Infectious Diseases and Basal Ganglia Calcifications: A Cross-Sectional Study in Patients with Fahr’s Disease and Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Cross-Sectional Study
2.2. Systematic Review
3. Results
3.1. Cross-Sectional Study
3.2. Systematic Review
3.2.1. Congenital Infections
Cytomegalovirus
Human Immunodeficiency Virus
Rubella Virus
Zika Virus
3.2.2. Acquired Infections
Epstein–Barr Virus (Chronic Active)
Mycobacterium tuberculosis
3.2.3. Other Infections
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Section and Topic | Item | Checklist Item | Location Where Item Is Reported |
---|---|---|---|
Title | |||
Title | 1 | Identify the report as a systematic review. | Title |
Abstract | |||
Abstract | 2 | See the PRISMA 2020 for Abstracts checklist. | Appendix A, Table A2. |
Introduction | |||
Rationale | 3 | Describe the rationale for the review in the context of existing knowledge. | Section 1, paragraph 1–2 |
Objectives | 4 | Provide an explicit statement of the objective(s) or question(s) the review addresses. | Section 1, paragraph 3 |
Methods | |||
Eligibility criteria | 5 | Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses. | Section 2.2, paragraph 2 |
Information sources | 6 | Specify all databases, registers, websites, organisations, reference lists, and other sources searched or consulted to identify studies. Specify the date when each source was last searched or consulted. | Section 2.2, paragraph 2–3 |
Search strategy | 7 | Present the full search strategies for all databases, registers, and websites, including any filters and limits used. | Appendix B |
Selection process | 8 | Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process. | Section 2.2, paragraph 3 |
Data collection process | 9 | Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in the process. | Section 2.2, paragraph 5 |
Data items | 10a | List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study were sought (e.g., for all measures, time points, analyses), and if not, the methods used to decide which results to collect. | Section 2.2, paragraph 5 |
10b | List and define all other variables for which data were sought (e.g., participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information. | Section 2.2, paragraph 5 | |
Study risk of bias assessment | 11 | Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process. | Section 2.2, paragraph 4 |
Effect measures | 12 | Specify for each outcome the effect measure(s) (e.g., risk ratio, mean difference) used in the synthesis or presentation of results. | Section 2.2, paragraph 5 |
Synthesis methods | 13a | Describe the processes used to decide which studies were eligible for each synthesis (e.g., tabulating the study intervention characteristics and comparing against the planned groups for each synthesis (item #5)). | Section 2.2, paragraph 4 |
13b | Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions. | Section 2.2, paragraph 4–5 | |
13c | Describe any methods used to tabulate or visually display results of individual studies and syntheses. | Section 2.2, paragraph 4–5 | |
13d | Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used. | Section 2.2, paragraph 5 | |
13e | Describe any methods used to explore possible causes of heterogeneity among study results (e.g., subgroup analysis, meta-regression). | Not applicable | |
13f | Describe any sensitivity analyses conducted to assess robustness of the synthesized results. | Not applicable | |
Reporting bias assessment | 14 | Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases). | Not applicable |
Certainty assessment | 15 | Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome. | Section 2.2, paragraph 4 |
Results | |||
Study selection | 16a | Describe the results of the search and selection process, from the number of records identified in the search to the number of studies included in the review, ideally using a flow diagram. | Figure 1 |
16b | Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded. | Not applicable | |
Study characteristics | 17 | Cite each included study and present its characteristics. | Table 1, Appendix G |
Risk of bias in studies | 18 | Present assessments of risk of bias for each included study. | Appendix F |
Results of individual studies | 19 | For all outcomes, present for each study (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision (e.g., confidence/credible interval), ideally using structured tables or plots. | Table 2 |
Results of syntheses | 20a | For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies. | Table 2, Appendix F |
20b | Present results of all statistical syntheses conducted. If meta-analysis was conducted, present for each the summary estimate and its precision (e.g., confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect. | Section 3.2 | |
20c | Present results of all investigations of possible causes of heterogeneity among study results. | Not applicable | |
20d | Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results. | Not applicable | |
Reporting biases | 21 | Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed. | Not applicable |
