Clin. Med. 2022, 11, 6017. [Google Scholar] [CrossRef]
- Maslennikov, R.; Pavlov, C.; Ivashkin, V. Small intestinal bacterial overgrowth in cirrhosis: Systematic review and metaanalysis. Hepatol. Int. 2018, 12, 567–576. [Google Scholar] [CrossRef]
- Maslennikov, R.; Pavlov, C.; Ivashkin, V. Is small intestinal bacterial overgrowth a cause of hyperdynamic circulation in cirrhosis? Turk. J. Gastroenterol. 2019, 30, 964–975. [Google Scholar] [CrossRef]
- Efremova, I.; Maslennikov, R.; Alieva, A.; Poluektova, E.; Ivashkin, V. Small Intestinal Bacterial Overgrowth Is Associated with Poor Prognosis in Cirrhosis. Microorganisms 2023, 11, 1017. [Google Scholar] [CrossRef]
- Li, T.; Wang, Z.; Guo, J.; de la Fuente-Nunez, C.; Wang, J.; Han, B.; Tao, H.; Liu, J.; Wang, X. Bacterial resistance to antibacterial agents: Mechanisms, control strategies, and implications for global health. Sci. Total Environ. 2023, 860, 160461. [Google Scholar] [CrossRef] [PubMed]
- Buddle, J.E.; Fagan, R.P. Pathogenicity and virulence of Clostridioides difficile. Virulence 2023, 14, 2150452. [Google Scholar] [CrossRef] [PubMed]
- Baran, A.; Kwiatkowska, A.; Potocki, L. Antibiotics and Bacterial Resistance-A Short Story of an Endless Arms Race. Int. J. Mol. Sci. 2023, 24, 5777. [Google Scholar] [CrossRef]
- Ramirez, J.; Guarner, F.; Bustos Fernandez, L.; Maruy, A.; Sdepanian, V.L.; Cohen, H. Antibiotics as Major Disruptors of Gut Microbiota. Front. Cell Infect. Microbiol. 2020, 10, 572912. [Google Scholar] [CrossRef]
- Abad, C.L.R.; Safdar, N. A Review of Clostridioides difficile Infection and Antibiotic-Associated Diarrhea. Gastroenterol. Clin. N. Am. 2021, 50, 323–340. [Google Scholar] [CrossRef]
- Kesavelu, D.; Jog, P. Current understanding of antibiotic-associated dysbiosis and approaches for its management. Ther. Adv. Infect. Dis. 2023, 10, 20499361231154443. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; Guevarra, R.B.; Kim, Y.T.; Kwon, J.; Kim, H.; Cho, J.H.; Kim, H.B.; Lee, J.H. Role of Probiotics in Human Gut Microbiome-Associated Diseases. J. Microbiol. Biotechnol. 2019, 29, 1335–1340. [Google Scholar] [CrossRef]
- Mazziotta, C.; Tognon, M.; Martini, F.; Torreggiani, E.; Rotondo, J.C. Probiotics Mechanism of Action on Immune Cells and Beneficial Effects on Human Health. Cells 2023, 12, 184. [Google Scholar] [CrossRef]
- Pal, R.; Athamneh, A.I.M.; Deshpande, R.; Ramirez, J.A.R.; Adu, K.T.; Muthuirulan, P.; Pawar, S.; Biazzo, M.; Apidianakis, Y.; Sundekilde, U.K.; et al. Probiotics: Insights and new opportunities for Clostridioides difficile intervention. Crit. Rev. Microbiol. 2023, 49, 414–434. [Google Scholar] [CrossRef]
- Sharma, S.; Kumar, S.; Sajjad, S.; Sharma, S. Probiotics in Irritable Bowel Syndrome: A Review Article. Cureus 2023, 15, e36565. [Google Scholar] [CrossRef]
- So, D.; Quigley, E.M.M.; Whelan, K. Probiotics in irritable bowel syndrome and inflammatory bowel disease: Review of mechanisms and effectiveness. Curr. Opin. Gastroenterol. 2023, 39, 103–109. [Google Scholar] [CrossRef]
