Characteristics Associated with COVID-19 Breakthrough Infections after Booster Vaccinations in Healthcare Workers: Insights from the TüSeRe:exact Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Cohort
2.2. Statistical Analyses
3. Results
4. Discussion
5. Study Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 19 November 2023).
- Lumley, S.F.; Wei, J.; O’Donnell, D.; Stoesser, N.E.; Matthews, P.C.; Howarth, A.; Hatch, S.B.; Marsden, B.D.; Cox, S.; James, T.; et al. The Duration, Dynamics, and Determinants of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Antibody Responses in Individual Healthcare Workers. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2021, 73, e699–e709. [Google Scholar] [CrossRef]
- Feikin, D.R.; Higdon, M.M.; Abu-Raddad, L.J.; Andrews, N.; Araos, R.; Goldberg, Y.; Groome, M.J.; Huppert, A.; O’Brien, K.L.; Smith, P.G.; et al. Duration of effectiveness of vaccines against SARS-CoV-2 infection and COVID-19 disease: Results of a systematic review and meta-regression. Lancet 2022, 399, 924–944. [Google Scholar] [CrossRef]
- Bar-On, Y.M.; Goldberg, Y.; Mandel, M.; Bodenheimer, O.; Freedman, L.; Kalkstein, N.; Mizrahi, B.; Alroy-Preis, S.; Ash, N.; Milo, R.; et al. Protection of BNT162b2 Vaccine Booster against COVID-19 in Israel. N. Engl. J. Med. 2021, 385, 1393–1400. [Google Scholar] [CrossRef]
- Spitzer, A.; Angel, Y.; Marudi, O.; Zeltser, D.; Saiag, E.; Goldshmidt, H.; Goldiner, I.; Stark, M.; Halutz, O.; Gamzu, R.; et al. Association of a Third Dose of BNT162b2 Vaccine With Incidence of SARS-CoV-2 Infection Among Health Care Workers in Israel. JAMA 2022, 327, 341–349. [Google Scholar] [CrossRef]
- Ben Fredj, S.; Ghammem, R.; Zammit, N.; Maatouk, A.; Haddad, N.; Haddad, N.; Kachroudi, M.; Rebai, S.; Laadhari, H.; Ghodhbani, M.M.; et al. Risk factors for severe COVID-19 breakthrough infections: An observational longitudinal study. BMC Infect. Dis. 2022, 22, 894. [Google Scholar] [CrossRef] [PubMed]
- Chou, R.; Dana, T.; Buckley, D.I.; Selph, S.; Fu, R.; Totten, A.M. Epidemiology of and Risk Factors for Coronavirus Infection in Health Care Workers: A Living Rapid Review. Ann. Intern. Med. 2020, 173, 120–136. [Google Scholar] [CrossRef] [PubMed]
- Maria, L.d.; Sponselli, S.; Caputi, A.; Stefanizzi, P.; Pipoli, A.; Giannelli, G.; Delvecchio, G.; Tafuri, S.; Inchingolo, F.; Migliore, G.; et al. SARS-CoV-2 Breakthrough Infections in Health Care Workers: An Italian Retrospective Cohort Study on Characteristics, Clinical Course and Outcomes. J. Clin. Med. 2023, 12, 628. [Google Scholar] [CrossRef] [PubMed]
- Smits, P.D.; Gratzl, S.; Simonov, M.; Nachimuthu, S.K.; Goodwin Cartwright, B.M.; Wang, M.D.; Baker, C.; Rodriguez, P.; Bogiages, M.; Althouse, B.M.; et al. Risk of COVID-19 breakthrough infection and hospitalization in individuals with comorbidities. Vaccine 2023, 41, 2447–2455. [Google Scholar] [CrossRef] [PubMed]