Certainty of evidence | 22 | Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed. | Section 3.2, paragraph 1 |
Discussion | |||
Discussion | 23a | Provide a general interpretation of the results in the context of other evidence. | Section 4, paragraph 1–3 |
23b | Discuss any limitations of the evidence included in the review. | Section 4, paragraph 5 | |
23c | Discuss any limitations of the review processes used. | Section 4, paragraph 5 | |
23d | Discuss implications of the results for practice, policy, and future research. | Section 4, paragraph 4, 6 | |
Other InformatioN | |||
Registration and protocol | 24a | Provide registration information for the review, including register name and registration number, or state that the review was not registered. | Section 2.2, paragraph 1 |
24b | Indicate where the review protocol can be accessed, or state that a protocol was not prepared. | Section 2.2, paragraph 1 | |
24c | Describe and explain any amendments to information provided at registration or in the protocol. | Not applicable | |
Support | 25 | Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review. | Conflicts of Interest, Funding |
Competing interests | 26 | Declare any competing interests of review authors. | Conflicts of Interest, Funding |
Availability of data, code and other materials | 27 | Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from included studies; data used for all analyses; analytic code; any other materials used in the review. | Not applicable |
Section and Topic | Item | Checklist Item | Reported (Yes/No) |
---|---|---|---|
Title | |||
Title | 1 | Identify the report as a systematic review. | Yes |
Background | |||
Objectives | 2 | Provide an explicit statement of the main objective(s) or question(s) the review addresses. | Yes |
Methods | |||
Eligibility criteria | 3 | Specify the inclusion and exclusion criteria for the review. | No |
Information sources | 4 | Specify the information sources (e.g., databases, registers) used to identify studies and the date when each was last searched. | Yes |
Risk of bias | 5 | Specify the methods used to assess risk of bias in the included studies. | No |
Synthesis of results | 6 | Specify the methods used to present and synthesise results. | No |
Results | |||
Included studies | 7 | Give the total number of included studies and participants and summarise relevant characteristics of studies. | Yes, expect that the total number of participants was not stated |
Synthesis of results | 8 | Present results for main outcomes, preferably indicating the number of included studies and participants for each. If meta-analysis was conducted, report the summary estimate and confidence/credible interval. If comparing groups, indicate the direction of the effect (i.e., which group is favoured). | Yes |
Discussion | |||
Limitations of evidence | 9 | Provide a brief summary of the limitations of the evidence included in the review (e.g., study risk of bias, inconsistency, and imprecision). | Yes |
Interpretation | 10 | Provide a general interpretation of the results and important implications. | Yes |
Other | |||
Funding | 11 | Specify the primary source of funding for the review. | N/A |
Registration | 12 | Provide the register name and registration number. | N/A |
Appendix B
Appendix C
Appendix D
Characteristic | Fahr’s Disease/Syndrome Patients with Known Genetic Mutation (n = 17) | Fahr’s Disease/Syndrome Patients with No Known Genetic Mutation (n = 37) | p-Value |
---|---|---|---|
Age at baseline | 55 (47–66) | 66 (49–73) | 0.083 |
Male | 10 (59%) | 15 (39%) | 0.149 |
Diagnosis of Fahr’s disease | 17 (100%) | 32 (86%) | 0.112 |
Charlson Comorbidity Index (age-adjusted) | 1 (0–3) | 3 (1–4) | 0.098 |
Total Calcification Score | 38 (16–49) | 25 (13–39) | 0.171 |
Infectious disease testing | |||
Rubella virus IgG | 15 (88%) | 35 (97%) a (n = 36) | 0.328 |
Toxoplasma gondii IgG | 6 (35%) | 9 (25%) a (n = 36) | 0.584 |
Appendix E
Infectious Disease Testing | Localization of Calcifications | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Case | Sex | Age at Baseline (Years) | Age at Diagnosis (Years) | Diagnosis | Known Genetic Mutation? | CMV PCR | HHV Type 6 PCR | HHV Type 8 PCR | Rubella IgG | Toxoplasma gondii IgG | Basal Ganglia | Thalamus | White Matter | Cortex | Cerebellum | Vermis | Mesencephalon | Pons | Medulla |
1 | F | 24 | 24 | Fahr’s disease | No | − | − | − | + | − | + | − | − | − | − | − | − | − | − |
2 | M | 67 | 67 | Fahr’s disease | MYORG | − | − | − | + | − | + | + | + | - | + | + | + | + | + |
3 | M | 66 | 65 | Fahr’s disease | No | − | − | − | + | − | + | − | − | − | + | − | − | − | − |
4 | F | 67 | 67 | Fahr’s syndrome, caused by idiopathic hypoparathyroidism | No | − | − | − | + | − | + | + | + | − | + | + | + | − | − |
5 | F | 76 | 76 | Fahr’s syndrome, caused by iatrogenic hypoparathyroidism after strumectomy | Not tested | m | m | m | m | m | + | + | + | + | + | + | + | − | − |
6 | F | 45 | 43 | Fahr’s disease | SLC20A2 | − | − | − | + | − | + | + | + | − | + | + | − | − | − |