- Szajewska, H.; Horvath, A.; Kołodziej, M. Systematic review with meta-analysis: Saccharomyces boulardii supplementation and eradication of Helicobacter pylori infection. Aliment. Pharmacol. Ther. 2015, 41, 1237–1245. [Google Scholar] [CrossRef]
- Barbosa, M.L.L.; Albano, M.O.; Martins, C.D.S.; Warren, C.A.; Brito, G.A.C. Role of probiotics in preventing Clostridioides difficile infection in older adults: An integrative review. Front. Med. 2023, 10, 1219225. [Google Scholar] [CrossRef]
- Dinleyici, M.; Vandenplas, Y. Clostridium difficile Colitis Prevention and Treatment. Adv. Exp. Med. Biol. 2019, 1125, 139–146. [Google Scholar] [CrossRef]
- Furnari, M.; De Alessandri, A.; Cresta, F.; Haupt, M.; Bassi, M.; Calvi, A.; Haupt, R.; Bodini, G.; Ahmed, I.; Bagnasco, F.; et al. The role of small intestinal bacterial overgrowth in cystic fibrosis: A randomized case-controlled clinical trial with rifaximin. J. Gastroenterol. 2019, 54, 261–270. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver. Clinical Practice Guidelines for the management of patients with decompensated cirrhosis. J. Hepatol. 2018, 69, 406–460. [Google Scholar] [CrossRef] [PubMed]
- Rezaie, A.; Buresi, M.; Lembo, A.; Lin, H.; McCallum, R.; Rao, S.; Schmulson, M.; Valdovinos, M.; Zakko, S.; Pimentel, M. Hydrogen and Methane-Based Breath Testing in Gastrointestinal Disorders: The North American Consensus. Am. J. Gastroenterol. 2017, 112, 775–784. [Google Scholar] [CrossRef] [PubMed]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults, an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 1–39.e14. [Google Scholar] [CrossRef] [PubMed]
- Marwick, T.H.; Gillebert, T.C.; Aurigemma, G.; Chirinos, J.; Derumeaux, G.; Galderisi, M.; Gottdiener, J.; Haluska, B.; Ofili, E.; Segers, P.; et al. Recommendations on the Use of Echocardiography in Adult Hypertension, a Report from the European Association of Cardiovascular Imaging (EACVI) and the American Society of Echocardiography (ASE). J. Am. Soc. Echocardiogr. 2015, 28, 727–754. [Google Scholar] [CrossRef] [PubMed]
- Rudski, L.G.; Lai, W.W.; Afilalo, J.; Hua, L.; Handschumacher, M.D.; Chandrasekaran, K.; Solomon, S.D.; Louie, E.K.; Schiller, N.B. Guidelines for the echocardiographic assessment of the right heart in adults, a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J. Am. Soc. Echocardiogr. 2010, 23, 685–713. [Google Scholar] [CrossRef] [PubMed]
- Bossone, E.; D’andrea, A.; D’alto, M.; Citro, R.; Argiento, P.; Ferrara, F.; Cittadini, A.; Rubenfire, M.; Naeije, R. Echocardiography in pulmonary arterial hypertension, from diagnosis to prognosis. J. Am. Soc. Echocardiogr. 2013, 26, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Sangkum, L.; Liu, G.L.; Yu, L.; Yan, H.; Kaye, A.D.; Liu, H. Minimally invasive or noninvasive cardiac output measurement, an update. J. Anesth. 2016, 30, 461–480. [Google Scholar] [CrossRef]
