The Road to Sepsis in Geriatric Polytrauma Patients—Can We Forecast Sepsis in Trauma Patients?
Abstract
:1. Background
- Younger patients might show stronger links to traditional markers like leucocytes and injury severity.
- Geriatric patients might have different risk factors due to pre-existing conditions or immune response variations.
2. Methods
2.1. Study Design
2.2. Participants
2.3. Outcomes
2.4. Parameters
2.5. Data Measurement
2.6. Statistics
2.7. Ethics
3. Results
3.1. Patient Selection
3.2. Descriptive Data
3.3. Main Results
3.3.1. Central Tendency of Different Parameters with Sepsis in the Two Age Groups
3.3.2. Correlations of Different Parameters with Sepsis in the Two Age Groups
3.3.3. Source of Infection in Polytrauma Patients with Sepsis
4. Discussion
4.1. Key Results
4.2. Limitations
4.3. Interpretation
5. Conclusions
- (1)
- Early antibiotics: broad-spectrum antibiotics within 1 h of suspected sepsis improve outcomes [30].
- (2)
- Source control: address the infection source (surgery, drainage) to stop spread and inflammation [30].
- (3)
- Monitoring: track vital signs, labs, and clinical indicators for early detection and intervention [30].
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pfeifer, R.; Tarkin, I.S.; Rocos, B.; Pape, H.C. Patterns of mortality and causes of death in polytrauma patients-Has anything changed? Injury 2009, 40, 907–911. [Google Scholar] [CrossRef]
- Giannoudis, P.V. Current concepts of the inflammatory response after major trauma: An update. Injury 2003, 34, 397–404. [Google Scholar] [CrossRef]
- Kumar, A.; Roberts, D.; Wood, K.E.; Light, B.; Parrillo, J.E.; Sharma, S.; Suppes, R.; Feinstein, D.; Zanotti, S.; Taiberg, L.; et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit. Care Med. 2006, 34, 1589–1596. [Google Scholar] [CrossRef]
- Mica, L.; Niggli, C.; Bak, P.; Yaeli, A.; McClain, M.; Lawrie, C.M.; Pape, H.-C. Development of a Visual Analytics Tool for Polytrauma Patients: Proof of Concept for a New Assessment Tool Using a Multiple Layer Sankey Diagram in a Single-Center Database. World J. Surg. 2020, 44, 764–772. [Google Scholar] [CrossRef]
- Niggli, C.; Pape, H.C.; Niggli, P.; Mica, L. Validation of a Visual-Based Analytics Tool for Outcome Prediction in Polytrauma Patients (WATSON Trauma Pathway Explorer) and Comparison with the Predictive Values of TRISS. J. Clin. Med. 2021, 10, 2115. [Google Scholar] [CrossRef] [PubMed]
- Mica, L.; Pape, H.C.; Niggli, P.; Vomela, J.; Niggli, C. New Time-Related Insights into an Old Laboratory Parameter: Early CRP Discovered by IBM Watson Trauma Pathway Explorer© as a Predictor for Sepsis in Polytrauma Patients. J. Clin. Med. 2021, 10, 5470. [Google Scholar] [CrossRef] [PubMed]
