Common Factors in Shoulder and Hip Arthroplasty Implant Failures: A Historical Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Implant Failures by Arthroplasty Type
- Combined Hip and Shoulder Implant Failures:
- 26% (14/53) were material failures;
- 57% (30/53) were mechanical failures;
- 17% (9/53) were technical failures.
- Hip Arthroplasty Implant Failures:
- 48% (11/23) were material failures;
- 39% (9/23) were mechanical failures;
- 13% (3/23) were technical failures.
- Shoulder Arthroplasty Implant Failures:
- 10% (3/30) were material failures;
- 70% (21/30) were mechanical failures;
- 2% (6/30) were technical failures.
3.2. Implant Failures by Category
3.2.1. Material Failures
3.2.2. Mechanical Failures
3.2.3. Technical Failures
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Affatato, S.; Colic, K.; Hut, I.; Mirjanić, D.; Pelemiš, S.; Mitrovic, A. Short History of Biomaterials Used in Hip Arthroplasty and Their Modern Evolution. In Biomaterials in Clinical Practice; Springer: Cham, Switzerland, 2017; pp. 1–21. ISBN 978-3-319-68025-5. [Google Scholar]
- Knight, S.R.; Aujla, R.; Biswas, S.P. Total Hip Arthroplasty—Over 100 years of operative history. Orthop. Rev. 2011, 3, 72–74. [Google Scholar] [CrossRef]
- Houcke, J.V.; Khanduja, V.; Pattyn, C.; Audenaert, E. The History of Biomechanics in Total Hip Arthroplasty. Indian J. Orthop. 2017, 51, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Jaap Willems, W. History of shoulder arthroplasty. J. Arthrosc. Jt. Surg. 2021, 8, 2–6. [Google Scholar] [CrossRef]
- Flatow, E.L.; Harrison, A.K. A history of reverse total shoulder arthroplasty. Clin. Orthop. Relat. Res. 2011, 469, 2432–2439. [Google Scholar] [CrossRef] [PubMed]
- Emery, R.; Bankes, M. Shoulder Replacement: Historical Perspectives. In Shoulder Arthroplasty; Walch, G., Boileau, P., Eds.; Springer: Berlin/Heidelberg, Germany, 1999; pp. 1–21. ISBN 978-3-642-58365-0. [Google Scholar]
- Bankes, M.J.; Emery, R.J. Pioneers of shoulder replacement: Themistocles Gluck and Jules Emile Péan. J. Shoulder Elbow Surg. 1995, 4, 259–262. [Google Scholar] [CrossRef] [PubMed]
- Bota, N.C.; Nistor, D.V.; Caterev, S.; Todor, A. Historical overview of hip arthroplasty: From humble beginnings to a high-tech future. Orthop. Rev. 2021, 13, 8773. [Google Scholar] [CrossRef] [PubMed]
- d’Aubigné, R.M.; Postel, M. The classic: Functional results of hip arthroplasty with acrylic prosthesis. 1954. Clin. Orthop. Relat. Res. 2009, 467, 7–27. [Google Scholar] [CrossRef] [PubMed]
- Gomez, P.F.; Morcuende, J.A. Early attempts at hip arthroplasty--1700s to 1950s. Iowa Orthop J. 2005, 25, 25–29. [Google Scholar] [PubMed]
- Wellauer, H.; Heuberger, R.; Gautier, E.; Tannast, M.; Steinke, H.; Wahl, P. The history of the development of the regular straight stem in hip arthroplasty. EFORT Open Rev. 2023, 8, 548–560. [Google Scholar] [CrossRef]
- Hernigou, P.; Queinnec, S.; Flouzat Lachaniette, C.H. One hundred and fifty years of history of the Morse taper: From Stephen A. Morse in 1864 to complications related to modularity in hip arthroplasty. Int. Orthop. 2013, 37, 2081–2088. [Google Scholar] [CrossRef]
- Ling, R.S.; Charity, J.; Lee, A.J.; Whitehouse, S.L.; Timperley, A.J.; Gie, G.A. The long-term results of the original Exeter polished cemented femoral component: A follow-up report. J. Arthroplast. 2009, 24, 511–517. [Google Scholar] [CrossRef] [PubMed]