- Bernardi, M.; Moreau, R.; Angeli, P.; Schnabl, B.; Arroyo, V. Mechanisms of decompensation and organ failure in cirrhosis: From peripheral arterial vasodilation to systemic inflammation hypothesis. J. Hepatol. 2015, 63, 1272–1284. [Google Scholar] [CrossRef] [PubMed]
- Maslennikov, R.; Poluektova, E.; Zolnikova, O.; Sedova, A.; Kurbatova, A.; Shulpekova, Y.; Dzhakhaya, N.; Kardasheva, S.; Nadinskaia, M.; Bueverova, E.; et al. Gut Microbiota and Bacterial Translocation in the Pathogenesis of Liver Fibrosis. Int. J. Mol. Sci. 2023, 24, 16502. [Google Scholar] [CrossRef] [PubMed]
- Arroyo, V.; Angeli, P.; Moreau, R.; Jalan, R.; Clària, J.; Trebicka, J.; Fernández, J.; Gustot, T.; Caraceni, P.; Bernardi, M.; et al. The systemic inflammation hypothesis, towards a new paradigm of acute decompensation and multiorgan failure in cirrhosis. J. Hepatol. 2021, 74, 670–685. [Google Scholar] [CrossRef] [PubMed]
- Maslennikov, R.; Ivashkin, V.; Efremova, I.; Poluektova, E.; Shirokova, E. Gut-liver axis in cirrhosis: Are hemodynamic changes a missing link? World J. Clin. Cases 2021, 9, 9320–9332. [Google Scholar] [CrossRef]
- Xiao, Q.A.; Yang, Y.F.; Chen, L.; Xie, Y.C.; Li, H.T.; Fu, Z.G.; Han, Q.; Qin, J.; Tian, J.; Zhao, W.J.; et al. The causality between gut microbiome and liver cirrhosis: A bi-directional two-sample Mendelian randomization analysis. Front. Microbiol. 2023, 14, 1256874. [Google Scholar] [CrossRef]
- Tilg, H.; Adolph, T.E.; Trauner, M. Gut-liver axis: Pathophysiological concepts and clinical implications. Cell Metab. 2022, 34, 1700–1718. [Google Scholar] [CrossRef]
- Maslennikov, R.; Ivashkin, V.; Efremova, I.; Poluektova, E.; Kudryavtseva, A.; Krasnov, G. Gut dysbiosis and small intestinal bacterial overgrowth as independent forms of gut microbiota disorders in cirrhosis. World J. Gastroenterol. 2022, 28, 1067–1077. [Google Scholar] [CrossRef] [PubMed]
- Nicoletti, A.; Ponziani, F.R.; Biolato, M.; Valenza, V.; Marrone, G.; Sganga, G.; Gasbarrini, A.; Miele, L.; Grieco, A. Intestinal permeability in the pathogenesis of liver damage: From non-alcoholic fatty liver disease to liver transplantation. World J. Gastroenterol. 2019, 25, 4814–4834. [Google Scholar] [CrossRef]
- Lian, X.X.; Sun, Y.P.; Guo, X.X. Correlation between intestinal mucosal permeability and prognosis in patients with liver cirrhosis. Zhonghua Gan Zang Bing Za Zhi 2020, 28, 58–63. [Google Scholar] [CrossRef]
- Choi, Y.; Jeon, W.K.; Hwang, S.J.; Kim, B.I.; Sohn, C.I.; Park, D.I.; Cho, Y.K.; Kim, H.J.; Park, J.H. The role of the gut barrier function in the pathophysiology of viral liver cirrhosis. Hepatogastroenterology 2011, 58, 1244–1247. [Google Scholar] [CrossRef] [PubMed]
- Maslennikov, R.; Alieva, A.; Poluektova, E.; Zharikov, Y.; Suslov, A.; Letyagina, Y.; Vasileva, E.; Levshina, A.; Kozlov, E.; Ivashkin, V. Sarcopenia in cirrhosis: Prospects for therapy targeted to gut microbiota. World J. Gastroenterol. 2023, 29, 4236–4251. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Feng, Y.; Cao, B.; Tian, Q. Effects of SIBO and rifaximin therapy on MHE caused by hepatic cirrhosis. Int. J. Clin. Exp. Med. 2015, 8, 2954–2957. [Google Scholar] [PubMed]
