Analysis of Patients with Severe ARDS on VV ECMO Treated with Inhaled NO: A Retrospective Observational Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Objectives
- To describe inhaled NO treatment in terms of the indication, dosing, and duration of application.
- To measure the inhaled NO ability to lower mean pulmonary arterial pressure (mean PAP) in patients under VV ECMO support who are responders and non-responders to inhaled NO.
- To measure outcome parameters, such as survival in ICU, using the simplified acute physiology score II (SAPS II) [35], in-hospital mortality, and long-term survival.
2.3. Study Population
2.4. Inclusion Criteria
- Age > 18 years old;
- Electronic medical records available, including VV ECMO run parameters, vital parameters, and laboratory measurements (both point-of-care and laboratory diagnostics);
- VV ECMO support;
- ARDS following the Berlin definition [11], and with or without inhaled NO administration.
2.5. Exclusion Criteria
2.6. Indication for ECMO
2.7. Indication for Inhaled NO Delivery and Definition of PAH and RV Failure
2.8. Ethics
2.9. Statistical Analyses
3. Results
3.1. Identification and Characteristics of the Eligible Study Cohort
3.2. Indication, Dosing, and Duration of Inhaled NO Treatment in Patients with VV ECMO
3.3. Ability of Inhaled NO to Lower Mean PAP in Responder and Non-Responder Patients
3.4. Organ Failure, ECMO Circuit Weaning, and Rate of Tracheostomy
3.5. Standard Ventilation Parameters and Blood Gas Analyses Both on Days 1, 3, and 7 during VV ECMO
3.6. Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, B.; Ichinose, F.; Bloch, D.B.; Zapol, W.M. Inhaled Nitric Oxide. Br. J. Pharmacol. 2019, 176, 246–255. [Google Scholar] [CrossRef] [PubMed]
- Pison, U.; López, F.A.; Heidelmeyer, C.F.; Rossaint, R.; Falke, K.J. Inhaled Nitric Oxide Reverses Hypoxic Pulmonary Vasoconstriction without Impairing Gas Exchange. J. Appl. Physiol. 1993, 74, 1287–1292. [Google Scholar] [CrossRef] [PubMed]
- Kinsella, J.P.; Neish, S.R.; Shaffer, E.; Abman, S.H. Low-Dose Inhalation Nitric Oxide in Persistent Pulmonary Hypertension of the Newborn. Lancet 1992, 340, 819–820. [Google Scholar] [CrossRef] [PubMed]
- Berra, L.; Pinciroli, R.; Stowell, C.P.; Wang, L.; Yu, B.; Fernandez, B.O.; Feelisch, M.; Mietto, C.; Hod, E.A.; Chipman, D.; et al. Autologous Transfusion of Stored Red Blood Cells Increases Pulmonary Artery Pressure. Am. J. Respir. Crit. Care Med. 2014, 190, 800–807. [Google Scholar] [CrossRef] [PubMed]
- Muenster, S.; Beloiartsev, A.; Yu, B.; Du, E.; Abidi, S.; Dao, M.; Fabry, G.; Graw, J.A.; Wepler, M.; Malhotra, R.; et al. Exposure of Stored Packed Erythrocytes to Nitric Oxide Prevents Transfusion-Associated Pulmonary Hypertension. Anesthesiology 2016, 125, 952–963. [Google Scholar] [CrossRef] [PubMed]