7 | F | 41 | 41 | Fahr’s disease | No | − | − | − | + | − | + | + | − | + | + | − | − | − | − |
8 | F | 68 | 68 | Fahr’s disease | No | − | − | − | + | − | + | − | + | + | + | + | − | − | − |
9 | F | 65 | 49 | Fahr’s disease | No | m | m | m | + | − | + | + | + | + | + | + | − | + | − |
10 | M | 72 | 71 | Fahr’s disease | SLC20A2 | m | m | m | + | + | + | + | + | − | + | + | − | − | − |
11 | F | 73 | 72 | Fahr’s syndrome, caused by pseudohypoparathyroidism | Not tested | − | − | − | + | − | + | + | + | − | + | − | − | − | − |
12 | F | 42 | 39 | Fahr’s syndrome, caused by primary hypoparathyroidism | No | − | − | − | + | − | + | − | + | − | + | − | − | − | − |
13 | M | 47 | 47 | Fahr’s disease | SLC20A2 | − | − | − | + | − | + | − | + | − | − | − | − | − | − |
14 | M | 71 | 71 | Fahr’s disease | Not tested | − | − | − | + | + | + | − | + | − | + | + | − | − | − |
15 | M | 65 | 65 | Fahr’s disease | SLC20A2 | − | − | − | + | + | + | + | + | + | + | + | − | − | − |
16 | F | 80 | 78 | Fahr’s syndrome | No | − | − | − | + | + | + | − | + | − | + | + | − | − | − |
17 | F | 53 | 53 | Fahr’s disease | No | − | − | − | + | − | + | + | − | − | − | + | − | − | − |
18 | M | 38 | 30 | Fahr’s disease | No | − | − | − | + | − | + | + | + | − | + | − | − | − | − |
19 | M | 65 | 59 | Fahr’s disease | SLC20A2 | − | − | − | + | + | + | + | + | + | + | + | − | − | − |
20 | F | 38 | 37 | Fahr’s disease | SLC20A2 | − | − | − | + | − | + | + | + | − | − | − | − | − | − |
21 | M | 75 | 75 | Fahr’s disease | No | − | − | − | + | − | + | + | + | + | + | + | + | − | − |
22 | F | 36 | 35 | Fahr’s disease | MYORG | − | − | − | + | − | + | + | + | + | + | + | + | − | − |
23 | M | 73 | 73 | Fahr’s disease | No | − | − | − | + | + | + | + | + | − | + | − | − | − | − |
24 | M | 59 | 59 | Fahr’s disease | SLC20A2 | − | − | − | + | − | + | + | + | + | + | + | + | − | − |
25 | F | 69 | 57 | Fahr’s disease | No | − | − | − | + | − | + | + | + | − | + | − | − | − | − |
26 | M | 66 | 61 | Fahr’s disease | Not tested | − | − | − | + | + | + | + | − | + | + | − | − | − | − |
27 | F | 44 | 44 | Fahr’s disease | No | − | m | − | + | − | + | + | + | − | + | − | − | − | − |
28 | F | 71 | 71 | Fahr’s disease | Not tested | − | − | − | + | − | + | + | + | − | + | + | − | − | − |
29 | M | 58 | 57 | Fahr’s disease | No | − | − | − | + | + | + | + | + | + | + | − | − | − | − |
30 | F | 68 | 68 | Fahr’s disease | Not tested | − | − | − | + | + | + | − | − | − | + | + | − | − | − |
31 | F | 20 | 20 | Fahr’s disease | No | − | − | − | + | − | + | − | − | − | − | − | − | − | − |
32 | F | 75 | 75 | Fahr’s disease | Results not known yet | − | − | − | + | + | + | + | + | + | + | + | + | + | − |
33 | M | 55 | 55 | Fahr’s disease | Results not known yet | − | − | − | + | − | + | + | − | − | + | − | − | − | − |
34 | F | 55 | 55 | Fahr’s disease | XPR1 | − | − | − | + | − | + | + | + | + | + | + | − | − | − |
35 | F | 57 | 49 | Fahr’s disease | XPR1 | − | − | − | + | + | + | + | + | − | + | + | − | − | − |
36 | M | 18 | 18 | Fahr’s disease | No | − | − | − | + | − | + | − | − | − | − | − | − | − | − |
37 | F | 65 | 65 | Fahr’s disease | No | − | − | − | + | − | + | − | − | − | − | − | − | − | − |
38 | M | 78 | 78 | Fahr’s disease | Not tested | − | − | − | + | − | + | + | + | + | + | + | − | − | − |
39 | F | 52 | 38 | Fahr’s disease | SLC20A2 | − | − | − | − | + | + | − | − | − | − | − | − | − | − |
40 | M | 40 | 38 | Fahr’s disease | No | − | − | − | − | − | + | − | − | − | + | − | − | − | − |
41 | M | 47 | 47 | Fahr’s disease | PDGFB | − | − | − | + | − | + | + | + | − | + | − | − | − | − |
42 | M | 63 | 63 | Fahr’s disease | Not tested | − | − | − | + | − | + | + | + | − | + | − | − | − | − |
43 | F | 76 | 76 | Fahr’s disease | Results not known yet | − | − | − | + | − | + | − | − | − | − | − | − | − | − |
44 | F | 71 | 71 | Fahr’s disease | SLC20A2 | − | m | m | + | − | + | + | + | + | + | + | − | − | − |
45 | F | 83 | 78 | Fahr’s disease | Not tested | − | − | − | + | − | + | + | + | − | + | − | − | − | − |
46 | M | 47 | 47 | Fahr’s disease | PDGFB | − | − | − | + | − | + | − | − | − | + | − | − | − | − |
47 | M | 69 | 69 | Fahr’s disease | XPR1 | − | − | − | + | + | + | − | − | − | + | − | − | − | − |
48 | F | 69 | 63 | Fahr’s disease | Not tested | − | − | − | + | − | + | + | + | + | + | + | + | + | + |
49 | F | 60 | 60 | Fahr’s disease | No | − | − | − | + | − | + | − | + | − | + | + | − | − | − |
50 | M | 88 | 88 | Fahr’s disease | Not tested | − | − | − | + | + | + | + | + | − | + | + | − | − | − |
51 | M | 72 | 72 | Fahr’s disease | Not tested | − | − | − | + | + | + | + | + | + | − | − | − | − | − |
52 | F | 41 | 41 | Fahr’s disease | Results not known yet | − | − | − | + | − | + | + | − | + | + | − | − | − | − |
53 | F | 57 | 46 | Fahr’s disease | Results not known yet | − | − | − | + | − | + | + | + | + | + | + | + | + | − |
54 | M | 48 | 48 | Fahr’s disease | SLC20A2 | − | − | − | − | − | + | − | − | − | − | − | − | − | − |
Appendix F
Appendix G
Pathogen | Localization and Characteristics of Intracranial Calcifications | |