- Wang, Z.; Wang, A.; Gong, Z.; Biviano, I.; Liu, H.; Hu, J. Plasma claudin-3 is associated with tumor necrosis factor-alpha-induced intestinal endotoxemia in liver disease. Clin. Res. Hepatol. Gastroenterol. 2019, 43, 410–416. [Google Scholar] [CrossRef] [PubMed]
- Zhong, C.; Qu, C.; Wang, B.; Liang, S.; Zeng, B. Probiotics for Preventing and Treating Small Intestinal Bacterial Overgrowth: A Meta-Analysis and Systematic Review of Current Evidence. J. Clin. Gastroenterol. 2017, 51, 300–311. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Li, N.; Wang, C.; Xing, H.; Chen, D.; Wei, Y. Clinical efficacy of fecal microbiota transplantation for patients with small intestinal bacterial overgrowth: A randomized, placebo-controlled clinic study. BMC Gastroenterol. 2021, 21, 54. [Google Scholar] [CrossRef] [PubMed]
- Hong, A.S.; Tun, K.M.; Hong, J.M.; Batra, K.; Ohning, G. Fecal Microbiota Transplantation in Decompensated Cirrhosis: A Systematic Review on Safety and Efficacy. Antibiotics 2022, 11, 838. [Google Scholar] [CrossRef] [PubMed]
- Tun, K.M.; Hong, A.S.; Batra, K.; Naga, Y.; Ohning, G. A Systematic Review of the Efficacy and Safety of Fecal Microbiota Transplantation in the Treatment of Hepatic Encephalopathy and Clostridioides difficile Infection in Patients with Cirrhosis. Cureus 2022, 14, e25537. [Google Scholar] [CrossRef]
- Boicean, A.; Birlutiu, V.; Ichim, C.; Brusnic, O.; Onișor, D.M. Fecal Microbiota Transplantation in Liver Cirrhosis. Biomedicines 2023, 11, 2930. [Google Scholar] [CrossRef] [PubMed]
The Probiotic Group (n = 20) | The Placebo Group (n = 13) | p | |
---|---|---|---|
Age, years | 53 [46–62] | 53 [45–56] | 0.507 |
Body mass index, kg/m2 | 26.2 [23.1–29.2] | 25.9 [24.0–28.4] | 0.985 |
Male/female | 6/14 | 6/7 | 0.283 |
Etiology of cirrhosis: alcohol | 11 (55.0%) | 7 (53.8%) | >0.050 |
Metabolism-associated fatty liver disease | 2 (10.0%) | - | |
HBV | 1 (5.0%) | - | |
HCV | 3 (15.0%) | 2 (15.4%) | |
Mixed | 2 (10.0%) | 2 (15.4%) | |
Cryptogenic | 1 (5.0%) | 2 (15.4%) | |
The drugs used by the patients within the 3-month treatment period | |||
Beta blockers, n (%) | 17 (85.0%) | 11 (84.6%) | 0.669 |
Spironolactone, n (%) | 18 (90.0%) | 12 (92.3%) | 0.662 |
Loop diuretics, n (%) | 9 (45.0%) | 6 (46.2%) | 0.249 |
Ademetionine, n (%) | 11 (55.0%) | 7 (53.8%) | 0.614 |
Entecavir, n (%) | 1 (5.0%) | - | 0.640 |
The Probiotic Group (n = 20) | The Placebo Group (n = 13) | p (At Inclusion) | |||||
---|---|---|---|---|---|---|---|
At Inclusion | After Treatment | p | At Inclusion | After Treatment | p | ||
Child–Pugh score | 8 [8–10] | 7 [6–8] | <0.001 | 9 [8–9] | 10 [9–10] | 0.051 | 0.418 |
Child–Pugh class, A/B + C | 0/15 + 5 | 8/11 + 1 | 0.002 | 0/10 + 3 | 0/5 + 8 | 1.000 | 1.000 |