- Niggli, C.; Vetter, P.; Hambrecht, J.; Niggli, P.; Vomela, J.; Chaloupka, R.; Pape, H.-C.; Mica, L. IBM WATSON Trauma Pathway Explorer© as a Predictor for Sepsis after Polytrauma-Is Procalcitonin Useful for Identifying Septic Polytrauma Patients? J. Surg. Res. 2022, 5, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Vetter, P.; Niggli, C.; Hambrecht, J.; Niggli, P.; Vomela, J.; Chaloupka, R.; Pape, H.-C.; Mica, L. The Role of Lactate for Sepsis in Polytrauma Patients, a Time related Analysis using the IBM Watson Trauma Pathway Explorer®. J. Surg. Res. 2022, 5, 618–624. [Google Scholar] [CrossRef] [PubMed]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Lancet 2007, 370, 1453–1457. [Google Scholar] [CrossRef] [PubMed]
- Baker, S.P.; O’Neill, B.; Haddon, W.; Long, W.B. The injury severity score: A method for describing patients with multiple injuries and evaluating emergency care. J. Trauma 1974, 14, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Bone, R.C.; Balk, R.A.; Cerra, F.B.; Dellinger, R.P.; Fein, A.M.; Knaus, W.A.; Schein, R.M.H.; Sibbald, W.J. Definitions for Sepsis and Organ Failure and Guidelines for the Use of Innovative Therapies in Sepsis. Chest 1992, 101, 1644–1655. [Google Scholar] [CrossRef] [PubMed]
- Singer, M.; Deutschman, C.S.; Seymour, C.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Gando, S.; Shiraishi, A.; Abe, T.; Kushimoto, S.; Mayumi, T.; Fujishima, S.; Hagiwara, A.; Shiino, Y.; Shiraishi, S.-I.; Hifumi, T.; et al. The SIRS criteria have better performance for predicting infection than qSOFA scores in the emergency department. Sci. Rep. 2020, 10, 8095. [Google Scholar] [CrossRef] [PubMed]
- Braun, B.J.; Holstein, J.; Fritz, T.; Veith, N.T.; Herath, S.; Mörsdorf, P.; Pohlemann, T. Polytrauma in the elderly: A review. EFORT Open Rev. 2016, 1, 146–151. [Google Scholar] [CrossRef]
- Ruxton, G.D. The unequal variance t-test is an underused alternative to Student’s t-test and the Mann–Whitney U test. Behav. Ecol. 2006, 17, 688–690. [Google Scholar] [CrossRef]
- Rasch, D.; Kubinger, K.D.; Moder, K. The two-sample t test: Pre-testing its assumptions does not pay off. Stat. Pap. 2011, 52, 219–231. [Google Scholar] [CrossRef]
- Nick, T.G.; Campbell, K.M. Logistic Regression. In Topics in Biostatistics; Springer: Berlin/Heidelberg, Germany, 2007; pp. 273–301. [Google Scholar]
- Kocuvan, S.; Brilej, D.; Stropnik, D.; Lefering, R.; Komadina, R. Evaluation of major trauma in elderly patients—A single trauma center analysis. Wien. Klin. Wochenschr. 2016, 128, 535–542. [Google Scholar] [CrossRef]
