Texture Features of 18F-Fluorodeoxyglucose Positron Emission Tomography for Predicting Programmed Death-Ligand-1 Levels in Non-Small Cell Lung Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. FDG PET/CT Imaging and Analysis
2.3. Immunohistochemical Staining for PD-L1
2.4. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thai, A.A.; Solomon, B.J.; Sequist, L.V.; Gainor, J.F.; Heist, R.S. Lung cancer. Lancet 2021, 398, 535–554. [Google Scholar] [CrossRef]
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N. Engl. J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef] [PubMed]
- Mok, T.S.K.; Wu, Y.L.; Kudaba, I.; Kowalski, D.M.; Cho, B.C.; Turna, H.Z.; Castro, G., Jr.; Srimuninnimit, V.; Laktionov, K.K.; Bondarenko, I.; et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): A randomised, open-label, controlled, phase 3 trial. Lancet 2019, 393, 1819–1830. [Google Scholar] [CrossRef] [PubMed]
- Aisner, D.L.; Riely, G.J. Non-small cell lung cancer: Recommendations for biomarker testing and treatment. J. Natl. Compr. Cancer Netw. 2021, 19, 610–613. [Google Scholar] [CrossRef]
- Sauter, A.W.; Schwenzer, N.; Divine, M.R.; Pichler, B.J.; Pfannenberg, C. Image-derived biomarkers and multimodal imaging strategies for lung cancer management. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 634–643. [Google Scholar] [CrossRef] [PubMed]
- Jreige, M.; Letovanec, I.; Chaba, K.; Renaud, S.; Rusakiewicz, S.; Cristina, V.; Peters, S.; Krueger, T.; de Leval, L.; Kandalaft, L.E.; et al. 18F-FDG PET metabolic-to-morphological volume ratio predicts PD-L1 tumour expression and response to PD-1 blockade in non-small-cell lung cancer. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 1859–1868. [Google Scholar] [CrossRef] [PubMed]
- Takada, K.; Toyokawa, G.; Okamoto, T.; Baba, S.; Kozuma, Y.; Matsubara, T.; Haratake, N.; Akamine, T.; Takamori, S.; Katsura, M.; et al. Metabolic characteristics of programmed cell death-ligand 1-expressing lung cancer on 18 F-fluorodeoxyglucose positron emission tomography/computed tomography. Cancer Med. 2017, 6, 2552–2561. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, J.; Shi, J.; Wang, H. Relationship between SP142 PD-L1 expression and 18F-FDG uptake in non-small-cell lung cancer. Contrast Media Mol. Imaging 2020, 2020, 2010924. [Google Scholar] [CrossRef]
- Lopci, E.; Toschi, L.; Grizzi, F.; Rahal, D.; Olivari, L.; Castino, G.F.; Marchetti, S.; Cortese, N.; Qehajaj, D.; Pistillo, D.; et al. Correlation of metabolic information on FDG-PET with tissue expression of immune markers in patients with non-small cell lung cancer (NSCLC) who are candidates for upfront surgery. Eur. J. Nucl. Med. Mol. Imaging 2016, 43, 1954–1961. [Google Scholar] [CrossRef]
- Ishimura, M.; Norikane, T.; Mitamura, K.; Yamamoto, Y.; Arai-Okuda, H.; Murota, M.; Ibuki, E.; Kanaji, N.; Nishiyama, Y. Correlation of epidermal growth factor receptor mutation status and PD-L1 expression with [18F]FDG PET using volume-based parameters in non-small cell lung cancer. Nucl. Med. Commun. 2022, 43, 304–309. [Google Scholar] [CrossRef]