- Merola, M.; Affatato, S. Materials for Hip Prostheses: A Review of Wear and Loading Considerations. Materials 2019, 12, 495. [Google Scholar] [CrossRef]
- Stroud, R.D.; Brown, S.A.; Shackelford, J.F. Analysis of residual stress in failed T-28 femoral stems. Biomater. Med. Devices Artif. Organs 1983, 11, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Petscavage, J.M.; Ha, A.S.; Chew, F.S. Current concepts of shoulder arthroplasty for radiologists: Part 1--Epidemiology, history, preoperative imaging, and hemiarthroplasty. AJR Am. J. Roentgenol. 2012, 199, 757–767. [Google Scholar] [CrossRef] [PubMed]
- Zilber, S. Shoulder Arthroplasty: Historical Considerations. Open Orthop. J. 2017, 30, 1100–1107. [Google Scholar] [CrossRef] [PubMed]
- Pramanic, S.; Agarwal, A.K.; Rai, K.N. Chronology of Total Hip Joint Replacement and Material Development. Trends Biomater. Artif. Organs 2005, 19, 15–25. [Google Scholar]
- Jazayeri, R.; Kwon, Y.W. Evolution of the Reverse Total Shoulder Prosthesis. Bull. NYU Hosp. Jt. Dis. 2011, 69, 50–55. [Google Scholar] [PubMed]
- Broström, L.A.; Wallensten, R.; Olsson, E.; Anderson, D. The Kessel prosthesis in total shoulder arthroplasty. A five-year experience. Clin. Orthop. Relat. Res. 1992, 277, 155–160. [Google Scholar] [CrossRef]
- Post, M.; Jablon, M.; Miller, H.; Singh, M. Constrained total shoulder joint replacement: A critical review. Clin. Orthop. Relat. Res. 1979, 144, 135–150. [Google Scholar] [CrossRef]
- Panti, J.P.; Tan, S.; Kuo, W.; Fung, S.; Walker, K.; Duff, J. Clinical and radiologic outcomes of the second-generation Trabecular Metal™ glenoid for total shoulder replacements after 2–6 years follow-up. Arch. Orthop. Trauma Surg. 2016, 136, 1637–1645. [Google Scholar] [CrossRef]
- Iqbal, S.; Jacobs, U.; Akhtar, A.; Macfarlane, R.J.; Waseem, M. A history of shoulder surgery. Open Orthop. J. 2013, 7, 305–309. [Google Scholar] [CrossRef]
- Werner, C.M.; Steinmann, P.A.; Gilbart, M.; Gerber, C. Treatment of painful pseudoparesis due to irreparable rotator cuff dysfunction with the Delta III reverse-ball-and-socket total shoulder prosthesis. J. Bone Jt. Surg. Am. 2005, 87, 1476–1486. [Google Scholar] [CrossRef]
- Sirveaux, F.; Favard, L.; Oudet, D.; Huquet, D.; Walch, G.; Molé, D. Grammont inverted total shoulder arthroplasty in the treatment of glenohumeral osteoarthritis with massive rupture of the cuff. Results of a multicentre study of 80 shoulders. J. Bone Jt. Surg. Br. 2004, 86, 388–395. [Google Scholar] [CrossRef]
- McBryde, C.W.; Theivendran, K.; Thomas, A.M.; Treacy, R.B.; Pynsent, P.B. The influence of head size and sex on the outcome of Birmingham hip resurfacing. J. Bone Jt. Surg. Am. 2010, 92, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.H.; Niemann, K.M. Bipolar shoulder arthroplasty. Clin. Orthop. Relat. Res. 1994, 304, 97–107. [Google Scholar] [CrossRef]
- Hu, C.Y.; Yoon, T.R. Recent updates for biomaterials used in total hip arthroplasty. Biomater. Res. 2018, 22, 33. [Google Scholar] [CrossRef] [PubMed]
- Mehta, N.; Hall, D.J.; Pourzal, R.; Garrigues, G.E. The Biomaterials of Total Shoulder Arthroplasty: Their Features, Function, and Effect on Outcomes. JBJS Rev. 2020, 8, e1900212. [Google Scholar] [CrossRef]