- Schiff, A.E.; Wang, X.; Patel, N.J.; Kawano, Y.; Kowalski, E.N.; Cook, C.E.; Vanni, K.M.M.; Qian, G.; Bade, K.J.; Saavedra, A.A.; et al. Immunomodulators and risk for breakthrough infection after third COVID-19 mRNA vaccine among patients with rheumatoid arthritis: A cohort study. medRxiv 2023. [Google Scholar] [CrossRef]
- Parameswaran, A.; Apsingi, S.; Eachempati, K.K.; Dannana, C.S.; Jagathkar, G.; Iyer, M.; Aribandi, H. Incidence and severity of COVID-19 infection post-vaccination: A survey among Indian doctors. Infection 2022, 50, 889–895. [Google Scholar] [CrossRef] [PubMed]
- Bareiß, A.; Uzun, G.; Mikus, M.; Becker, M.; Althaus, K.; Schneiderhan-Marra, N.; Fürstberger, A.; Schwab, J.D.; Kestler, H.A.; Holderried, M.; et al. Vaccine Side Effects in Health Care Workers after Vaccination against SARS-CoV-2: Data from TüSeRe:exact Study. Viruses 2022, 15, 65. [Google Scholar] [CrossRef]
- Bedston, S.; Lowthian, E.; Jarvis, C.I.; Akbari, A.; Beggs, J.; Bradley, D.; Lusignan, S.d.; Griffiths, R.; Herbert, L.; Hobbs, R.; et al. COVID-19 booster vaccination uptake and infection breakthrough amongst health care workers in Wales: A national prospective cohort study. Vaccine 2023, 41, 1378–1389. [Google Scholar] [CrossRef]
- Folayan, M.O.; Abeldaño Zuñiga, R.A.; Virtanen, J.I.; Ezechi, O.C.; Yousaf, M.A.; Jafer, M.; Al-Tammemi, A.a.B.; Ellakany, P.; Ara, E.; Ayanore, M.A.; et al. A multi-country survey of the socio-demographic factors associated with adherence to COVID-19 preventive measures during the first wave of the COVID-19 pandemic. BMC Public Health 2023, 23, 1413. [Google Scholar] [CrossRef]
- Green, A.; Curtis, H.; Hulme, W.; Williamson, E.; McDonald, H.; Bhaskaran, K.; Rentsch, C.; Schultze, A.; MacKenna, B.; Mahalingasivam, V.; et al. Describing the population experiencing COVID-19 vaccine breakthrough following second vaccination in England: A cohort study from OpenSAFELY. BMC Med. 2022, 20, 243. [Google Scholar] [CrossRef]
- Soegiarto, G.; Wulandari, L.; Purnomosari, D.; Dhia Fahmita, K.; Ikhwan Gautama, H.; Tri Hadmoko, S.; Edwin Prasetyo, M.; Aulia Mahdi, B.; Arafah, N.; Prasetyaningtyas, D.; et al. Hypertension is associated with antibody response and breakthrough infection in health care workers following vaccination with inactivated SARS-CoV-2. Vaccine 2022, 40, 4046–4056. [Google Scholar] [CrossRef]
- Ooi, E.E.; Dhar, A.; Petruschke, R.; Locht, C.; Buchy, P.; Low, J.G.H. Use of analgesics/antipyretics in the management of symptoms associated with COVID-19 vaccination. NPJ Vaccines 2022, 7, 31. [Google Scholar] [CrossRef]
- Wysocki, J.; Center, K.J.; Brzostek, J.; Majda-Stanislawska, E.; Szymanski, H.; Szenborn, L.; Czajka, H.; Hasiec, B.; Dziduch, J.; Jackowska, T.; et al. A randomized study of fever prophylaxis and the immunogenicity of routine pediatric vaccinations. Vaccine 2017, 35, 1926–1935. [Google Scholar] [CrossRef] [PubMed]