End-diastolic volume of the left ventricle, mL | 101 [83–115] | 85 [74–100] | <0.001 | 95 [88–105] | 100 [88–137] | 0.657 | 0.811 |
Ejection fraction of the left ventricle, % | 61.7 [59.7–62.7] | 62.2 [60.5–63.7] | 0.126 | 59.6 [58.0–61.0] | 59.6 [57.7–63.0] | 0.859 | 0.146 |
Stroke volume, mL | 62 [51–72] | 54 [46–62] | <0.001 | 57 [55–64] | 63 [55–87] | 0.541 | 0.768 |
Heart rate, bpm | 71 [68–75] | 74 [70–79] | 0.087 | 71 [69–76] | 69 [64–71] | 0.422 | 0.581 |
Cardiac output, L/min | 4.3 [3.5–5.1] | 4.1 [3.1–4.6] | 0.007 | 4.4 [4.0–5.2] | 4.4 [3.9–6.0] | 0.701 | 0.507 |
Mean blood pressure, mmHg | 85 [80–90] | 87 [85–93] | 0.095 | 82 [80–89] | 89 [85–98] | 0.289 | 0.428 |
Systemic vascular resistance, dyn·s·cm−5 | 1513 [1281–2025] | 1773 [1542–2231] | 0.001 | 1509 [1302–1691] | 1536 [1302–1816] | 0.600 | 0.868 |
Systolic pulmonary artery pressure, mmHg | 35 [33–39] | 36 [33–40] | 0.900 | 35 [32–37] | 35 [35–37] | 0.285 | 0.782 |
Nitrates, µmol/L | 120 [3–160] | 97 [22–169] | 0.717 | 146 [78–174] | 136 [114–150] | 0.807 | 0.125 |
Claudin 3, ng/mL | 12.8 [10.3–20.2] | 10.4 [7.7–14.9] | 0.093 | 15.5 [11.6–17.8] | 12.1 [10.5–13.8] | 0.152 | 0.912 |
Lipopolysaccharide, mEU/ml | 30 [5–390] | 4 [1–10] | 0.010 | 17 [10–75] | 17 [0–49] | 0.155 | 0.971 |
Esophageal varices (Grade 1), n (%) | 7 (35.0%) | 6 (30.0%) | 0.598 | 5 (38.5%) | 5 (38.5%) | 0.672 | 0.344 |
Esophageal varices (Grade 2-3), n (%) | 13 (65.0%) | 12 (60.0%) | 5 (38.5%) | 5 (38.5%) | |||
No esophageal varices, n (%) | 0 | 2 (10.0%) | 0.244 | 3 (23.1%) | 3 (23.1%) | 0.678 | 0.052 |
Minimal hepatic encephalopathy, n (%) | 14 (70.0%) | 10 (50.0%) | 0.369 | 9 (69.2%) | 10 (76.9%) | 0.500 | 0.545 |
Overt hepatic encephalopathy, n (%) | 2 (10.0%) | 0 | 2 (15.4%) | 1 (7.7%) | |||
Hepatic encephalopathy, n (%) | 16 (80.0%) | 10 (50.0%) | 0.048 | 11 (84.6%) | 11 (84.6%) | 0.704 | 0.558 |
Ascites, n (%) | 19 (95.0%) | 8 (40.0%) | <0.001 | 9 (69.2%) | 11 (84.6%) | 0.322 | 0.066 |
Minimal ascites, n (%) | 13 (65.0%) | 6 (30.0%) | 0.558 | 4 (30.8%) | 7 (53.8%) | 0.343 | 0.212 |
Clinically significant ascites, n (%) | 6 (30.0%) | 2 (10.0%) | 5 (38.5%) | 4 (30.8%) | |||
Hemoglobin, g/L | 114 [105–127] | 117 [100–123] | 0.614 | 103 [88–117] | 101 [84–112] | 0.552 | 0.185 |
White blood cells, 109 cell/L | 4.4 [3.5–5.6] | 4.3 [3.5–5.4] | 0.614 | 4.0 [2.6–7.9] | 3.3 [2.9–3.7] | 0.117 | 0.839 |
Platelets, 109 cell/L | 97 [76–108] | 114 [82–141] | 0.001 | 98 [92–104] | 92 [66–103] | 0.017 | 0.912 |
Serum total protein, g/L | 67 [61–75] | 72 [70–75] | 0.270 | 72 [67–77] | 74 [61–75] | 0.552 | 0.285 |
Serum albumin, g/L | 33 [31–36] | 38 [33–41] | 0.001 | 33 [28–37] | 31 [27–34] | 0.208 | 0.971 |
Serum total bilirubin, μmol/L | 36 [26–53] | 28 [22–31] | 0.851 | 57 [30–64] | 60 [44–65] | 0.861 | 0.277 |
International normalized ratio | 1.48 [1.39–1.68] | 1.49 [1.30–1.59] | 0.360 | 1.55 [1.34–1.72] | 1.61 [1.52–1.69] | 0.784 | 0.854 |
Serum cholesterol, mmol/L | 4.1 [3.2–5.5] | 4.5 [4.1–5.0] | <0.001 | 3.9 [3.1–4.7] | 4.3 [3.3–5.1] | 0.650 | 0.450 |