- The Neonatal Inhaled Nitric Oxide Study Group (NINOS). Inhaled Nitric Oxide and Hypoxic Respiratory Failure in Infants with Congenital Diaphragmatic Hernia. Pediatrics 1997, 99, 838–845. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.D.; Fineman, J.R.; Morin, F.C.; Shaul, P.W.; Rimar, S.; Schreiber, M.D.; Polin, R.A.; Zwass, M.S.; Zayek, M.M.; Gross, I.; et al. Inhaled Nitric Oxide and Persistent Pulmonary Hypertension of the Newborn. N. Engl. J. Med. 1997, 336, 605–610. [Google Scholar] [CrossRef]
- Clark, R.H.; Kueser, T.J.; Walker, M.W.; Southgate, W.M.; Huckaby, J.L.; Perez, J.A.; Roy, B.J.; Keszler, M.; Kinsella, J.P. Low-Dose Nitric Oxide Therapy for Persistent Pulmonary Hypertension of the Newborn. N. Engl. J. Med. 2000, 342, 469–474. [Google Scholar] [CrossRef]
- Ashbaugh, D.G.; Bigelow, D.B.; Petty, T.L.; Levine, B.E. Acute Respiratory Distress in Adults. Lancet 1967, 2, 319–323. [Google Scholar] [CrossRef]
- Bernard, G.R.; Artigas, A.; Brigham, K.L.; Carlet, J.; Falke, K.; Hudson, L.; Lamy, M.; LeGall, J.R.; Morris, A.; Spragg, R. Report of the American-European Consensus Conference on Acute Respiratory Distress Syndrome: Definitions, Mechanisms, Relevant Outcomes, and Clinical Trial Coordination. Consensus Committee. J. Crit. Care 1994, 9, 72–81. [Google Scholar] [CrossRef]
- ARDS Definition Task Force; Ranieri, V.M.; Rubenfeld, G.D.; Thompson, B.T.; Ferguson, N.D.; Caldwell, E.; Fan, E.; Camporota, L.; Slutsky, A.S. Acute Respiratory Distress Syndrome: The Berlin Definition. JAMA 2012, 307, 2526–2533. [Google Scholar] [CrossRef]
- Fan, E.; Brodie, D.; Slutsky, A.S. Acute Respiratory Distress Syndrome: Advances in Diagnosis and Treatment. JAMA 2018, 319, 698–710. [Google Scholar] [CrossRef]
- Bellani, G.; Laffey, J.G.; Pham, T.; Fan, E.; Brochard, L.; Esteban, A.; Gattinoni, L.; van Haren, F.; Larsson, A.; McAuley, D.F.; et al. Epidemiology, Patterns of Care, and Mortality for Patients with Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. JAMA 2016, 315, 788–800. [Google Scholar] [CrossRef] [PubMed]
- Rubenfeld, G.D.; Caldwell, E.; Peabody, E.; Weaver, J.; Martin, D.P.; Neff, M.; Stern, E.J.; Hudson, L.D. Incidence and Outcomes of Acute Lung Injury. N. Engl. J. Med. 2005, 353, 1685–1693. [Google Scholar] [CrossRef]
- Rubenfeld, G.D. Epidemiology of Acute Lung Injury. Crit. Care Med. 2003, 31, S276–S284. [Google Scholar] [CrossRef]
- Acute Respiratory Distress Syndrome Network; Brower, R.G.; Matthay, M.A.; Morris, A.; Schoenfeld, D.; Thompson, B.T.; Wheeler, A. Ventilation with Lower Tidal Volumes as Compared with Traditional Tidal Volumes for Acute Lung Injury and the Acute Respiratory Distress Syndrome. N. Engl. J. Med. 2000, 342, 1301–1308. [Google Scholar] [CrossRef] [PubMed]
- Writing Group for the Alveolar Recruitment for Acute Respiratory Distress Syndrome Trial (ART) Investigators; Cavalcanti, A.B.; Suzumura, É.A.; Laranjeira, L.N.; de Moraes Paisani, D.; Damiani, L.P.; Guimarães, H.P.; Romano, E.R.; de Moraes Regenga, M.; Taniguchi, L.N.T.; et al. Effect of Lung Recruitment and Titrated Positive End-Expiratory Pressure (PEEP) vs Low PEEP on Mortality in Patients with Acute Respiratory Distress Syndrome: A Randomized Clinical Trial. JAMA 2017, 318, 1335–1345. [Google Scholar] [CrossRef] [PubMed]