---|---|---|
Congenital | Cytomegalovirus | Basal ganglia [3,6,14,25,44,50,52,54,55,58], cerebellum [3,25], cortex [25,44,47,55], ependyma [55], parenchyma [48,52,58], periventricular [14,25,44,47,49,50,52,54,55,58], subependymal [47,48,49,55], thalamus [25], white matter [25,44,55] |
Herpes simplex virus | Basal ganglia [3,6,47,49], cerebellum [3,55,58] cortex [47,48,54], parenchyma [54], periventricular [47,54], thalamus [47,54] | |
Human immunodeficiency virus | Basal ganglia [2,7,21,23,24,28,38,47,50,51,57,58], cerebellum [47,48], periventricular [48,55], white matter [47,50,58] | |
Rubella virus | Basal ganglia [3,6,35,47,48,49,54,55,58], brain stem [48,49,54], cerebellum [3], corpus callosum [35], cortex [47], parenchyma [35], periventricular [35,48,49,54,55,58], thalamus [35] | |
Toxoplasma gondii | Basal ganglia [2,3,6,44,47,48,49,50,51,54,55,58], cerebellum [3], cortex [44,47,48,49,55,58], meninges [2], parenchyma [2], periventricular [44,47,48,49,54,55,58], subependymal [47], thalamus [44,48,58], ring-enhancing lesions with edema and calcifications [6]. Calcifications may resolve after treatment [47,48,54,58] | |
Zika virus | Basal ganglia [15,16,18,19,20,29,30,31,32,33,34,43,44,45], brain stem [15,17,19,31,32,33,44], cerebellum [15,17,30,31,33,43,44,45], cortex [31,44], midbrain [30], periventricular [15,17,18,29,30,31,32,33,44], subcortical–cortical junction [15,16,17,18,19,20,29,30,31,32,33,34,43,44,45,58], thalamus [16,17,19,20,30,31,43,44] | |
Acquired | Brucella sp. | Basal ganglia [2,3,6], cerebellum [2], white matter [2] |
Epstein–Barr virus (chronic active) | Basal ganglia [7,26] | |
Herpes simplex virus | Basal ganglia, cortex, thalamus [53] | |
Human immunodeficiency virus | Basal ganglia [6,47], parenchyma [2] | |
Mumps virus | Basal ganglia [7] | |
Mycobacterium tuberculosis | In tuberculoma lesions [22,48,50,51,54,56,58], meninges [47,48]. Target sign: central nidus of calcification surrounded by ring of enhancement [47,49,56,58] | |
Neisseria meningitidis | Basal ganglia [7] | |
Taenia solium | In dead larva (small, calcified cyst containing an eccentric calcified nodule) in subarachnoid spaces in basal ganglia, convexities, parenchyma (especially subcortical–cortical junction), ventricles [6,47,48,50,51,54,56,58] | |
Treponema pallidum | Basal ganglia [7] |
References
- Yalcin, A.; Ceylan, M.; Bayraktutan, O.F.; Sonkaya, A.R.; Yuce, I. Age and gender related prevalence of intracranial calcifications in CT imaging; data from 12,000 healthy subjects. J. Chem. Neuroanat. 2016, 78, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Donzuso, G.; Mostile, G.; Nicoletti, A.; Zappia, M. Basal ganglia calcifications (Fahr’s syndrome): Related conditions and clinical features. Neurol. Sci. 2019, 40, 2251–2263. [Google Scholar] [CrossRef] [PubMed]
- Saleem, S.; Aslam, H.M.; Anwar, M.; Anwar, S.; Saleem, M.; Saleem, A.; Rehmani, M.A. Fahr’s syndrome: Literature review of current evidence. Orphanet J. Rare Dis. 2013, 8, 156. [Google Scholar] [CrossRef] [PubMed]
- Carecchio, M.; Mainardi, M.; Bonato, G. The clinical and genetic spectrum of primary familial brain calcification. J. Neurol. 2023, 270, 3270–3277. [Google Scholar] [CrossRef] [PubMed]
- Patel, D.V.; Holfels, E.M.; Vogel, N.P.; Boyer, K.M.; Mets, M.B.; Swisher, C.N.; Roizen, N.J.; Stein, L.K.; A Stein, M.; Hopkins, J.; et al. Resolution of intracranial calcifications in infants with treated congenital toxoplasmosis. Radiology 1996, 199, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Amisha, F.M.S. Fahr Syndrome; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Manyam, B.V. What is and what is not ‘Fahr’s diseas’. Park. Relat. Disord. 2005, 11, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Nicolas, G.; Pottier, C.; Charbonnier, C.; Guyant-Marechal, L.; Le Ber, I.; Pariente, J.; Labauge, P.; Ayrignac, X.; Defebvre, L.; Maltête, D.; et al. Phenotypic spectrum of probable and genetically-confirmed idiopathic basal ganglia calcification. Brain 2013, 136 Pt 11, 3395–3407. [Google Scholar] [CrossRef] [PubMed]
- Mathijssen, G.; van Valen, E.; de Jong, P.A.; Goluke, N.M.S.; van Maren, E.A.; Snijders, B.M.G.; Brilstra, E.H.; Ruigrok, Y.M.; Bakker, S.; Goto, R.W.; et al. The Association between Intracranial Calcifications and Symptoms in Patients with Primary Familial Brain Calcification. J. Clin. Med. 2024, 13, 828. [Google Scholar] [CrossRef] [PubMed]
- Ramos, E.M.; Oliveira, J.; Sobrido, M.J.; Coppola, G. Primary Familial Brain Calcification. In GeneReviews((R)); Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; GeneReviews: Seattle, WA, USA, 1993. [Google Scholar]
- IBM SPSS Statistics for Windows, Version 27.0. Available online: https://www.ibm.com/support/pages/downloading-ibm-spss-statistics-27 (accessed on 17 March 2023).
- Critical Appraisal Tools: Joanna Briggs Institute. Available online: https://jbi.global/critical-appraisal-tools (accessed on 17 March 2023).
- What Is GRADE? BMJ Best Practice. Available online: https://bestpractice.bmj.com/info/toolkit/learn-ebm/what-is-grade/ (accessed on 17 March 2023).