- Carpenter, S.R.; Urits, I.; Murthi, A.M. Porous metals and alternate bearing surfaces in shoulder arthroplasty. Curr. Rev. Musculoskelet. Med. 2016, 9, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Leafblad, N.; Asghar, E.; Tashjian, R.Z. Innovations in Shoulder Arthroplasty. J. Clin. Med. 2022, 11, 2799. [Google Scholar] [CrossRef]
- Niculescu, M.; Solomon, B.L.; Viscopoleanu, G.; Antoniac, I.V. Evolution and Cementation Techniques and Bone Cements in Hip Arthroplasty. In Handbook of Bioceramic and Biocomposites; Antoniac, I., Ed.; Springer: Cham, Switzerland, 2016; pp. 859–899. [Google Scholar] [CrossRef]
- Babaniamansour, P.; Ebrahimian-Hosseinabadi, M.; Zargar-Kharazi, A. Designing an Optimized Novel Femoral Stem. J. Med. Signals Sens. 2017, 7, 170–177. [Google Scholar]
- Jasty, M.; Maloney, W.J.; Bragdon, C.R.; O’Connor, D.O.; Haire, T.; Harris, W.H. The initiation of failure in cemented femoral components of hip arthroplasties. J. Bone Jt. Surg. Br. 1991, 73, 551–558. [Google Scholar] [CrossRef] [PubMed]
- Crowninshield, R.D.; Brand, R.A.; Johnston, R.C.; Milroy, J.C. The effect of femoral stem cross-sectional geometry on cement stresses in total hip reconstruction. Clin. Orthop. Relat. Res. 1980, 146, 71–77. [Google Scholar] [CrossRef]
- Kedgley, A.E.; Takaki, S.E.; Lang, P.; Dunning, C.E. The effect of cross-sectional stem shape on the torsional stability of cemented implant components. J. Biomech. Eng. 2007, 129, 310–314. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Wang, H.; Zhang, N.; Zhang, M.; Cheng, C.K. Femoral Stems with Porous Lattice Structures: A Review. Front. Bioeng. Biotechnol. 2021, 9, 772539. [Google Scholar] [CrossRef] [PubMed]
- Myer, D.; Bell, R.H. Instability After Total Shoulder Arthroplasty. JSESArthro 2010, 21, 191–194. [Google Scholar] [CrossRef]
- Frank, J.K.; Siegert, P.; Plachel, F.; Heuberer, P.R.; Huber, S.; Schanda, J.E. The Evolution of Reverse Total Shoulder Arthroplasty-From the First Steps to Novel Implant Designs and Surgical Techniques. J. Clin. Med. 2022, 11, 1512. [Google Scholar] [CrossRef]
- Sheth, U.; Saltzman, M. Reverse Total Shoulder Arthroplasty: Implant Design Considerations. Curr. Rev. Musculoskelet. Med. 2019, 12, 554–561. [Google Scholar] [CrossRef]
- Barth, J.; Garret, J.; Geais, L.; Bothorel, H.; Saffarini, M.; Shoulder Friends Institute; Godenèche, A. Influence of uncemented humeral stem proximal geometry on stress distributions and torsional stability following total shoulder arthroplasty. J. Exp. Ortop. 2019, 6, 8. [Google Scholar] [CrossRef]
- Sanchez-Sotelo, J. Current Concepts in Humeral Component Design for Anatomic and Reverse Shoulder Arthroplasty. J. Clin. Med. 2021, 10, 5151. [Google Scholar] [CrossRef]
- Cuff, D.; Levy, J.C.; Gutiérrez, S.; Frankle, M.A. Torsional stability of modular and non-modular reverse shoulder humeral components in a proximal humeral bone loss model. J. Shoulder Elbow Surg. 2011, 20, 646–651. [Google Scholar] [CrossRef]
- Gorman, R.A., 2nd; Christmas, K.N.; Simon, P.; Hess, A.V., 2nd; Brewley, E.E., Jr.; Mighell, M.A.; Frankle, M.A. Optimizing humeral stem fixation in revision reverse shoulder arthroplasty with the cement-within-cement technique. J. Shoulder Elbow Surg. 2020, 29 (Suppl. S7), S9–S16. [Google Scholar] [CrossRef] [PubMed]
- Diaz, M.A.; Gorman, A.R.; Mahendrarj, K.A.; Paredes, L.A.; Brewley, E.E.; Jawa, A. The effect of stem length on reverse total shoulder humeral fixation. Sems. Arth. JSES 2021, 31, 139–146. [Google Scholar] [CrossRef]