- Papazian, L.; Forel, J.-M.; Gacouin, A.; Penot-Ragon, C.; Perrin, G.; Loundou, A.; Jaber, S.; Arnal, J.-M.; Perez, D.; Seghboyan, J.-M.; et al. Neuromuscular Blockers in Early Acute Respiratory Distress Syndrome. N. Engl. J. Med. 2010, 363, 1107–1116. [Google Scholar] [CrossRef]
- Brun-Buisson, C.; Minelli, C.; Bertolini, G.; Brazzi, L.; Pimentel, J.; Lewandowski, K.; Bion, J.; Romand, J.-A.; Villar, J.; Thorsteinsson, A.; et al. Epidemiology and Outcome of Acute Lung Injury in European Intensive Care Units. Results from the ALIVE Study. Intensive Care Med. 2004, 30, 51–61. [Google Scholar] [CrossRef]
- Ryan, D.; Frohlich, S.; McLoughlin, P. Pulmonary Vascular Dysfunction in ARDS. Ann. Intensive Care 2014, 4, 28. [Google Scholar] [CrossRef]
- Ware, L.B.; Matthay, M.A. The Acute Respiratory Distress Syndrome. N. Engl. J. Med. 2000, 342, 1334–1349. [Google Scholar] [CrossRef] [PubMed]
- Chetham, P.M.; Babál, P.; Bridges, J.P.; Moore, T.M.; Stevens, T. Segmental Regulation of Pulmonary Vascular Permeability by Store-Operated Ca2+ Entry. Am. J. Physiol. 1999, 276, L41–L50. [Google Scholar] [CrossRef] [PubMed]
- Ochoa, C.D.; Stevens, T. Studies on the Cell Biology of Interendothelial Cell Gaps. Am. J. Physiol. Lung Cell. Mol. Physiol. 2012, 302, L275–L286. [Google Scholar] [CrossRef] [PubMed]
- Bull, T.M.; Clark, B.; McFann, K.; Moss, M.; National Institutes of Health/National Heart, Lung, and Blood Institute ARDS Network. Pulmonary Vascular Dysfunction Is Associated with Poor Outcomes in Patients with Acute Lung Injury. Am. J. Respir. Crit. Care Med. 2010, 182, 1123–1128. [Google Scholar] [CrossRef] [PubMed]
- Vieillard-Baron, A.; Jardin, F. Why Protect the Right Ventricle in Patients with Acute Respiratory Distress Syndrome? Curr. Opin. Crit. Care 2003, 9, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Rossaint, R.; Falke, K.J.; López, F.; Slama, K.; Pison, U.; Zapol, W.M. Inhaled Nitric Oxide for the Adult Respiratory Distress Syndrome. N. Engl. J. Med. 1993, 328, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Benzing, A.; Geiger, K. Inhaled Nitric Oxide Lowers Pulmonary Capillary Pressure and Changes Longitudinal Distribution of Pulmonary Vascular Resistance in Patients with Acute Lung Injury. Acta Anaesthesiol. Scand. 1994, 38, 640–645. [Google Scholar] [CrossRef]
- Bronicki, R.A.; Fortenberry, J.; Schreiber, M.; Checchia, P.A.; Anas, N.G. Multicenter Randomized Controlled Trial of Inhaled Nitric Oxide for Pediatric Acute Respiratory Distress Syndrome. J. Pediatr. 2015, 166, 365–369.e1. [Google Scholar] [CrossRef]
- Taylor, R.W.; Zimmerman, J.L.; Dellinger, R.P.; Straube, R.C.; Criner, G.J.; Davis, K.; Kelly, K.M.; Smith, T.C.; Small, R.J.; Inhaled Nitric Oxide in ARDS Study Group. Low-Dose Inhaled Nitric Oxide in Patients with Acute Lung Injury: A Randomized Controlled Trial. JAMA 2004, 291, 1603–1609. [Google Scholar] [CrossRef]