- de Vries, L.S.; Gunardi, H.; Barth, P.G.; Bok, L.A.; Verboon-Maciolek, M.A.; Groenendaal, F. The spectrum of cranial ultrasound and magnetic resonance imaging abnormalities in congenital cytomegalovirus infection. Neuropediatrics 2004, 35, 113–119. [Google Scholar]
- Aragao, M.; Holanda, A.C.; Brainer-Lima, A.M.; Petribu, N.C.L.; Castillo, M.; van der Linden, V.; Serpa, S.C.; Tenório, A.G.; Travassos, P.T.C.; Cordeiro, M.T.; et al. Nonmicrocephalic Infants with Congenital Zika Syndrome Suspected Only after Neuroimaging Evaluation Compared with Those with Microcephaly at Birth and Postnatally: How Large Is the Zika Virus “Iceberg”? AJNR Am. J. Neuroradiol. 2017, 38, 1427–1434. [Google Scholar] [CrossRef]
- Hazin, A.N.; Poretti, A.; Di Cavalcanti Souza Cruz, D.; Tenorio, M.; Van Der Linden, A.; Pena, L.J.; Brito, C.; Gil, L.H.V.; de Barros Miranda-Filho, D.; de Azevedo Marques, E.T.; et al. Computed Tomographic Findings in Microcephaly Associated with Zika Virus. N. Engl. J. Med. 2016, 374, 2193–2195. [Google Scholar] [CrossRef] [PubMed]
- Melo, A.S.; Aguiar, R.S.; Amorim, M.M.; Arruda, M.B.; Melo, F.O.; Ribeiro, S.T.; Batista, A.G.; Ferreira, T.; Dos Santos, M.P.; Sampaio, V.V.; et al. Congenital Zika Virus Infection: Beyond Neonatal Microcephaly. JAMA Neurol. 2016, 73, 1407–1416. [Google Scholar] [CrossRef] [PubMed]
- Del Campo, M.; Feitosa, I.M.; Ribeiro, E.M.; Horovitz, D.D.; Pessoa, A.L.; Franca, G.V.; García-Alix, A.; Doriqui, M.J.R.; Wanderley, H.Y.C.; Sanseverino, M.V.T.; et al. The phenotypic spectrum of congenital Zika syndrome. Am. J. Med. Genet. A 2017, 173, 841–857. [Google Scholar] [CrossRef] [PubMed]
- Chimelli, L.; Melo, A.S.O.; Avvad-Portari, E.; Wiley, C.A.; Camacho, A.H.S.; Lopes, V.S.; Machado, H.N.; Andrade, C.V.; Dock, D.C.A.; Moreira, M.E.; et al. The spectrum of neuropathological changes associated with congenital Zika virus infection. Acta Neuropathol. 2017, 133, 983–999. [Google Scholar] [CrossRef] [PubMed]
- Schaub, B.; Gueneret, M.; Jolivet, E.; Decatrelle, V.; Yazza, S.; Gueye, H.; Monthieux, A.; Juve, M.-L.; Gautier, M.; Najioullah, F.; et al. Ultrasound imaging for identification of cerebral damage in congenital Zika virus syndrome: A case series. Lancet Child Adolesc. Health 2017, 1, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Udgirkar, V.S.; Tullu, M.S.; Bavdekar, S.B.; Shaharao, V.B.; Kamat, J.R.; Hira, P.R. Neurological manifestations of HIV infection. Indian Pediatr. 2003, 40, 230–234. [Google Scholar]
- Wasay, M.; Kheleani, B.A.; Moolani, M.K.; Zaheer, J.; Pui, M.; Hasan, S.; Muzaffar, S.; Bakshi, R.; Sarawari, A.R. Brain CT and MRI findings in 100 consecutive patients with intracranial tuberculoma. J. Neuroimaging 2003, 13, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Tahan, T.T.; Bruck, I.; Burger, M.; Cruz, C.R. Neurological profile and neurodevelopment of 88 children infected with HIV and 84 seroreverter children followed from 1995 to 2002. Braz. J. Infect. Dis. 2006, 10, 322–326. [Google Scholar] [CrossRef] [PubMed]
- Wilmshurst, J.M.; Burgess, J.; Hartley, P.; Eley, B. Specific neurologic complications of human immunodeficiency virus type 1 (HIV-1) infection in children. J. Child Neurol. 2006, 21, 788–794. [Google Scholar] [CrossRef]
- Alarcon, A.; Garcia-Alix, A.; Cabanas, F.; Hernanz, A.; Pascual-Salcedo, D.; Martin-Ancel, A.; Cabrera, M.; Tagarro, A.; Quero, J. Beta2-microglobulin concentrations in cerebrospinal fluid correlate with neuroimaging findings in newborns with symptomatic congenital cytomegalovirus infection. Eur. J. Pediatr. 2006, 165, 636–645. [Google Scholar] [CrossRef]
- Ishikawa, N.; Kawaguchi, H.; Nakamura, K.; Kobayashi, M. Central nervous system complications and neuroradiological findings in children with chronic active Epstein-Barr virus infection. Pediatr. Int. 2013, 55, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Izbudak, I.; Chalian, M.; Hutton, N.; Baskaran, V.; Jordan, L.; Siberry, G.K.; Gailloud, P.; Agwu, A.L. Perinatally HIV-infected youth presenting with acute stroke: Progression/evolution of ischemic disease on neuroimaging. J. Neuroradiol. 2013, 40, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Donald, K.A.; Walker, K.G.; Kilborn, T.; Carrara, H.; Langerak, N.G.; Eley, B.; Wilmshurst, J.M. HIV Encephalopathy: Pediatric case series description and insights from the clinic coalface. AIDS Res. Ther. 2015, 12, 2. [Google Scholar] [CrossRef] [PubMed]
- Cavalheiro, S.; Lopez, A.; Serra, S.; Da Cunha, A.; da Costa, M.D.; Moron, A.; Lederman, H.M. Microcephaly and Zika virus: Neonatal neuroradiological aspects. Childs Nerv. Syst. 2016, 32, 1057–1060. [Google Scholar] [CrossRef] [PubMed]
- Microcephaly Epidemic Research Group. Microcephaly in Infants, Pernambuco State, Brazil, 2015. Emerg. Infect. Dis. 2016, 22, 1090–1093. [Google Scholar] [CrossRef] [PubMed]
- Soares de Oliveira-Szejnfeld, P.; Levine, D.; Melo, A.S.; Amorim, M.M.; Batista, A.G.; Chimelli, L.; Tanuri, A.; Aguiar, R.S.; Malinger, G.; Ximenes, R.; et al. Congenital Brain Abnormalities and Zika Virus: What the Radiologist Can Expect to See Prenatally and Postnatally. Radiology 2016, 281, 203–218. [Google Scholar] [CrossRef] [PubMed]
- Castro, J.D.V.; Pereira, L.P.; Dias, D.A.; Aguiar, L.B.; Maia, J.C.N.; Costa, J.; de Castro, E.C.M.; de Lucena Feitosa, F.E.; Carvalho, F.H.C. Presumed Zika virus-related congenital brain malformations: The spectrum of CT and MRI findings in fetuses and newborns. Arq. Neuro-Psiquiatr. 2017, 75, 703–710. [Google Scholar] [CrossRef]
- Radaelli, G.; Nunes, M.L.; Soder, R.B.; de Oliveira, J.M.; Bruzzo, F.T.K.; Neto, F.K.; Leal-Conceição, E.; Portuguez, M.W.; da Costa, J.C. Review of neuroimaging findings in congenital Zika virus syndrome and its relation to the time of infection. Neuroradiol. J. 2020, 33, 152–157. [Google Scholar] [CrossRef]
- van der Linden, H.; Silveira-Moriyama, L.; van der Linden, V.; Pessoa, A.; Valente, K.; Mink, J.; Paciorkowski, A. Movement disorders in children with congenital Zika virus syndrome. Brain Dev. 2020, 42, 720–729. [Google Scholar] [CrossRef]
- Namiki, T.; Takano, C.; Aoki, R.; Trinh, Q.D.; Morioka, I.; Hayakawa, S. Parenchymal calcification is associated with the neurological prognosis in patients with congenital rubella syndrome. Congenit. Anom. 2022, 62, 38–41. [Google Scholar] [CrossRef]
- Di Mascio, D.; Rizzo, G.; Khalil, A.; D’Antonio, F.; The ENSO Working Group. Role of fetal magnetic resonance imaging in fetuses with congenital cytomegalovirus infection: Multicenter study. Ultrasound Obstet. Gynecol. 2023, 61, 67–73. [Google Scholar] [CrossRef]
- Kenneson, A.; Cannon, M.J. Review and meta-analysis of the epidemiology of congenital cytomegalovirus (CMV) infection. Rev. Med. Virol. 2007, 17, 253–276. [Google Scholar] [CrossRef]
- Nath, A. Neurologic Complications of Human Immunodeficiency Virus Infection. Contin. Lifelong Learn. Neurol. 2015, 21, 1557–1576. [Google Scholar] [CrossRef]
- World Health Organization. Rubella. Available online: https://www.who.int/news-room/fact-sheets/detail/rubella#:~:text=As%20of%20December%202018%2C%20168,in%20151%20countries%20in%202018 (accessed on 6 July 2023).