- Folegatti, P.M.; Ewer, K.J.; Aley, P.K.; Angus, B.; Becker, S.; Belij-Rammerstorfer, S.; Bellamy, D.; Bibi, S.; Bittaye, M.; Clutterbuck, E.A.; et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: A preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet 2020, 396, 467–478. [Google Scholar] [CrossRef] [PubMed]
- Peng, M.; He, J.; Xue, Y.; Yang, X.; Liu, S.; Gong, Z. Role of Hypertension on the Severity of COVID-19: A Review. J. Cardiovasc. Pharmacol. 2021, 78, e648–e655. [Google Scholar] [CrossRef] [PubMed]
- Keidar, S.; Gamliel-Lazarovich, A.; Kaplan, M.; Pavlotzky, E.; Hamoud, S.; Hayek, T.; Karry, R.; Abassi, Z. Mineralocorticoid receptor blocker increases angiotensin-converting enzyme 2 activity in congestive heart failure patients. Circ. Res. 2005, 97, 946–953. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, X.; Chen, J.; Zhang, H.; Deng, A. Association of Renin-Angiotensin System Inhibitors With Severity or Risk of Death in Patients With Hypertension Hospitalized for Coronavirus Disease 2019 (COVID-19) Infection in Wuhan, China. JAMA Cardiol. 2020, 5, 825–830. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Zhu, L.; Cai, J.; Lei, F.; Qin, J.-J.; Xie, J.; Liu, Y.-M.; Zhao, Y.-C.; Huang, X.; Lin, L.; et al. Association of Inpatient Use of Angiotensin-Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers With Mortality Among Patients With Hypertension Hospitalized With COVID-19. Circ. Res. 2020, 126, 1671–1681. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Tan, Z.; Zhou, L.; Yang, M.; Peng, L.; Liu, J.; Cai, J.; Yang, R.; Han, J.; Huang, Y.; et al. Effects of Angiotensin II Receptor Blockers and ACE (Angiotensin-Converting Enzyme) Inhibitors on Virus Infection, Inflammatory Status, and Clinical Outcomes in Patients With COVID-19 and Hypertension: A Single-Center Retrospective Study. Hypertension 2020, 76, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, H.R.; Adhikari, S.; Pulgarin, C.; Troxel, A.B.; Iturrate, E.; Johnson, S.B.; Hausvater, A.; Newman, J.D.; Berger, J.S.; Bangalore, S.; et al. Renin-Angiotensin-Aldosterone System Inhibitors and Risk of COVID-19. N. Engl. J. Med. 2020, 382, 2441–2448. [Google Scholar] [CrossRef]
- Mancia, G.; Rea, F.; Ludergnani, M.; Apolone, G.; Corrao, G. Renin-Angiotensin-Aldosterone System Blockers and the Risk of COVID-19. N. Engl. J. Med. 2020, 382, 2431–2440. [Google Scholar] [CrossRef]
- Chan, C.-K.; Huang, Y.-S.; Liao, H.-W.; Tsai, I.-J.; Sun, C.-Y.; Pan, H.-C.; Chueh, J.S.; Wang, J.-T.; Wu, V.-C.; Chu, T.-S. Renin-Angiotensin-Aldosterone System Inhibitors and Risks of Severe Acute Respiratory Syndrome Coronavirus 2 Infection: A Systematic Review and Meta-Analysis. Hypertension 2020, 76, 1563–1571. [Google Scholar] [CrossRef]