- Kisat, M.; Villegas, C.V.; Onguti, S.; Zafar, S.N.; Latif, A.; Efron, D.T.; Haut, E.R.; Schneider, E.B.; Lipsett, P.A.; Zafar, H.; et al. Predictors of sepsis in moderately severely injured patients: An analysis of the national trauma data bank. Surg. Infect. 2013, 14, 62–68. [Google Scholar] [CrossRef]
- Jin, H.; Liu, Z.; Xiao, Y.; Fan, X.; Yan, J.; Liang, H. Prediction of sepsis in trauma patients. Burn. Trauma 2014, 2, 106–113. [Google Scholar]
- Wafaisade, A.; Lefering, R.; Bouillon, B.; Sakka, S.G.; Thamm, O.C.; Paffrath, T.; Neugebauer, E.; Maegele, M. Epidemiology and risk factors of sepsis after multiple trauma: An analysis of 29,829 patients from the Trauma Registry of the German Society for Trauma Surgery. Crit. Care Med. 2011, 39, 621–628. [Google Scholar] [CrossRef]
- Brattström, O.; Granath, F.; Rossi, P.; Oldner, A. Early predictors of morbidity and mortality in trauma patients treated in the intensive care unit. Acta Anaesthesiol. Scand. 2010, 54, 1007–1017. [Google Scholar] [CrossRef]
- Park, J.H.; Choi, S.H.; Yoon, Y.H.; Park, S.J.; Kim, J.Y.; Cho, H.J. Risk factors for sepsis in Korean trauma patients. Eur. J. Trauma Emerg. Surg. 2016, 42, 453–458. [Google Scholar] [CrossRef]
- van Wessem, K.J.P.; Leenen, L.P.H. Geriatric polytrauma patients should not be excluded from aggressive injury treatment based on age alone. Eur. J. Trauma Emerg. Surg. 2022, 48, 357–365. [Google Scholar] [CrossRef]
- Tong, Y.; Zhang, J.; Fu, Y.; He, X.; Feng, Q. Risk Factors and Outcome of Sepsis in Traumatic Patients and Pathogen Detection Using Metagenomic Next-Generation Sequencing. Can. J. Infect. Dis. Med. Microbiol. 2022, 2022, 2549413. [Google Scholar] [CrossRef]
- Chung, S.; Choi, D.; Cho, J.; Huh, Y.; Moon, J.; Kwon, J.; Jung, K.; Lee, J.-C.J.; Kang, B.H. Timing and associated factors for sepsis-3 in severe trauma patients: A 3-year single trauma center experience. Acute Crit. Care 2018, 33, 130–134. [Google Scholar] [CrossRef]
- Fakhry, S.M.; Shen, Y.; Wyse, R.J.; Dunne, J.R.; Berg, G.M.; Garland, J.M.; Ludwig, A.D.; Shillinglaw, W.C.D.; Hightower, T.D.B.; Hunt, D.L.; et al. Incidence, outcomes and costs of severe sepsis and septic shock in geriatric trauma patients: Analysis of 2,563,463 hospitalizations at 3284 hospitals. J. Trauma Acute Care Surg. 2023, 95, 503–509. [Google Scholar] [CrossRef]
- Schepers, T.; De Vries, M.R.; Van Lieshout, E.M.M.; Van der Elst, M. The timing of ankle fracture surgery and the effect on infectious complications; a case series and systematic review of the literature. Int. Orthop. 2013, 37, 489–494. [Google Scholar] [CrossRef] [PubMed]
- Niggli, C.; Vetter, P.; Hambrecht, J.; Niggli, P.; Pape, H.C.; Mica, L. The Road to Sepsis in Polytrauma Patients: Waypoints between Damage Control Surgery and Early Total Care to Avoid Sepsis. J. Surg. Res. 2023, 6, 420–431. [Google Scholar] [CrossRef]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021, 47, 1181–1247. [Google Scholar] [CrossRef] [PubMed]