- Neyton, L.; Nigues, A.; McBride, A.P.; Giovannetti de Sanctis, E. Neck shaft angle in reverse shoulder arthroplasty: 135 vs. 145 degrees at minimum 2-year follow-up. J. Shoulder Elbow Surg. 2023, 32, 1486–1493. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, S.; Walker, M.; Willis, M.; Pupello, D.R.; Frankle, M.A. Effects of tilt and glenosphere eccentricity on baseplate/bone interface forces in a computational model, validated by a mechanical model, of reverse shoulder arthroplasty. J. Shoulder Elbow Surg. 2011, 20, 732–739. [Google Scholar] [CrossRef]
- Mayne, I.P.; Bell, S.N.; Wright, W.; Coghlan, J.A. Acromial and scapular spine fractures after reverse total shoulder arthroplasty. Shoulder Elbow 2016, 8, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Nyffeler, R.W.; Altioklar, B.; Bissig, P. Causes of acromion and scapular spine fractures following reverse shoulder arthroplasty: A retrospective analysis and literature review. Int. Orthop. 2020, 44, 2673–2681. [Google Scholar] [CrossRef] [PubMed]
- Nabergoj, M.; Denard, P.J.; Collin, P.; Trebše, R.; Lädermann, A. Mechanical complications and fractures after reverse shoulder arthroplasty related to different design types and their rates: Part I. EFORT Open Rev. 2021, 6, 1097–1108. [Google Scholar] [CrossRef] [PubMed]
- Gaines, S.; Luo, J.N.; Gilbert, J.; Zaborina, O.; Alverdy, J.C. Optimum Operating Room Environment for the Prevention of Surgical Site Infections. Surg. Infect. 2017, 18, 503–507. [Google Scholar] [CrossRef]
- Daher, M.; Ghoul, A.; Fares, M.Y.; Abboud, J.; El Hassan, B. Subscapular sparing approach for total shoulder arthroplasty: A systematic review and meta-analysis of comparative studies. JSES Rev. Rep. Tech. 2023, 3, 160–165. [Google Scholar] [CrossRef]
- Melbourne, C.; Munassi, S.D.; Ayala, G.; Christmas, K.N.; Diaz, M.; Simon, P.; Mighell, M.A.; Frankle, M.A. Revision for instability following reverse total shoulder arthroplasty: Outcomes and risk factors for failure. J. Shoulder Elbow Surg. 2023, 32 (Suppl. S6), S46–S52. [Google Scholar] [CrossRef]
- Boileau, P.; Seeto, B.L.; Clowez, G.; Gauci, M.O.; Trojani, C.; Walch, G.; Chelli, M. SECEC Grammont Award 2017: The prejudicial effect of greater tuberosity osteotomy or excision in reverse shoulder arthroplasty for fracture sequelae. J. Shoulder Elbow Surg. 2020, 12, 2446–2458. [Google Scholar] [CrossRef] [PubMed]
- Braddon, L.; Termanini, Z.; MacDonald, S.; Parvizi, J.; Lieberman, J.; Frankel, V.; Zuckerman, J. Corrosion and Tribology of Materials Used in a Novel Reverse Hip Replacement. Materials 2017, 10, 751. [Google Scholar] [CrossRef] [PubMed]
- Turgeon, T.R.; Hedden, D.R.; Bohm, E.R.; Burnell, C.D. Radiostereometric analysis and clinical outcomes of a novel reverse total hip system at two years. Bone Jt. Open 2023, 4, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Walker, M.; Brooks, J.; Willis, M.; Frankle, M. How reverse shoulder arthroplasty works. Clin. Orthop. Relat. Res. 2011, 469, 2440–2451. [Google Scholar] [CrossRef] [PubMed]
Hip Implant | Year | Description of Failure Mode |
---|---|---|
Ivory arthroplasty by Gluck | 1880 | Foreign body reaction and infection |
Smith-Petersen mold/cup arthroplasty | 1923 | Breakage of glass during gait, and other molds lacked inert and durable properties |