- McGranahan, N.; Swanton, C. Clonal heterogeneity and tumor evolution: Past, present, and the future. Cell 2017, 168, 613–628. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.S.; Kang, J.; Jun, S.; Kim, H.; Pak, K.; Kim, G.H.; Heo, H.J.; Kim, Y.H. Association between immunotherapy biomarkers and glucose metabolism from F-18 FDG PET. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 8288–8295. [Google Scholar] [PubMed]
- Zhang, R.; Hohenforst-Schmidt, W.; Steppert, C.; Sziklavari, Z.; Schmidkonz, C.; Atzinger, A.; Kuwert, T.; Klink, T.; Sterlacci, W.; Hartmann, A.; et al. Standardized 18F-FDG PET/CT radiomic features provide information on PD-L1 expression status in treatment-naïve patients with non-small cell lung cancer. Nuklearmedizin 2022, 61, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ge, S.; Sang, S.; Hu, C.; Deng, S. Evaluation of PD-L1 expression level in patients with non-small cell lung cancer by 18F-FDG PET/CT radiomics and clinicopathological characteristics. Front. Oncol. 2021, 11, 789014. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zou, S.; Kuang, D.; Yan, J.; Zhao, J.; Zhu, X. A novel approach using FDG-PET/CT-based radiomics to assess tumor immune phenotypes in patients with non-small cell lung cancer. Front. Oncol. 2021, 11, 769272. [Google Scholar] [CrossRef] [PubMed]
- Ishimura, M.; Norikane, T.; Mitamura, K.; Yamamoto, Y.; Manabe, Y.; Murao, M.; Murota, M.; Kanaji, N.; Nishiyama, Y. FDG PET texture indices as imaging biomarkers for epidermal growth factor receptor mutation status in lung adenocarcinoma. Sci. Rep. 2023, 13, 6742. [Google Scholar] [CrossRef] [PubMed]
- Nioche, C.; Orlhac, F.; Boughdad, S.; Reuzé, S.; Goya-Outi, J.; Robert, C.; Pellot-Barakat, C.; Soussan, M.; Frouin, F.; Buvat, I. LIFEx: A freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity. Cancer Res. 2018, 78, 4786–4789. [Google Scholar] [CrossRef]
- Orlhac, F.; Soussan, M.; Maisonobe, J.A.; Garcia, C.A.; Vanderlinden, B.; Buvat, I. Tumor texture analysis in 18F-FDG PET: Relationships between texture parameters, histogram indices, standardized uptake values, metabolic volumes, and total lesion glycolysis. J. Nucl. Med. 2014, 55, 414–422. [Google Scholar] [CrossRef]
- Lambin, P.; Rios-Velazquez, E.; Leijenaar, R.; Carvalho, S.; van Stiphout, R.G.; Granton, P.; Zegers, C.M.; Gillies, R.; Boellard, R.; Dekker, A.; et al. Radiomics: Extracting more information from medical images using advanced feature analysis. Eur. J. Cancer 2012, 48, 441–446. [Google Scholar] [CrossRef]
- Pyka, T.; Bundschuh, R.A.; Andratschke, N.; Mayer, B.; Specht, H.M.; Papp, L.; Zsótér, N.; Essler, M. Textural features in pre-treatment [F18]-FDG-PET/CT are correlated with risk of local recurrence and disease-specific survival in early stage NSCLC patients receiving primary stereotactic radiation therapy. Radiat. Oncol. 2015, 10, 100. [Google Scholar] [CrossRef]
- Erber, R.; Stöhr, R.; Herlein, S.; Giedl, C.; Rieker, R.J.; Fuchs, F.; Ficker, J.H.; Hartmann, A.; Veltrup, E.; Wirtz, R.M.; et al. Comparison of PD-L1 mRNA expression measured with the CheckPoint Typer® assay with PD-L1 protein expression assessed with immunohistochemistry in non-small cell lung cancer. Anticancer Res. 2017, 37, 6771–6778. [Google Scholar] [PubMed]