Variable | N | Overall N = 3059 1 | Age Group | ||
---|---|---|---|---|---|
<65 Years N = 2416 1 | ≥65 Years N = 643 1 | p-Value 2 | |||
Age [years] | 3059 | 43 (28, 61) | 37 (25, 49) | 75 (69, 81) | <0.001 |
Male | 3059 | 2250 (74%) | 1867 (77%) | 383 (60%) | <0.001 |
Blunt trauma | 3059 | 2809 (92%) | 2187 (91%) | 622 (97%) | <0.001 |
ISS | 3059 | 27 (22, 38) | 28 (22, 38) | 27 (22, 36) | 0.9 |
AIS Head | 3044 | 4.00 (1.00, 5.00) | 4.00 (1.00, 5.00) | 4.00 (3.00, 5.00) | <0.001 |
AIS Face | 3008 | 0.00 (0.00, 1.00) | 0.00 (0.00, 1.00) | 0.00 (0.00, 0.00) | <0.001 |
AIS Thorax | 3037 | 2.00 (0.00, 3.00) | 2.00 (0.00, 3.00) | 0.00 (0.00, 3.00) | <0.001 |
AIS Abdomen | 3007 | 0.00 (0.00, 2.00) | 0.00 (0.00, 3.00) | 0.00 (0.00, 0.00) | <0.001 |
AIS Pelvis | 3000 | 0.00 (0.00, 0.00) | 0.00 (0.00, 0.00) | 0.00 (0.00, 0.00) | 0.5 |
AIS Extremities | 3020 | 1.00 (0.00, 3.00) | 2.00 (0.00, 3.00) | 0.00 (0.00, 2.00) | <0.001 |
AIS Spine | 3011 | 0.00 (0.00, 2.00) | 0.00 (0.00, 2.00) | 0.00 (0.00, 2.00) | 0.018 |
AIS External | 2988 | 0.00 (0.00, 1.00) | 0.00 (0.00, 1.00) | 0.00 (0.00, 1.00) | 0.9 |
Length of ICU [days] | 3038 | 5 (2, 12) | 5 (2, 13) | 2 (1, 7) | <0.001 |
Length of hospitalization [days] | 3054 | 13 (4, 24) | 15 (6, 25) | 7 (2, 17) | <0.001 |
Death during hospitalization | 3059 | 934 (31%) | 611 (25%) | 323 (50%) | <0.001 |
Death within 72 h | 3051 | 683 (22%) | 445 (18%) | 238 (37%) | <0.001 |
Sepsis | 3059 | 505 (17%) | 430 (18%) | 75 (12%) | <0.001 |
ATLS shock class | 3022 | 0.002 | |||
1 | 1857 (61%) | 1431 (60%) | 426 (67%) | ||
2 | 736 (24%) | 617 (26%) | 119 (19%) | ||
3 | 218 (7.2%) | 173 (7.2%) | 45 (7.1%) | ||
4 | 211 (7.0%) | 168 (7.0%) | 43 (6.8%) | ||
GCS at site | 2809 | 12.0 (4.0, 15.0) | 12.0 (4.0, 15.0) | 11.0 (5.0, 14.0) | 0.6 |
Temperature at admission [°C] | 2214 | 35.70 (34.70,36.58) | 35.70 (34.70, 36.60) | 35.70 (34.50, 36.40) | 0.10 |
Leucocytes at admission [WBC/µL] | 2795 | 12.3 (9.0, 16.4) | 12.5 (9.2, 16.7) | 11.5 (8.5, 14.9) | <0.001 |
CRP at admission [mg/L] | 2349 | 3 (1, 5) | 3 (1, 4) | 3 (1, 7) | <0.001 |
pH at admission | 2229 | 7.33 (7.26, 7.38) | 7.33 (7.26, 7.38) | 7.35 (7.27, 7.39) | 0.011 |
Lactate at admission [mmol/L] | 2591 | 2.30 (1.40, 3.60) | 2.38 (1.50, 3.70) | 2.00 (1.22, 3.10) | <0.001 |
Haemoglobin at admission [g/dL] | 2607 | 11.70 (9.40, 13.30) | 11.70 (9.40, 13.50) | 11.40 (9.40, 12.90) | 0.018 |
Haematocrit at admission [%] | 2715 | 35 (28, 39) | 35 (28, 40) | 34 (28, 38) | 0.065 |
Quick at admission [%] | 2401 | 83 (62, 97) | 84 (64, 97) | 78 (57, 94) | <0.001 |