- Gerlach, H.; Keh, D.; Semmerow, A.; Busch, T.; Lewandowski, K.; Pappert, D.M.; Rossaint, R.; Falke, K.J. Dose-Response Characteristics during Long-Term Inhalation of Nitric Oxide in Patients with Severe Acute Respiratory Distress Syndrome: A Prospective, Randomized, Controlled Study. Am. J. Respir. Crit. Care Med. 2003, 167, 1008–1015. [Google Scholar] [CrossRef]
- Peek, G.J.; Mugford, M.; Tiruvoipati, R.; Wilson, A.; Allen, E.; Thalanany, M.M.; Hibbert, C.L.; Truesdale, A.; Clemens, F.; Cooper, N.; et al. Efficacy and Economic Assessment of Conventional Ventilatory Support versus Extracorporeal Membrane Oxygenation for Severe Adult Respiratory Failure (CESAR): A Multicentre Randomised Controlled Trial. Lancet 2009, 374, 1351–1363. [Google Scholar] [CrossRef]
- Sameed, M.; Meng, Z.; Marciniak, E.T. EOLIA Trial: The Future of Extracorporeal Membrane Oxygenation in Acute Respiratory Distress Syndrome Therapy? Breathe 2019, 15, 244–246. [Google Scholar] [CrossRef]
- Vincent, J.L.; de Mendonça, A.; Cantraine, F.; Moreno, R.; Takala, J.; Suter, P.M.; Sprung, C.L.; Colardyn, F.; Blecher, S. Use of the SOFA Score to Assess the Incidence of Organ Dysfunction/Failure in Intensive Care Units: Results of a Multicenter, Prospective Study. Working Group on “Sepsis-Related Problems” of the European Society of Intensive Care Medicine. Crit. Care Med. 1998, 26, 1793–1800. [Google Scholar] [CrossRef]
- Cullen, D.J.; Civetta, J.M.; Briggs, B.A.; Ferrara, L.C. Therapeutic Intervention Scoring System: A Method for Quantitative Comparison of Patient Care. Crit. Care Med. 1974, 2, 57–60. [Google Scholar] [CrossRef]
- Le Gall, J.-R. A New Simplified Acute Physiology Score (SAPS II) Based on a European/North American Multicenter Study. JAMA 1993, 270, 2957. [Google Scholar] [CrossRef]
- ELSO Guidelines for Cardiopulmonary Extracorporeal Life Support; Version 1.4; Extracorporeal Life Support Organization: Ann Arbor, MI, USA, 2017.
- Hoeper, M.M.; Bogaard, H.J.; Condliffe, R.; Frantz, R.; Khanna, D.; Kurzyna, M.; Langleben, D.; Manes, A.; Satoh, T.; Torres, F.; et al. Definitions and Diagnosis of Pulmonary Hypertension. J. Am. Coll. Cardiol. 2013, 62, D42–D50. [Google Scholar] [CrossRef] [PubMed]
- Vieillard-Baron, A.; Naeije, R.; Haddad, F.; Bogaard, H.J.; Bull, T.M.; Fletcher, N.; Lahm, T.; Magder, S.; Orde, S.; Schmidt, G.; et al. Diagnostic Workup, Etiologies and Management of Acute Right Ventricle Failure: A State-of-the-Art Paper. Intensive Care Med. 2018, 44, 774–790. [Google Scholar] [CrossRef] [PubMed]
- Zwiener, I.; Blettner, M.; Hommel, G. Survival Analysis. Deutsches Aerzteblatt Int. 2011, 108, 163. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Mekontso Dessap, A.; Boissier, F.; Charron, C.; Bégot, E.; Repessé, X.; Legras, A.; Brun-Buisson, C.; Vignon, P.; Vieillard-Baron, A. Acute Cor Pulmonale during Protective Ventilation for Acute Respiratory Distress Syndrome: Prevalence, Predictors, and Clinical Impact. Intensive Care Med. 2016, 42, 862–870. [Google Scholar] [CrossRef] [PubMed]