Breakthrough Infection | |||||
---|---|---|---|---|---|
Parameter | Total | No | Yes | p | |
N | 629 | 388 (62%) | 241 (38%) | - | |
Age | |||||
<45 years | 312 | 179 (46.1%) | 133 (55.2%) | 0.027 | |
≥45 years | 317 | 209 (53.9%) | 108 (44.8%) | ||
Gender | |||||
Female | 497 (79%) | 302 (78%) | 195 (81%) | 0.357 | |
Male | 132 (21%) | 86 (22%) | 46 (19%) | ||
Comorbidities | |||||
Cardiovascular disease | 81 (12.9%) | 60 (15.5%) | 21 (8.7%) | 0.014 | |
Neurological disease | 12 (1.9%) | 8 (2.1%) | 4 (1.7%) | 0.720 | |
Skin disease | 35 (5.6%) | 22 (5.7%) | 13 (5.4%) | 0.883 | |
Blood disease | 7 (1.1%) | 5 (1.3%) | 2 (0.8%) | 0.594 | |
Pulmonary disease | 21 (3.3%) | 14 (3.6%) | 7 (2.9%) | 0.633 | |
Liver/kidney disease | 8 (1.3%) | 5 (1.3%) | 3 (1.2%) | 0.962 | |
Gastrointestinal | 18 (2.9%) | 13 (3.4%) | 5 (2.1%) | 0.351 | |
Other chronic disease | 113 (18%) | 77 (19.8%) | 36 (14.9%) | 0.119 | |
Tumor | 19 (3.0%) | 14 (3.6%) | 5 (2.1%) | 0.275 | |
Medications | |||||
Antihypertensives | 73 (11.6%) | 56 (14.4%) | 17 (7.1%) | 0.005 | |
Lipid-lowering agents | 11 (1.7%) | 7 (1.8%) | 4 (1.7%) | 0.893 | |
Immunosuppressants | 14 (2.2%) | 10 (2.6%) | 4 (1.7%) | 0.448 | |
Anticoagulants | 10 (1.6%) | 5 (1.3%) | 5 (2.1%) | 0.444 | |
Antidiabetics | 10 (1.6%) | 5 (1.3%) | 5 (2.1%) | 0.444 | |
Pain killers | 22 (3.5%) | 16 (4.1%) | 6 (2.5%) | 0.278 | |
Antidepressants | 23 (3.7%) | 17 (4.4%) | 6 (2.5%) | 0.219 | |
Thyreostatic agent | 107 (7.2%) | 64 (16.4%) | 43 (17.8%) | 0.662 | |
Painkiller use after 1st vaccine | 185 (29.4%) | 103 (26.5%) | 82 (34%) | 0.045 | |
Painkiller use after 2nd vaccine | 171 (27.2%) | 97 (25%) | 74 (30.7%) | 0.118 | |
Painkiller use after 3rd vaccine | 63 (10%) | 35 (9%) | 28 (11.5%) | 0.291 | |
Vaccines | |||||
1st Vaccine | |||||
AZE | 309 (49.1%) | 188 (48.5%) | 121 (50.2%) | 0.225 | |
BNT | 258 (41%) | 167 (43%) | 91(37.8%) | ||
MOD | 62 (9.9%) | 33 (8.5%) | 29 (12%) | ||
2nd Vaccine | |||||
AZE | 66 (10.5%) | 43 (11.1%) | 23 (9.5%) | 0.639 | |
BNT | 420 (66.8%) | 261 (67.3%) | 159 (66%) | ||
MOD | 143 (22.7%) | 84 (21.6%) | 59 (24.5%) | ||
3rd Vaccine | |||||
BNT | 384 (61%) | 230 (59.3%) | 154 (63.9%) | 0.248 | |
MOD | 245 (39%) | 158 (40.7%) | 87 (36.1%) |
Parameter | Hazard Ratio | 95% Confidence Interval | p | ||
---|---|---|---|---|---|
Comorbidities | |||||
Cardiovascular disease | 0.621 | 0.392 | 0.985 | 0.043 | |
Neurological disease | 0.944 | 0.350 | 2.545 | 0.909 | |
Skin disease | 0.936 | 0.535 | 1.638 | 0.817 | |
Blood disease | 0.688 | 0.171 | 2.767 | 0.598 | |
Pulmonary disease | 0.871 | 0.410 | 1.851 | 0.720 | |
Liver/kidney disease | 1.069 | 0.342 | 3.346 | 0.908 | |
Gastrointestinal | 0.736 | 0.303 | 1.787 | 0.498 | |
Other chronic disease | 0.772 | 0.541 | 1.101 | 0.153 | |
Tumor | 0.694 | 0.284 | 1.700 | 0.424 | |