Damage Control Surgery | 2883 | 1435 (50%) | 1198 (53%) | 237 (39%) | <0.001 |
Early Total Care | 2883 | 973 (34%) | 779 (34%) | 194 (32%) | 0.2 |
No intervention | 2883 | 475 (16%) | 293 (13%) | 182 (30%) | <0.001 |
Variable | Age < 65 Years | Age ≥ 65 Years | ||||
---|---|---|---|---|---|---|
Mean in Non-Sepsis Group | Mean in the Sepsis Group | t-Test p-Value | Mean in Non-Sepsis Group | Mean in the Sepsis Group | t-Test p-Value | |
ISS | 30.76 | 33.85 | t = −4.67 p < 0.001 | 32.58 | 33.99 | t = −0.96 p = 0.34 |
Temperature at admission [°C] | 35.53 | 35.37 | t = 1.61 p = 0.11 | 35.26 | 35.74 | t = −2.48 p = 0.01 |
Leucocytes at admission [WBC/µL] | 13.23 | 13.94 | t = −2.04 p = 0.04 | 12.07 | 13.09 | t = −1.33 p = 0.19 |
CRP at admission [mg/L] | 12.03 | 18.20 | t = −2.07 p = 0.04 | 15.27 | 34.57 | t = −1.94 p = 0.06 |
pH at admission | 7.31 | 7.30 | t = 0.84 p = 0.40 | 7.33 | 7.30 | t = 1.66 p = 0.10 |
Lactate at admission [mmol/L] | 3.16 | 2.96 | t = 1.51 p = 0.13 | 2.63 | 2.78 | t = −0.39 p = 0.69 |
Haemoglobin at admission [g/dL] | 11.31 | 10.94 | t = 2.31 p = 0.02 | 11.08 | 10.51 | t = 1.57 p = 0.12 |
Haematocrit at admission [%] | 33.60 | 32.40 | t = 2.59 p = 0.01 | 33.05 | 31.26 | t = 1.70 p = 0.09 |
Quick at admission [%] | 78.70 | 77.21 | t = 1.23 p = 0.22 | 72.25 | 73.52 | t = −0.09 p = 0.93 |
Variable | Sepsis in Patients < 65 y | Sepsis in Patients ≥ 65 y | ||||
---|---|---|---|---|---|---|
OR 1 | 95% CI 1 | p-Value | OR 1 | 95% CI 1 | p-Value | |
Male | 1.22 | 0.94, 1.58 | 0.14 | 1.41 | 0.86, 2.38 | 0.2 |
Blunt trauma | 1.69 | 1.13, 2.62 | 0.013 | 2.70 | 0.55, 48.8 | 0.3 |
ISS | 1.02 | 1.01, 1.02 | <0.001 | 1.00 | 0.99, 1.02 | 0.5 |
AIS Head | 1.07 | 1.01, 1.13 | 0.014 | 0.80 | 0.71, 0.90 | <0.001 |
AIS Face | 1.00 | 0.91, 1.10 | >0.9 | 1.07 | 0.84, 1.35 | 0.6 |
AIS Thorax | 1.13 | 1.06, 1.20 | <0.001 | 1.33 | 1.16, 1.53 | <0.001 |
AIS Abdomen | 1.07 | 1.01, 1.13 | 0.020 | 1.37 | 1.18, 1.59 | <0.001 |
AIS Pelvis | 1.11 | 1.03, 1.20 | 0.008 | 1.37 | 1.16, 1.61 | <0.001 |
AIS Extremities | 1.09 | 1.01, 1.16 | 0.022 | 1.43 | 1.23, 1.68 | <0.001 |
AIS Spine | 1.04 | 0.97, 1.11 | 0.3 | 1.31 | 1.12, 1.51 | <0.001 |
AIS External | 0.99 | 0.87, 1.12 | >0.9 | 1.28 | 0.96, 1.68 | 0.082 |
ATLS shock class | 1.15 | 1.02, 1.28 | 0.016 | 1.20 | 0.93, 1.53 | 0.15 |
GCS at site | 0.98 | 0.96, 1.00 | 0.072 | 1.07 | 1.01, 1.13 | 0.019 |
Temperature at admission | 0.95 | 0.89, 1.01 | 0.12 | 1.21 | 1.01, 1.48 | 0.056 |
Leucocytes at admission | 1.02 | 1.00, 1.04 | 0.027 | 1.03 | 0.99, 1.08 | 0.14 |
CRP at admission | 1.00 | 1.00, 1.01 | 0.010 | 1.01 | 1.00, 1.01 | 0.007 |
pH at admission | 0.69 | 0.31, 1.61 | 0.4 | 0.15 | 0.02, 1.52 | 0.094 |