Serum triglyceride, mmol/L | 1.1 [0.7–1.4] | 0.9 [0.7–1.2] | 0.852 | 1.2 [0.8–1.5] | 1.0 [0.7–1.2] | 0.152 | 0.619 |
Serum creatinine, μmol/L | 76 [62–88] | 80 [72–90] | 0.411 | 73 [68–107] | 77 [71–97] | 0.530 | 0.568 |
Serum sodium, mmol/L | 141 [140–142] | 142 [141–143] | 0.025 | 141 [140–141] | 141 [140–141] | 0.965 | 0.811 |
Serum potassium, mmol/L | 4.3 [4.0–4.8] | 4.4 [4.1–5.0] | 0.836 | 4.4 [4.1–4.6] | 4.3 [4.1–4.7] | 0.799 | 0.941 |
Serum glucose, mmol/L | 4.7 [4.1–5.7] | 5.2 [4.5–5.8] | 0.013 | 4.8 [4.7–5.4] | 4.8 [4.3–5.6] | 0.972 | 0.367 |
Serum iron, μmol/L | 14 [8–20] | 15 [11–21] | 0.232 | 9 [7–21] | 15 [6–23] | 0.807 | 0.568 |
Alanine aminotransferase, U/L | 31 [19–43] | 32 [23–39] | 0.888 | 28 [21–51] | 23 [20–50] | 0.552 | 0.645 |
Aspartate aminotransferase, U/L | 49 [30–67] | 37 [32–46] | 0.030 | 62 [45–80] | 51 [48–72] | 0.463 | 0.329 |
Gamma glutamyl transferase, U/L | 61 [28–299] | 56 [39–106] | 0.185 | 98 [68–122] | 116 [61–126] | 0.650 | 0.407 |
Alkaline phosphatase, U/L | 265 [221–372] | 211 [186–259] | 0.006 | 212 [174–287] | 315 [214–359] | 0.221 | 0.179 |
Cholinesterase, U/L | 3596 [2875–4142] | 4546 [3601–5678] | 0.110 | 3803 [2778–5056] | 3263 [2751–3851] | 0.033 | 0.976 |
C-reactive protein, mg/L | 8 [6–14] | 7 [4–11] | 0.036 | 7 [2–20] | 7 [3–21] | 0.937 | 0.580 |
SIBO Eradicated (n = 19) | SIBO Persisted (n = 14) | p (At Inclusion) | |||||
---|---|---|---|---|---|---|---|
At Inclusion | After Treatment | p | At Inclusion | After Treatment | p | ||
Age, years | 49 [43–62] | 55 [48–57] | 0.489 | ||||
Body mass index, kg/m2 | 25.9 [22.6–28.7] | 25.8 [24.0–29.2] | 0.363 | 26.2 [24.0–29.0] | 28.0 [24.9–29.0] | 0.674 | 0.702 |
Male/female | 5/14 | 7/7 | 0.151 | ||||
Etiology of cirrhosis: alcohol | 12 (63.2%) | 6 (42.9%) | >0.050 | ||||
Metabolical associated fatty liver disease | 1 (5.3%) | 1 (7.1%) | |||||
HBV | 1 (5.3%) | – | |||||
HCV | 2 (10.5%) | 3 (21.4%) | |||||
mixed | 1 (5.3%) | 3 (21.4%) | |||||
cryptogenic | 2 (10.5%) | – | |||||
Child–Pugh score | 8 [7–9] | 7 [6–7] | 0.008 | 9 [9–10] | 10 [9–10] | 0.374 | 0.131 |
Child–Pugh class, A/B + C | 0/15 + 4 | 8/10 + 1 | 0.002 | 0/10 + 4 | 0/6 + 8 | 1.000 | 1.000 |
End-diastolic volume of the left ventricle, mL | 94 [83–112] | 88 [74–101] | 0.002 | 98 [88–116] | 99 [87–112] | 0.410 | 0.524 |
Ejection fraction of the left ventricle, % | 61.6 [59.6–62.7] | 62.2 [60.4–63.9] | 0.295 | 59.2 [57.9–62.1] | 60.0 [58.7–63.0] | 0.814 | 0.105 |
Stroke volume, mL | 57 [50–69] | 55 [46–62] | 0.002 | 58 [55–7] | 61 [46–67] | 0.563 | 0.729 |
Heart rate, bpm | 72 [67–76] | 72 [68–80] | 0.486 | 71 [68–72] | 71 [68–78] | 0.683 | 0.799 |
Cardiac output, L/min | 4.1 [3.5–5.2] | 4.0 [3.1–4.6] | 0.049 | 4.4 [4.0–5.1] | 4.2 [3.7–5.2] | 0.638 | 0.970 |
Mean blood pressure, mmHg | 83 [79–92] | 87 [82–93] | 0.408 | 86 [80–89] | 89 [86–97] | 0.090 | 0.855 |
Systemic vascular resistance, dyn·s·cm−5 | 1517 [1232–2164] | 1716 [1403–2301] | 0.010 | 1470 [1362–1798] | 1812 [1478–1895] | 0.140 | 0.870 |