- Brower, R.G.; Lanken, P.N.; MacIntyre, N.; Matthay, M.A.; Morris, A.; Ancukiewicz, M.; Schoenfeld, D.; Thompson, B.T.; National Heart, Lung, and Blood Institute ARDS Clinical Trials Network. Higher versus Lower Positive End-Expiratory Pressures in Patients with the Acute Respiratory Distress Syndrome. N. Engl. J. Med. 2004, 351, 327–336. [Google Scholar] [CrossRef] [PubMed]
- The National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. Comparison of Two Fluid-Management Strategies in Acute Lung Injury. N. Engl. J. Med. 2006, 354, 2564–2575. [Google Scholar] [CrossRef] [PubMed]
- National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network; Wheeler, A.P.; Bernard, G.R.; Thompson, B.T.; Schoenfeld, D.; Wiedemann, H.P.; deBoisblanc, B.; Connors, A.F.; Hite, R.D.; Harabin, A.L. Pulmonary-Artery versus Central Venous Catheter to Guide Treatment of Acute Lung Injury. N. Engl. J. Med. 2006, 354, 2213–2224. [Google Scholar] [CrossRef] [PubMed]
- Petit, M.; Jullien, E.; Vieillard-Baron, A. Right Ventricular Function in Acute Respiratory Distress Syndrome: Impact on Outcome, Respiratory Strategy and Use of Veno-Venous Extracorporeal Membrane Oxygenation. Front. Physiol. 2022, 12, 797252. [Google Scholar] [CrossRef] [PubMed]
- Vieillard-Baron, A.; Charron, C.; Caille, V.; Belliard, G.; Page, B.; Jardin, F. Prone Positioning Unloads the Right Ventricle in Severe ARDS. Chest 2007, 132, 1440–1446. [Google Scholar] [CrossRef] [PubMed]
- Price, L.C.; McAuley, D.F.; Marino, P.S.; Finney, S.J.; Griffiths, M.J.; Wort, S.J. Pathophysiology of Pulmonary Hypertension in Acute Lung Injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 2012, 302, L803–L815. [Google Scholar] [CrossRef]
- Ghignone, M.; Girling, L.; Prewitt, R.M. Volume Expansion versus Norepinephrine in Treatment of a Low Cardiac Output Complicating an Acute Increase in Right Ventricular Afterload in Dogs. Anesthesiology 1984, 60, 132–135. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Nakano, H.; Ide, H.; Ogasa, T.; Takahashi, T.; Osanai, S.; Kikuchi, K.; Iwamoto, J. Role of Airway Nitric Oxide on the Regulation of Pulmonary Circulation by Carbon Dioxide. J. Appl. Physiol. 2001, 91, 1121–1130. [Google Scholar] [CrossRef]
- Schmidt, M.; Tachon, G.; Devilliers, C.; Muller, G.; Hekimian, G.; Bréchot, N.; Merceron, S.; Luyt, C.E.; Trouillet, J.-L.; Chastre, J.; et al. Blood Oxygenation and Decarboxylation Determinants during Venovenous ECMO for Respiratory Failure in Adults. Intensive Care Med. 2013, 39, 838–846. [Google Scholar] [CrossRef]
- Nuckton, T.J.; Alonso, J.A.; Kallet, R.H.; Daniel, B.M.; Pittet, J.-F.; Eisner, M.D.; Matthay, M.A. Pulmonary Dead-Space Fraction as a Risk Factor for Death in the Acute Respiratory Distress Syndrome. N. Engl. J. Med. 2002, 346, 1281–1286. [Google Scholar] [CrossRef] [PubMed]
- Whittenberger, J.L.; McGREGOR, M.; Berglund, E.; Borst, H.G. Influence of State of Inflation of the Lung on Pulmonary Vascular Resistance. J. Appl. Physiol. 1960, 15, 878–882. [Google Scholar] [CrossRef]
- West, J.B.; Dollery, C.T.; Naimark, A. Distribution of Blood Flow in Isolated Lung; Relation to Vascular and Alveolar Pressures. J. Appl. Physiol. 1964, 19, 713–724. [Google Scholar] [CrossRef] [PubMed]