- Hatt, M.; Tixier, F.; Pierce, L.; Kinahan, P.E.; Le Rest, C.C.; Visvikis, D. Characterization of PET/CT images using texture analysis: The past, the present…any future? Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 151–165. [Google Scholar] [CrossRef]
- Lee, J.W.; Lee, S.M. Radiomics in oncological PET/CT: Clinical applications. Nucl. Med. Mol. Imaging 2018, 52, 170–189. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Li, G.; Wang, Y.; Wang, Y.; Zhao, S.; Haihong, P.; Zhao, H.; Wang, Y. PD-L1 expression in lung cancer and its correlation with driver mutations: A meta-analysis. Sci. Rep. 2017, 7, 10255. [Google Scholar] [CrossRef]
- Bauml, J.; Seiwert, T.Y.; Pfister, D.G.; Worden, F.; Liu, S.V.; Gilbert, J.; Saba, N.F.; Weiss, J.; Wirth, L.; Sukari, A.; et al. Pembrolizumab for platinum- and cetuximab-refractory head and neck cancer: Results from a single-arm, phase II study. J. Clin. Oncol. 2017, 35, 1542–1549. [Google Scholar] [CrossRef]
- Ulas, E.B.; Hashemi, S.M.S.; Houda, I.; Kaynak, A.; Veltman, J.D.; Fransen, M.F.; Radonic, T.; Bahce, I. Predictive value of combined positive score and tumor proportion score for immunotherapy response in advanced NSCLC. JTO Clin. Res. Rep. 2023, 4, 100532. [Google Scholar] [CrossRef] [PubMed]
- Borghaei, H.; Langer, C.J.; Paz-Ares, L.; Rodríguez-Abreu, D.; Halmos, B.; Garassino, M.C.; Houghton, B.; Kurata, T.; Cheng, Y.; Lin, J.; et al. Pembrolizumab plus chemotherapy versus chemotherapy alone in patients with advanced non-small cell lung cancer without tumor PD-L1 expression: A pooled analysis of 3 randomized controlled trials. Cancer 2020, 126, 4867–4877. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Qiu, B.; Liu, Q.; Xia, L.; Liu, S.; Zheng, C.; Liu, H.; Mo, Y.; Zhang, X.; Hu, Y.; et al. Patlak-Ki derived from ultra-high sensitivity dynamic total body [18F]FDG PET/CT correlates with the response to induction immuno-chemotherapy in locally advanced non-small cell lung cancer patients. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 3400–3413. [Google Scholar] [CrossRef]
FDG PET Parameter | Negative PD-L1 (n = 12) | Low PD-L1 (n = 45) | High PD-L1 (n = 26) | p | p for Negative vs. Low PD-L1 | p for Negative vs. High PD-L1 | p for Low vs. High PD-L1 |
---|---|---|---|---|---|---|---|
SUVmax | 8.10 ± 3.65 | 13.01 ± 7.69 | 17.71 ± 7.06 | <0.001 | 0.050 | <0.001 | 0.045 |
Homogeneity | 0.40 ± 0.10 | 0.28 ± 0.12 | 0.26 ± 0.11 | 0.034 | 0.269 | 0.030 | 0.471 |
Energy | 0.016 ± 0.013 | 0.008 ± 0.029 | 0.054 ± 0.029 | 0.059 | NA | NA | NA |
Contrast | 13.9 ± 18.3 | 41.5 ± 30.3 | 63.4 ± 48.7 | 0.003 | 0.072 | 0.002 | 0.187 |
Correlation | 0.31 ± 0.16 | 0.40 ± 0.16 | 0.39 ± 0.13 | 0.529 | NA | NA | NA |
Entropy | 1.88 ± 0.35 | 2.18 ± 0.39 | 2.33 ± 0.37 | 0.011 | 0.324 | 0.011 | 0.135 |
Dissimilarity | 2.78 ± 1.60 | 5.17 ± 2.05 | 5.96 ± 2.49 | 0.004 | 0.077 | 0.003 | 0.227 |
SRE | 0.93 ± 0.03 | 0.96 ± 0.06 | 0.96 ± 0.04 | 0.189 | NA | NA | NA |
LRE | 1.29 ± 0.23 | 1.17 ± 0.53 | 1.16 ± 0.46 | 0.257 | NA | NA | NA |
LGRE | 0.0052 ± 0.0060 | 0.0017 ± 0.0136 | 0.0009 ± 0.0118 | <0.001 | 0.037 | <0.001 | 0.047 |
HGRE | 221 ± 253 | 724 ± 725 | 1340 ± 823 | <0.001 | 0.034 | <0.001 | 0.057 |
SRLGE | 0.0047 ± 0.0055 | 0.0016 ± 0.0101 | 0.0009 ± 0.0095 | <0.001 | 0.040 | <0.001 | 0.042 |