Systolic pulmonary artery pressure, mmHg | 35 [33–39] | 35 [33–40] | 0.944 | 35 [30–40] | 36 [35–38] | 0.398 | 0.985 |
Nitrates, µmol/L | 126 [6–172] | 82 [22–137] | 0.420 | 129 [78–172] | 149 [122–180] | 0.198 | 0.608 |
Lipopolysaccharide, mEU/ml | 35 [8–642] | 4 [0–17] | 0.023 | 17 [3–75] | 4 [0–23] | 0.075 | 0.813 |
Claudin 3, ng/mL | 12.3 [8.5–21.2] | 10.9 [8.9–15.3] | 0.198 | 15.9 [11.9–17.8] | 11.7 [8.9–13.8] | 0.064 | 0.548 |
Esophageal varices (Grade 1), n (%) | 7 (36.8%) | 6 (31.6%) | 0.607 | 5 (35.7%) | 5 (35.7%) | 0.515 | 0.430 |
Esophageal varices (Grade 2-3), n (%) | 11 (52.6%) | 10(52.6%) | 5 (35.7%) | 7 (50.0%) | |||
No esophageal varices, n (%) | 1 (5.3%) | 3 (15,8%) | 0.302 | 4 (28.4%) | 2 (14.2%) | 0.324 | 0.087 |
Minimal hepatic encephalopathy, n (%) | 13 (68.4%) | 7 (36.8%) | 0.667 | 10 (71.4%) | 13 (92.9%) | 0.269 | 0.269 |
Overt hepatic encephalopathy, n (%) | 1 (5.3%) | 0 | 3 (21.4%) | 1 (7.1%) | |||
Hepatic encephalopathy, n (%) | 14 (73.7%) | 7 (36.8%) | 0.024 | 13 (92.8%) | 14 (100.0%) | 0.500 | 0.172 |
Ascites, n (%) | 17 (89.5%) | 9 (47.4%) | 0.006 | 11 (78.6%) | 10 (71.4%) | 0.500 | 0.351 |
Minimal ascites, n (%) | 12 (63.2%) | 7 (36.8%) | 0.538 | 5 (35.7%) | 6 (42.9%) | 0.410 | 0.248 |
Clinically significant ascites, n (%) | 5 (26.3%) | 2 (10.5%) | 6 (42.9%) | 4 (28.6%) | |||
Hemoglobin, g/L | 113 [97–129] | 113 [96–124] | 0.856 | 110 [88–117] | 112 [92–121] | 0.875 | 0.597 |
White blood cells, 109 cell/L | 4.5 [3.1–5.6] | 4.1 [3.3–5.6] | 0.857 | 4.1 [3.5–7.5] | 3.3 [2.9–4.2] | 0.101 | 0.841 |
Platelets, 109 cell/L | 98 [75–112] | 113 [78–129] | 0.043 | 97 [92–104] | 95 [75–104] | 0.851 | 0.757 |
Serum total protein, g/L | 66 [61–72] | 71 [69–76] | 0.046 | 76 [69–78] | 74 [70–75] | 0.158 | 0.005 |
Serum albumin, g/L | 35 [31–36] | 37 [33–40] | 0.046 | 32 [27–37] | 31 [27–34] | 0.551 | 0.372 |
Serum globulins, g/L | 32 [29–38] | 32 [29–38] | 0.746 | 41 [39–55] | 40 [31–48] | 0.249 | 0.003 |
Serum total bilirubin, μmol/L | 37 [22–61] | 28 [20–35] | 0.049 | 43 [30–64] | 49 [35–62] | 0.851 | 0.524 |
International normalized ratio | 1.44 [1.31–1.65] | 1.49 [1.26–1.64] | 0.520 | 1.64 [1.45–1.74] | 1.61 [1.46–1.69] | 0.972 | 0.145 |
Serum cholesterol, mmol/L | 4.1 [3.3–5.3] | 4.5 [4.2–5.1] | 0.444 | 3.7 [3.0–4.7] | 4.0 [3.2–5.1] | 0.363 | 0.183 |
Serum triglyceride, mmol/L | 1.1 [0.7–1.5] | 0.9 [0.7–1.2] | 0.421 | 1.1 [0.8–1.4] | 1.0 [0.7–1.3] | 0.510 | 0.813 |
Serum creatinine, μmol/L | 76 [65–107] | 76 [72–96] | 0.687 | 79 [67–103] | 83 [71–97] | 0.701 | 0.913 |
Serum sodium, mmol/L | 141 [140–142] | 142 [140–143] | 0.227 | 141 [138–141] | 141 [140–142] | 0.239 | 0.291 |
Serum potassium, mmol/L | 4.5 [4.0–4.8] | 4.6 [4.1–5.0] | 0.414 | 4.1 [4.0–4.5] | 4.3 [4.1–4.6] | 0.610 | 0.150 |
Serum glucose, mmol/L | 4.9 [4.0–5.5] | 4.8 [4.4–5.6] | 0.240 | 4.8 [4.6–5.5] | 5.4 [4.4–5.9] | 0.300 | 0.649 |
Serum iron, μmol/L | 14 [8–20] | 16 [9–22] | 0.421 | 9 [7–21] | 15 [6–23] | 0.551 | 0.771 |