- Reis Miranda, D.; van Thiel, R.; Brodie, D.; Bakker, J. Right Ventricular Unloading after Initiation of Venovenous Extracorporeal Membrane Oxygenation. Am. J. Respir. Crit. Care Med. 2015, 191, 346–348. [Google Scholar] [CrossRef] [PubMed]
- Manktelow, C.; Bigatello, L.M.; Hess, D.; Hurford, W.E. Physiologic Determinants of the Response to Inhaled Nitric Oxide in Patients with Acute Respiratory Distress Syndrome. Anesthesiology 1997, 87, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Germann, P.; Braschi, A.; Della Rocca, G.; Dinh-Xuan, A.T.; Falke, K.; Frostell, C.; Gustafsson, L.E.; Hervé, P.; Jolliet, P.; Kaisers, U.; et al. Inhaled Nitric Oxide Therapy in Adults: European Expert Recommendations. Intensive Care Med. 2005, 31, 1029–1041. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, N.K.J.; Burns, K.E.A.; Friedrich, J.O.; Granton, J.T.; Cook, D.J.; Meade, M.O. Effect of Nitric Oxide on Oxygenation and Mortality in Acute Lung Injury: Systematic Review and Meta-Analysis. BMJ 2007, 334, 779. [Google Scholar] [CrossRef]
- Lei, C.; Berra, L.; Rezoagli, E.; Yu, B.; Dong, H.; Yu, S.; Hou, L.; Chen, M.; Chen, W.; Wang, H.; et al. Nitric Oxide Decreases Acute Kidney Injury and Stage 3 Chronic Kidney Disease after Cardiac Surgery. Am. J. Respir. Crit. Care Med. 2018, 198, 1279–1287. [Google Scholar] [CrossRef] [PubMed]
- Gebistorf, F.; Karam, O.; Wetterslev, J.; Afshari, A. Inhaled Nitric Oxide for Acute Respiratory Distress Syndrome (ARDS) in Children and Adults. Cochrane Database Syst. Rev. 2016, 2016, CD002787. [Google Scholar] [CrossRef]
- Haneya, A.; Diez, C.; Philipp, A.; Bein, T.; Mueller, T.; Schmid, C.; Lubnow, M. Impact of Acute Kidney Injury on Outcome in Patients with Severe Acute Respiratory Failure Receiving Extracorporeal Membrane Oxygenation. Crit. Care Med. 2015, 43, 1898–1906. [Google Scholar] [CrossRef]
- Ortiz, F.; Brunsvold, M.E.; Bartos, J.A. Right Ventricular Dysfunction and Mortality After Cannulation for Venovenous Extracorporeal Membrane Oxygenation. Crit. Care Explor. 2020, 2, e0268. [Google Scholar] [CrossRef]
- Pannucci, C.J.; Wilkins, E.G. Identifying and Avoiding Bias in Research. Plast. Reconstr. Surg. 2010, 126, 619–625. [Google Scholar] [CrossRef] [PubMed]
Characteristics | TOTAL (n = 366) | with Inhaled NO (n = 48) | without Inhaled NO (n = 318) | p-Value |
---|---|---|---|---|
Demographics | ||||
age—(median (IQR)) [years] | 56 (47–64) | 57 (49–64) | 55 (46–64) | 0.6573 |
male sex—n (%) [male] | 252 (69) | 34 (71) | 218 (69) | 0.7505 |
weight—(median (IQR)) [kg] | 90 (80–110) | 95 (84–111) | 90 (79–110) | 0.0401 |
height—(median (IQR)) [cm] | 175 (168–180) | 177 (170–181) | 175 (168–180) | 0.2232 |
BMI—(median (IQR)) | 29 (26–35) | 29 (27–38) | 29 (26–35) | 0.0416 |
primary cause of ARDS | ||||
viral pneumonia—n (%) | 124 (34) | 20 (42) | 104 (33) | 0.6044 |
bacterial pneumonia—n (%) | 63 (17) | 6 (12) | 57 (18) | |
others—n (%) | 179 (49) | 22 (46) | 157 (49) | |
indication for inhaled NO administration | ||||
pulmonary arterial hypertension (PAH)—no. [%] | 23 (48) | |||