- Nickerson, J.P.; Richner, B.; Santy, K.; Lequin, M.H.; Poretti, A.; Filippi, C.G.; Huisman, T.A. Neuroimaging of pediatric intracranial infection--part 2: TORCH, viral, fungal, and parasitic infections. J. Neuroimaging 2012, 22, e52–e63. [Google Scholar] [CrossRef]
- Hageman, G.; Nihom, J. Fetuses and infants with Amyoplasia congenita in congenital Zika syndrome: The evidence of a viral cause. A narrative review of 144 cases. Eur. J. Paediatr. Neurol. 2023, 42, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Aragao, M.D.F.V.; van der Linden, V.; Brainer-Lima, A.M.; Coeli, R.R.; Rocha, M.A.; da Silva, P.S.; de Carvalho, M.D.C.G.; van der Linden, A.; de Holanda, A.C.; Valenca, M.M. Clinical features and neuroimaging (CT and MRI) findings in presumed Zika virus related congenital infection and microcephaly: Retrospective case series study. BMJ 2016, 353, i1901. [Google Scholar]
- Zare Mehrjardi, M.; Poretti, A.; Huisman, T.A.; Werner, H.; Keshavarz, E.; Araujo Junior, E. Neuroimaging findings of congenital Zika virus infection: A pictorial essay. Jpn. J. Radiol. 2017, 35, 89–94. [Google Scholar] [CrossRef] [PubMed]
- de Souza, A.S.; de Oliveira-Szjenfeld, P.S.; de Oliveira Melo, A.S.; de Souza, L.A.M.; Batista, A.G.M.; Tovar-Moll, F. Imaging findings in congenital Zika virus infection syndrome: An update. Childs Nerv. Syst. 2018, 34, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Santana, E.F.M.; Casati, M.F.M.; Geraldo, M.S.P.; Werner, H.; Araujo Junior, E. Intrauterine Zika virus infection: Review of the current findings with emphasis in the prenatal and postnatal brain imaging diagnostic methods. J. Matern.-Fetal Neonatal Med. 2022, 35, 6062–6068. [Google Scholar] [CrossRef]
- Epstein-Barr Virus and Infectious Mononucleosis: Centers for Disease Control and Prevention. Available online: https://www.cdc.gov/epstein-barr/about-ebv.html (accessed on 28 September 2020).
- Makariou, E.P.A. Intracranial Calcifications. Appl. Radiol. 2009, 38, 48. [Google Scholar] [CrossRef]
- Grech, R.; Grech, S.; Mizzi, A. Intracranial calcifications. A pictorial review. Neuroradiol. J. 2012, 25, 427–451. [Google Scholar] [CrossRef] [PubMed]
- Kiroglu, Y.; Calli, C.; Karabulut, N.; Oncel, C. Intracranial calcifications on CT. Diagn. Interv. Radiol. 2010, 16, 263–269. [Google Scholar] [PubMed]
- Sato, Y. Basal ganglia calcifications in childhood. Semin. Pediatr. Neurol. 2003, 10, 96–102. [Google Scholar] [CrossRef]
- Hui, J.S.; Lew, M.F. Calcification of the Basal Ganglia. Handb. Clin. Neurol. 2007, 84, 479–486. [Google Scholar] [PubMed]
- Fink, K.R.; Thapa, M.M.; Ishak, G.E.; Pruthi, S. Neuroimaging of pediatric central nervous system cytomegalovirus infection. Radiographics 2010, 30, 1779–1796. [Google Scholar] [CrossRef] [PubMed]
- Bekiesinska-Figatowska, M.; Mierzewska, H.; Jurkiewicz, E. Basal ganglia lesions in children and adults. Eur. J. Radiol. 2013, 82, 837–849. [Google Scholar] [CrossRef] [PubMed]
- Celzo, F.G.; Venstermans, C.; De Belder, F.; Van Goethem, J.; van den Hauwe, L.; van der Zijden, T.; Voormolen, M.; Menovsky, T.; Maas, A.; Parizel, P.M. Brain stones revisited-between a rock and a hard place. Insights Imaging 2013, 4, 625–635. [Google Scholar] [CrossRef] [PubMed]
- Livingston, J.H.; Stivaros, S.; Warren, D.; Crow, Y.J. Intracranial calcification in childhood: A review of aetiologies and recognizable phenotypes. Dev. Med. Child. Neurol. 2014, 56, 612–626. [Google Scholar] [CrossRef] [PubMed]
- Saigal, G.; Nagornaya, N.; Post, M.J.D. Infection. Handb. Clin. Neurol. 2016, 135, 365–397. [Google Scholar]
- Ackermann, C.; van Toorn, R.; Andronikou, S. Human immunodeficiency virus-related cerebral white matter disease in children. Pediatr. Radiol. 2019, 49, 652–662. [Google Scholar] [CrossRef]
- Saade, C.; Najem, E.; Asmar, K.; Salman, R.; El Achkar, B.; Naffaa, L. Intracranial calcifications on CT: An updated review. J. Radiol. Case Rep. 2019, 13, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Salamon, A.; Zádori, D.; Ujfalusi, A.; Szpisjak, L.; Lukács, M.; Bihari, B.; Szépfalusi, N.; Németh, V.L.; Maróti, Z.; Horváth, E.; et al. Hereditary and non-hereditary etiologies associated with extensive brain calcification: Case series. Metab. Brain Dis. 2021, 36, 2131–2139. [Google Scholar] [CrossRef] [PubMed]
- Monfrini, E.; Arienti, F.; Rinchetti, P.; Lotti, F.; Riboldi, G.M. Brain Calcifications: Genetic, Molecular, and Clinical Aspects. Int. J. Mol. Sci. 2023, 24, 8995. [Google Scholar] [CrossRef] [PubMed]
- Rodehond: Rijksinstituut voor Volksgezondheid en Milieu, Ministerie van Volksgezondheid, Welzijn en Sport. Available online: https://lci.rivm.nl/richtlijnen/rodehond (accessed on 27 July 2023).