Alanine aminotransferase, U/L | 30 [18–44] | 31 [18–39] | 0.879 | 30 [21–64] | 32 [20–50] | 0.451 | 0.536 |
Aspartate aminotransferase, U/L | 51 [31–65] | 41 [36–52] | 0.199 | 62 [37–81] | 50 [30–51] | 0.177 | 0.334 |
Gamma glutamyl transferase, U/L | 101 [34–317] | 62 [42–109] | 0.116 | 84 [44–122] | 94 [42–126] | 0.470 | 0.649 |
Alkaline phosphatase, U/L | 268 [227–408] | 215 [187–361] | 0.031 | 211 [174–268] | 242 [201–342] | 0.463 | 0.058 |
Cholinesterase, U/L | 3713 [3218–4142] | 4766 [3648–5678] | 0.286 | 3358 [2778–5056] | 3125 [2751–3851] | 0.131 | 0.601 |
C-reactive protein, mg/L | 7 [5–20] | 6 [3–10] | 0.033 | 8 [4–20] | 9 [5–17] | 0.972 | 0.827 |
Factor | The 2 Years Follow-Up Period | The First Year Follow-Up | ||
---|---|---|---|---|
p | HR | p | HR | |
Hepatic encephalopathy stage * | 0.001 | 19.9 [95% CI: 3.3–120] | 0.008 | 16.3 [95% CI: 1.3–203] |
Serum total bilirubin | 0.365 | 0.144 | ||
Serum albumin | 0.507 | 0.645 | ||
International normalized ratio | 0.370 | 0.277 | ||
Serum creatinine | 0.173 | 0.116 | ||
Ascites degree | 0.450 | 0.374 | ||
SIBO eradication | 0.051 | 0.023 | 0.049 [95% CI: 0.003–0.657] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Efremova, I.; Maslennikov, R.; Zharkova, M.; Poluektova, E.; Benuni, N.; Kotusov, A.; Demina, T.; Ivleva, A.; Adzhieva, F.; Krylova, T.; et al. Efficacy and Safety of a Probiotic Containing Saccharomyces boulardii CNCM I-745 in the Treatment of Small Intestinal Bacterial Overgrowth in Decompensated Cirrhosis: Randomized, Placebo-Controlled Study. J. Clin. Med. 2024, 13, 919. https://doi.org/10.3390/jcm13030919
Efremova I, Maslennikov R, Zharkova M, Poluektova E, Benuni N, Kotusov A, Demina T, Ivleva A, Adzhieva F, Krylova T, et al. Efficacy and Safety of a Probiotic Containing Saccharomyces boulardii CNCM I-745 in the Treatment of Small Intestinal Bacterial Overgrowth in Decompensated Cirrhosis: Randomized, Placebo-Controlled Study. Journal of Clinical Medicine. 2024; 13(3):919. https://doi.org/10.3390/jcm13030919
Chicago/Turabian StyleEfremova, Irina, Roman Maslennikov, Maria Zharkova, Elena Poluektova, Nona Benuni, Aleksandr Kotusov, Tatyana Demina, Aleksandra Ivleva, Farida Adzhieva, Taisiya Krylova, and et al. 2024. "Efficacy and Safety of a Probiotic Containing Saccharomyces boulardii CNCM I-745 in the Treatment of Small Intestinal Bacterial Overgrowth in Decompensated Cirrhosis: Randomized, Placebo-Controlled Study" Journal of Clinical Medicine 13, no. 3: 919. https://doi.org/10.3390/jcm13030919
APA StyleEfremova, I., Maslennikov, R., Zharkova, M., Poluektova, E., Benuni, N., Kotusov, A., Demina, T., Ivleva, A., Adzhieva, F., Krylova, T., & Ivashkin, V. (2024). Efficacy and Safety of a Probiotic Containing Saccharomyces boulardii CNCM I-745 in the Treatment of Small Intestinal Bacterial Overgrowth in Decompensated Cirrhosis: Randomized, Placebo-Controlled Study. Journal of Clinical Medicine, 13(3), 919. https://doi.org/10.3390/jcm13030919