SRHGE | 200 ± 247 | 706 ± 656 | 1308 ± 735 | <0.001 | 0.033 | <0.001 | 0.062 |
LRLGE | 0.0079 ± 0.0093 | 0.0019 ± 0.0495 | 0.0010 ± 0.0283 | <0.001 | 0.037 | <0.001 | 0.060 |
LRHGE | 342 ± 282 | 876 ± 1242 | 1501 ± 2359 | <0.001 | 0.040 | <0.001 | 0.047 |
GLNUr | 29.2 ± 102.4 | 16.9 ± 62.1 | 27.0 ± 29.9 | 0.537 | NA | NA | NA |
RLNU | 160 ± 506 | 251 ± 541 | 416 ± 511 | 0.176 | NA | NA | NA |
RP | 0.92 ± 0.05 | 0.95 ± 0.07 | 0.95 ± 0.07 | 0.248 | NA | NA | NA |
Coarseness | 0.024 ± 0.015 | 0.018 ± 0.011 | 0.011 ± 0.012 | 0.138 | NA | NA | NA |
Contrast | 0.24 ± 0.17 | 0.40 ± 0.39 | 0.46 ± 0.43 | 0.034 | 0.233 | 0.028 | 0.532 |
Busyness | 0.42 ± 0.40 | 0.16 ± 2.37 | 0.22 ± 0.24 | 0.068 | NA | NA | NA |
SZE | 0.58 ± 0.17 | 0.68 ± 0.17 | 0.71 ± 0.15 | 0.050 | NA | NA | NA |
LZE | 27.1 ± 1004 | 7.65 ± 7617 | 9.00 ± 203 | 0.241 | NA | NA | NA |
LGZE | 0.0052 ± 0.0058 | 0.0017 ± 0.011 | 0.0009 ± 0.014 | <0.001 | 0.032 | <0.001 | 0.040 |
HGZE | 235 ± 241 | 763 ± 655 | 1316 ± 758 | <0.001 | 0.028 | <0.001 | 0.049 |
SZLGE | 0.0029 ± 0.0022 | 0.0012 ± 0.0027 | 0.0007 ± 0.0022 | <0.001 | 0.018 | <0.001 | 0.046 |
SZHGE | 135 ± 181 | 504 ± 545 | 928 ± 628 | <0.001 | 0.030 | <0.001 | 0.072 |
LZLGE | 0.17 ± 6.38 | 0.01 ± 95.15 | 0.01 ± 10.16 | 0.013 | 0.122 | 0.010 | 0.433 |
LZHGE | 6217 ± 168,085 | 6224 ± 117,521 | 8404 ± 508,730 | 0.513 | NA | NA | NA |
GLNUz | 6.22 ± 12.7 | 7.38 ± 10.2 | 11.9 ± 14.2 | 0.228 | NA | NA | NA |
ZLNU | 35.3 ± 56.7 | 53.0 ± 82.4 | 109.0 ± 155.8 | 0.003 | 0.720 | 0.007 | 0.017 |
ZP | 0.31 ± 0.20 | 0.53 ± 0.20 | 0.51 ± 0.18 | 0.056 | NA | NA | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Norikane, T.; Ishimura, M.; Mitamura, K.; Yamamoto, Y.; Arai-Okuda, H.; Manabe, Y.; Murao, M.; Morita, R.; Obata, T.; Tanaka, K.; et al. Texture Features of 18F-Fluorodeoxyglucose Positron Emission Tomography for Predicting Programmed Death-Ligand-1 Levels in Non-Small Cell Lung Cancer. J. Clin. Med. 2024, 13, 1625. https://doi.org/10.3390/jcm13061625
Norikane T, Ishimura M, Mitamura K, Yamamoto Y, Arai-Okuda H, Manabe Y, Murao M, Morita R, Obata T, Tanaka K, et al. Texture Features of 18F-Fluorodeoxyglucose Positron Emission Tomography for Predicting Programmed Death-Ligand-1 Levels in Non-Small Cell Lung Cancer. Journal of Clinical Medicine. 2024; 13(6):1625. https://doi.org/10.3390/jcm13061625
Chicago/Turabian StyleNorikane, Takashi, Mariko Ishimura, Katsuya Mitamura, Yuka Yamamoto, Hanae Arai-Okuda, Yuri Manabe, Mitsumasa Murao, Riku Morita, Takafumi Obata, Kenichi Tanaka, and et al. 2024. "Texture Features of 18F-Fluorodeoxyglucose Positron Emission Tomography for Predicting Programmed Death-Ligand-1 Levels in Non-Small Cell Lung Cancer" Journal of Clinical Medicine 13, no. 6: 1625. https://doi.org/10.3390/jcm13061625
APA StyleNorikane, T., Ishimura, M., Mitamura, K., Yamamoto, Y., Arai-Okuda, H., Manabe, Y., Murao, M., Morita, R., Obata, T., Tanaka, K., Murota, M., Kanaji, N., & Nishiyama, Y. (2024). Texture Features of 18F-Fluorodeoxyglucose Positron Emission Tomography for Predicting Programmed Death-Ligand-1 Levels in Non-Small Cell Lung Cancer. Journal of Clinical Medicine, 13(6), 1625. https://doi.org/10.3390/jcm13061625