Lactate at admission | 0.97 | 0.93, 1.01 | 0.2 | 1.03 | 0.91, 1.13 | 0.6 |
Haemoglobin at admission | 0.96 | 0.93, 1.00 | 0.027 | 0.93 | 0.85, 1.02 | 0.11 |
Haematocrit at admission | 0.98 | 0.97, 1.00 | 0.012 | 0.97 | 0.94, 1.00 | 0.083 |
Quick at admission | 1.00 | 0.99, 1.00 | 0.2 | 1.00 | 0.99, 1.01 | >0.9 |
Variable | Sepsis in Patients < 65 y | Sepsis in Patients ≥ 65 y | ||||
---|---|---|---|---|---|---|
OR 1 | 95% CI 1 | p-Value | OR 1 | 95% CI 1 | p-Value | |
Blunt trauma | 1.85 | 1.08, 3.38 | 0.034 | 4,302,671 | 0.00, NA | >0.9 |
ISS | 1.02 | 1.01, 1.03 | <0.001 | 1.01 | 0.99, 1.03 | 0.5 |
ATLS shock class | 1.11 | 0.94, 1.31 | 0.2 | 1.15 | 0.81, 1.61 | 0.4 |
GCS at site | 0.97 | 0.95, 1.00 | 0.055 | 1.11 | 1.03, 1.20 | 0.006 |
Leucocytes at admission | 1.04 | 1.02, 1.06 | <0.001 | 1.03 | 0.98, 1.08 | 0.2 |
CRP at admission | 1.00 | 1.00, 1.01 | 0.048 | 1.01 | 1.00, 1.01 | <0.001 |
Haemoglobin at admission | 1.22 | 0.99, 1.53 | 0.076 | 1.42 | 0.82, 2.43 | 0.2 |
Haematocrit at admission | 0.93 | 0.86, 1.00 | 0.053 | 0.86 | 0.72, 1.04 | 0.11 |
Source of Infection | Overall N = 505 1 | Age Group | ||
---|---|---|---|---|
<65 Years N = 430 1 | ≥65 Years N = 75 1 | p-Value 2 | ||
Pneumonia | 347 (69%) | 291 (68%) | 56 (75%) | 0.2 |
Bacteraemia | 182 (36%) | 154 (36%) | 28 (37%) | 0.8 |
CRBSI | 125 (25%) | 111 (26%) | 14 (19%) | 0.2 |
Wound infection | 102 (20%) | 84 (20%) | 18 (24%) | 0.4 |
UTI | 80 (16%) | 65 (15%) | 15 (20%) | 0.3 |
CNS infection | 44 (8.7%) | 42 (9.8%) | 2 (2.7%) | 0.044 |
Other infection | 44 (8.7%) | 36 (8.4%) | 8 (11%) | 0.5 |
Intraabdominal infection | 32 (6.3%) | 28 (6.5%) | 4 (5.3%) | >0.9 |
Osteomyelitis | 9 (1.8%) | 9 (2.1%) | 0 (0%) | 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niggli, C.; Vetter, P.; Hambrecht, J.; Pape, H.-C.; Mica, L. The Road to Sepsis in Geriatric Polytrauma Patients—Can We Forecast Sepsis in Trauma Patients? J. Clin. Med. 2024, 13, 1570. https://doi.org/10.3390/jcm13061570
Niggli C, Vetter P, Hambrecht J, Pape H-C, Mica L. The Road to Sepsis in Geriatric Polytrauma Patients—Can We Forecast Sepsis in Trauma Patients? Journal of Clinical Medicine. 2024; 13(6):1570. https://doi.org/10.3390/jcm13061570
Chicago/Turabian StyleNiggli, Cédric, Philipp Vetter, Jan Hambrecht, Hans-Christoph Pape, and Ladislav Mica. 2024. "The Road to Sepsis in Geriatric Polytrauma Patients—Can We Forecast Sepsis in Trauma Patients?" Journal of Clinical Medicine 13, no. 6: 1570. https://doi.org/10.3390/jcm13061570
APA StyleNiggli, C., Vetter, P., Hambrecht, J., Pape, H. -C., & Mica, L. (2024). The Road to Sepsis in Geriatric Polytrauma Patients—Can We Forecast Sepsis in Trauma Patients? Journal of Clinical Medicine, 13(6), 1570. https://doi.org/10.3390/jcm13061570