right heart failure (RVF)—no. [%] | 17 (35) | |||
PAH and RV failure—no. [%] | 8 (17) |
Characteristics | TOTAL (n = 366) | with Inhaled NO (n = 48) | without Inhaled NO (n = 318) | p-Value |
---|---|---|---|---|
invasive mechanical ventilation | ||||
total time on mechanical ventilation—(median (IQR)) [days] | 27 (14–48) | 22 (13–40) | 28 (14–49) | 0.1550 |
Classified days on mechanical ventilation prior to ECMO—n (%) | ||||
<48 h | 185 (51) | 25 (52) | 160 (50) | |
48 h–7 days | 108 (30) | 14 (29) | 94 (30) | 1.0000 |
>7 days | 73 (19) | 9 (19) | 64 (20) | |
tracheostomy—n (%) | 153 (42) | 18 (38) | 135 (43) | 0.5057 |
ECMO | ||||
duration of ECMO support—(median (IQR)) [days] | 12 (7–19) | 14 (11–21) | 11 (7–19) | 0.0363 |
weaning failure from ECMO support—n (%) | 177 (48) | 35 (73) | 142 (45) | 0.0003 |
adjunctive therapies | ||||
CKRT prior to ECMO—n (%) | 107 (29) | 16 (33) | 91 (29) | 0.5030 |
proning prior to ECMO—n (%) | 136 (37) | 17 (35) | 119 (37) | 0.9042 |
proning during ECMO—n (%) | 193 (53) | 28 (58) | 165 (52) | 0.7357 |
Organ dysfunction | ||||
SOFA score at day 0 of ECMO initiation—(median (IQR)) | 9 (7–11) | 9 (7–11) | 9 (7–11) | 0.7143 |
RESP score—(median (IQR)) | 0 (−3–2) | −1 (−3–2) | 0 (−3–2) | 0.9032 |
SAPS II score 24 h after ECMO initiation—(median (IQR)) | 47 (38–55) | 44 (37–57) | 47 (38–55) | 0.7310 |
SAPS II score at discharge—(median (IQR)) | 49 (33–61) | 57 (43–68) | 46 (32–59) | 0.0037 |
TISS score 24 h after ECMO initiation—(median (IQR)) | 28 (23–33) | 29 (27–36) | 27 (23–33) | 0.1279 |
TISS at discharge—(median (IQR)) | 24 (14–31) | 30 (20–37) | 22 (12–30) | 0.0007 |
no CPR prior to ECMO—n (%) | 325 (89) | 43 (90) | 282 (89) | 0.8531 |
sepsis—n (%) | 70 (21) | 5 (12) | 65 (22) | 0.1032 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muenster, S.; Nadal, J.; Schewe, J.-C.; Ehrentraut, H.; Kreyer, S.; Putensen, C.; Ehrentraut, S.F. Analysis of Patients with Severe ARDS on VV ECMO Treated with Inhaled NO: A Retrospective Observational Study. J. Clin. Med. 2024, 13, 1555. https://doi.org/10.3390/jcm13061555
Muenster S, Nadal J, Schewe J-C, Ehrentraut H, Kreyer S, Putensen C, Ehrentraut SF. Analysis of Patients with Severe ARDS on VV ECMO Treated with Inhaled NO: A Retrospective Observational Study. Journal of Clinical Medicine. 2024; 13(6):1555. https://doi.org/10.3390/jcm13061555
Chicago/Turabian StyleMuenster, Stefan, Jennifer Nadal, Jens-Christian Schewe, Heidi Ehrentraut, Stefan Kreyer, Christian Putensen, and Stefan Felix Ehrentraut. 2024. "Analysis of Patients with Severe ARDS on VV ECMO Treated with Inhaled NO: A Retrospective Observational Study" Journal of Clinical Medicine 13, no. 6: 1555. https://doi.org/10.3390/jcm13061555
APA StyleMuenster, S., Nadal, J., Schewe, J. -C., Ehrentraut, H., Kreyer, S., Putensen, C., & Ehrentraut, S. F. (2024). Analysis of Patients with Severe ARDS on VV ECMO Treated with Inhaled NO: A Retrospective Observational Study. Journal of Clinical Medicine, 13(6), 1555. https://doi.org/10.3390/jcm13061555