- Smits, G.; Mollema, L.; Hahne, S.; de Melker, H.; Tcherniaeva, I.; van der Klis, F.; Berbers, G. Seroprevalence of rubella antibodies in The Netherlands after 32 years of high vaccination coverage. Vaccine 2014, 32, 1890–1895. [Google Scholar] [CrossRef] [PubMed]
- Friesema, I.H.M.; Hofhuis, A.; Hoek-van Deursen, D.; Jansz, A.R.; Ott, A.; van Hellemond, J.J.; van der Giessen, J.; Kortbeek, L.M.; Opsteegh, M. Risk factors for acute toxoplasmosis in the Netherlands. Epidemiol. Infect. 2023, 151, e95. [Google Scholar] [CrossRef] [PubMed]
- Moskowitz, M.A.; Winickoff, R.N.; Heinz, E.R. Familial calcification of the basal ganglions: A metabolic and genetic study. N. Engl. J. Med. 1971, 285, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.Y.; Ho, C.J.; Lu, Y.T.; Lin, C.H.; Lan, M.Y.; Tsai, M.H. The Genetics of Primary Familial Brain Calcification: A Literature Review. Int. J. Mol. Sci. 2023, 24, 10886. [Google Scholar] [CrossRef] [PubMed]
- Mongua-Rodriguez, N.; Diaz-Ortega, J.L.; Garcia-Garcia, L.; Pina-Pozas, M.; Ferreira-Guerrero, E.; Delgado-Sanchez, G.; Ferreyra-Reyes, L.; Cruz-Hervert, L.P.; Baez-Saldaña, R.; Campos-Montero, R. A systematic review of rubella vaccination strategies implemented in the Americas: Impact on the incidence and seroprevalence rates of rubella and congenital rubella syndrome. Vaccine 2013, 31, 2145–2151. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
Characteristic | n = 54 |
---|---|
Age at baseline | 65 (47–71) |
Male | 24 (44%) |
Diagnosis | |
Fahr’s disease | 49 (91%) |
Fahr’s syndrome | 5 (9%) |
Genetic testing | 42 (78%) a |
No genetic mutation | 20 (48%) b |
Results not known yet | 5 (12%) b |
Known genetic mutation | 17 (41%) b |
SLC20A2 | 10 (59%) c |
XPR1 | 3 (18%) c |
PDGFB | 2 (12%) c |
MYORG | 2 (12%) c |
PDGFRB | 0 (0%) c |
JAM2 | 0 (0%) c |
Charlson Comorbidity Index (age-adjusted) | 2 (1–4) |
Total Calcification Score | 30 (13–45) |
Infectious disease testing | |
Brucella sp. (n = 38) | 0 (0%) d |
Cytomegalovirus (n = 51) | 0 (0%) d |
Human immunodeficiency virus (n = 53) | 0 (0%) d |
Human herpesvirus type 6 (n = 49) | 0 (0%) d |
Human herpesvirus type 8 (n = 50) | 0 (0%) d |
Mycobacterium tuberculosis (n = 52) | 0 (0%) d |
Rubella virus (n = 53) | |
IgM | 0 (0%) d |
IgG | 50 (94%) d |
Toxoplasma gondii (n = 53) | |
IgM | 0 (0%) d |
IgG | 15 (28%) d |
First Author (Year) | Study Design | Study Population | Pathogen | Localization and Characteristics of Brain Calcifications | Overall Quality |
---|---|---|---|---|---|
Udgirkar (2003) [21] | Case series | 8 children with HIV encephalopathy (aged 1–10 years), in India | HIV | Basal ganglia | Poor |
Wasay (2003) [22] | Cross-sectional | 100 patients with intracranial tuberculoma (aged 1–75 years), in Pakistan | Mycobacterium tuberculosis | In tuberculous granuloma, which can be localized in the basal ganglia | Poor |
De Vries (2004) [14] | Case series | 11 newborns with congenital CMV, in the Netherlands | CMV | Basal ganglia, periventricular | Good |
Tahan (2006) [23] | Cohort | 88 children with HIV and 84 children exposed to HIV, but who tested negative, in Brazil | HIV | Basal ganglia | Poor |
Wilmshurst (2006) [24] | Case series | 7 children with HIV and neurologic manifestations (aged 7 months-6 years), in South Africa | HIV | Basal ganglia | Poor |
Alarcon (2006) [25] | Cross-sectional | 14 newborns with symptomatic CMV infection, in Spain | CMV | Basal ganglia, cerebellum, cortex, periventricular, thalamus, white matter | Good |
Ishikawa (2013) [26] | Case series | 14 children with chronic active EBV (aged 1–12 years), in Japan | EBV (chronic active) | Basal ganglia | Good |
Izbudak (2013) [27] | Cohort | 8 children with perinatally acquired HIV and acute stroke (mean age 18.5 years), in USA | HIV | Basal ganglia, thalamus | Good |
Donald (2015) [28] | Case series | 87 children with HIV encephalopathy (median age 64 months (IQR 27–95)), in South Africa | HIV | Basal ganglia | Good |
Aragao (2016) [15] | Case series | 23 newborns with microcephaly and presumed Zika virus-related congenital infection, in Brazil | Zika virus | Basal ganglia, brain stem, cerebellum, periventricular, subcortical–cortical junction (punctate, linear, or coarse) | Good |