Medications | |||||
Antihypertensives | 0.551 | 0.331 | 0.915 | 0.021 | |
Lipid-lowering agents | 1.045 | 0.381 | 2.866 | 0.931 | |
Immunosuppressants | 0.719 | 0.267 | 1.932 | 0.513 | |
Anticoagulants | 1.461 | 0.598 | 3.569 | 0.406 | |
Antidiabetics | 1.585 | 0.650 | 3.862 | 0.311 | |
Pain killers | 0.698 | 0.309 | 1.575 | 0.386 | |
Antidepressants | 0.623 | 0.277 | 1.403 | 0.254 | |
Thyreostatic agent | 1.056 | 0.755 | 1.478 | 0.749 | |
Painkiller use after 1st vaccine | 1.343 | 1.025 | 1.759 | 0.032 | |
Painkiller use after 2nd vaccine | 1.224 | 0.927 | 1.617 | 0.154 | |
Painkiller use after 3rd vaccine | 1.282 | 0.860 | 1.911 | 0.223 | |
Vaccines | |||||
1st Vaccine | |||||
BNT vs. AZE | 0.848 | 0.643 | 1.120 | 0.245 | |
MOD vs. AZE | 1.175 | 0.780 | 1.769 | 0.441 | |
BNT vs. MOD | 0.722 | 0.475 | 1.099 | 0.128 | |
2nd Vaccine | |||||
BNT vs. AZE | 1.016 | 0.648 | 1.593 | 0.946 | |
MOD vs. AZE | 1.113 | 0.679 | 1.825 | 0.670 | |
BNT vs. MOD | 0.912 | 0.676 | 1.231 | 0.549 | |
3rd Vaccine | |||||
BNT vs. MOD | 0.982 | 0.746 | 1.293 | 0.899 |
Drug Group | n |
---|---|
Angiotensin II receptor inhibitors | 25 |
ACE2 inhibitors | 18 |
Calcium channel blockers | 13 |
Beta-blockers | 13 |
Diuretics | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uzun, G.; Bareiß, A.; Becker, M.; Althaus, K.; Dulovic, A.; Junker, D.; Schenke-Layland, K.; Martus, P.; Borst, O.; Schneiderhan-Marra, N.; et al. Characteristics Associated with COVID-19 Breakthrough Infections after Booster Vaccinations in Healthcare Workers: Insights from the TüSeRe:exact Study. J. Clin. Med. 2024, 13, 1571. https://doi.org/10.3390/jcm13061571
Uzun G, Bareiß A, Becker M, Althaus K, Dulovic A, Junker D, Schenke-Layland K, Martus P, Borst O, Schneiderhan-Marra N, et al. Characteristics Associated with COVID-19 Breakthrough Infections after Booster Vaccinations in Healthcare Workers: Insights from the TüSeRe:exact Study. Journal of Clinical Medicine. 2024; 13(6):1571. https://doi.org/10.3390/jcm13061571
Chicago/Turabian StyleUzun, Günalp, Alan Bareiß, Matthias Becker, Karina Althaus, Alex Dulovic, Daniel Junker, Katja Schenke-Layland, Peter Martus, Oliver Borst, Nicole Schneiderhan-Marra, and et al. 2024. "Characteristics Associated with COVID-19 Breakthrough Infections after Booster Vaccinations in Healthcare Workers: Insights from the TüSeRe:exact Study" Journal of Clinical Medicine 13, no. 6: 1571. https://doi.org/10.3390/jcm13061571
APA StyleUzun, G., Bareiß, A., Becker, M., Althaus, K., Dulovic, A., Junker, D., Schenke-Layland, K., Martus, P., Borst, O., Schneiderhan-Marra, N., & Bakchoul, T. (2024). Characteristics Associated with COVID-19 Breakthrough Infections after Booster Vaccinations in Healthcare Workers: Insights from the TüSeRe:exact Study. Journal of Clinical Medicine, 13(6), 1571. https://doi.org/10.3390/jcm13061571