Cavalheiro (2016) [29] | Cross-sectional | 13 newborns with microcephaly born to mothers who were infected by the Zika virus in the early stage of pregnancy, in Brazil | Zika virus | Basal ganglia, periventricular, subcortical–cortical junction (coarse) | Poor |
Hazin (2016) [16] | Case series | 23 infants with congenital microcephaly who were suspected to have congenital Zika virus infection (mean age 36 days, range 3 days-5 months), in Brazil | Zika virus | Basal ganglia, subcortical–cortical junction, thalamus (punctate, bandlike distribution) | Poor |
Melo (2016) [17] | Case series | 11 newborns with congenital Zika virus infection, in Brazil | Zika virus | Basal ganglia, brain stem, cerebellum, periventricular, subcortex, thalamus | Good |
Microcephaly Epidemic Research Group (2016) [30] | Cross-sectional | 104 infants with microcephaly, in Brazil | Zika virus | Basal ganglia, cerebellum, midbrain, periventricular, subcortical–cortical junction, thalamus | Good |
Soares de Oliveira-Szejnfeld (2016) [31] | Cross-sectional | 45 fetuses/newborns with presumed Zika virus infection with intracranial calcifications, in Brazil | Zika virus | Basal ganglia, brain stem, cerebellum, cortex, periventricular, subcortical–cortical junction, thalamus | Good |
Campo (2017) [18] | Cross-sectional | 83 infants with microcephaly and presumed Zika virus congenital infection (range 0–10 months), in Brazil | Zika virus | Basal ganglia, periventricular, subcortical–cortical junction | Poor |
Castro (2017) [32] | Case series | 8 newborns with microcephaly, in Brazil | Zika virus | Basal ganglia, brain stem, periventricular, subcortical–cortical junction | Good |
Chimelli (2017) [19] | Case series | 10 stillborns/newborns who died within the first 37 h of life with congenital Zika virus infection, in Brazil | Zika virus | Basal ganglia, brain stem, subcortical–cortical junction, thalamus | Poor |
Schaub (2017) [20] | Case series | 14 fetuses of pregnant women with confirmed Zika virus infection, in Martinique | Zika virus | Basal ganglia, subcortical–cortical junction, thalamus | Medium |
Radaelli (2020) [33] | Systematic review | Children with microcephaly due to Zika virus | Zika virus | Basal ganglia, brain stem, cerebellum, periventricular, white matter | Poor |
Van der Linden (2020) [34] | Cohort | 21 children with congenital Zika virus syndrome (age 16–30 months), in Brazil | Zika virus | Basal ganglia, subcortical–cortical junction | Good |
Namiki (2022) [35] | Systematic review | 31 infants with congenital rubella virus syndrome (mean age 10.9 months (SD ± 14.7)) | Rubella virus | Basal ganglia, corpus callosum, parenchyma, periventricular, thalamus, white matter | Poor |
Di Mascio (2023) [36] | Cohort | 95 newborns with congenital CMV infection (mean age 26.0 weeks (SD ± 5.1)), in Italy | CMV | Basal ganglia | Medium |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Snijders, B.M.G.; Peters, M.J.L.; van den Brink, S.; van Trijp, M.J.C.A.; de Jong, P.A.; Vissers, L.A.T.M.; Verduyn Lunel, F.M.; Emmelot-Vonk, M.H.; Koek, H.L. Infectious Diseases and Basal Ganglia Calcifications: A Cross-Sectional Study in Patients with Fahr’s Disease and Systematic Review. J. Clin. Med. 2024, 13, 2365. https://doi.org/10.3390/jcm13082365
Snijders BMG, Peters MJL, van den Brink S, van Trijp MJCA, de Jong PA, Vissers LATM, Verduyn Lunel FM, Emmelot-Vonk MH, Koek HL. Infectious Diseases and Basal Ganglia Calcifications: A Cross-Sectional Study in Patients with Fahr’s Disease and Systematic Review. Journal of Clinical Medicine. 2024; 13(8):2365. https://doi.org/10.3390/jcm13082365
Chicago/Turabian StyleSnijders, Birgitta M. G., Mike J. L. Peters, Susanne van den Brink, Marijke J. C. A. van Trijp, Pim A. de Jong, Laurens A. T. M. Vissers, Frans M. Verduyn Lunel, Marielle H. Emmelot-Vonk, and Huiberdina L. Koek. 2024. "Infectious Diseases and Basal Ganglia Calcifications: A Cross-Sectional Study in Patients with Fahr’s Disease and Systematic Review" Journal of Clinical Medicine 13, no. 8: 2365. https://doi.org/10.3390/jcm13082365
APA StyleSnijders, B. M. G., Peters, M. J. L., van den Brink, S., van Trijp, M. J. C. A., de Jong, P. A., Vissers, L. A. T. M., Verduyn Lunel, F. M., Emmelot-Vonk, M. H., & Koek, H. L. (2024). Infectious Diseases and Basal Ganglia Calcifications: A Cross-Sectional Study in Patients with Fahr’s Disease and Systematic Review. Journal of Clinical Medicine, 13(8), 2365. https://doi.org/10.3390/jcm13082365