Judet acrylic THA 1 | 1948 | Prosthesis wear, fracture of the prosthesis, and bone absorption. |
Charnley PTFE 2 THA | 1955 | PTFE wear and failure |
Charnley MoP 3 THA | 1970 | Polyethylene wear particles led to aseptic loosening |
Polyacetal femoral heads | 1971 | Failed screw or glue fixation led to femoral head/neck fracture |
Screw or glue fixation of femoral head | 1972 | Failed screw or glue fixation led to femoral head/neck fracture |
Stainless steel heads replaced by aluminum oxide ceramic heads | 1974 | Wear particle production |
Ceramic-on-ceramic (alumina and zirconia) | 1985 | Chipping, squeaking, and fracture |
316 L stainless steel femoral stems | 1983 | Fatigue fracture of stem and aseptic loosening |
Third generation, large diameter MoM bearing surfaces | 1988 | Metallosis, hypersensitivity reactions, and aseptic loosening |
Shoulder Implant | Year | Description of Failure Mode |
---|---|---|
MacAusland polyamide prosthesis | 1950s | Lack of durability, wear particle production, and foreign body reactions |
Judet acrylic shoulder prosthesis | 1952 | Lack of durability, wear particle production, and foreign body reactions |
Richards, Krueger, and deAnquin acrylic TSA | 1955 | Lack of durability, wear particle production, and foreign body reactions |
Hip Implant | Year | Description of Failure Mode |
---|---|---|
Phillip Wiles MoM 1 THA 2 | 1938 | High stress concentration and femoral loosening |
Venable, Stuck, and Beach HA 3 made of Vitallium | 1939 | Acetabular wear |
Thompson-Moore implant | 1950 | Femoral component loosening |
McKee-Farrar MoM THA | 1950 | Femoral component loosening |
Fully coated cylindrical Lord stem | 1973 | Excellent osteointegration led to massive bone loss in revision setting |
Mittelmeier “weightbearing ribs” prosthesis | 1974 | Inadequate fixation led to femoral component loosening |
Anatomic Modular Locking (AML) fully coated stem | 1977 | Stress shielding led to large metaphyseal bone loss in revisions |
Cementless stems with hydroxyapatite coating | 1986 | Delamination of the hydroxyapatite coating caused implant loosening |
Cementless M30NW stainless steel femoral stem with impaction site | 2003 | Broke at impaction site on neck of stem |
Shoulder Implant | Year | Description of Failure Mode |
---|---|---|
Neer I hemiarthroplasty | 1953 | Instability with humeral head migration |
Beddow and Elloy Liverpool Shoulder | 1969 | Glenoid loosening |
Neer Averill 3 “fixed fulcrum” prosthesis | 1970–1972 | Implant breakage, loosening, and instability |
Stanmore constrained TSA 1 | 1972 | Implant breakage and glenoid loosening |
Leeds/Reeves RSA 2 with divergent screws | 1972 | Glenoid loosening |
Gerard reverse prosthesis | 1973 | Instability with proximal humeral head migration and acromial erosion |
Neer II anatomic total shoulder | 1974 | Instability with proximal humeral head migration |
Fenlin RSA fixed-fulcrum system | 1975 | Implant breakage, loosening, and instability |
Michael Reese total shoulder (MRTS)—first iteration, constrained reverse | 1975 | Humeral neck breakage due to undersizing |
Neer Mark II | 1977 | Limited mobility and glenoid loosening |
MRTS second iteration | 1977 | Constrained model led to impingement and glenoid fixation issues |
Buechel “floating fulcrum” RSA | 1978 | Instability (allowed supraphysiologic ROM) |
Gristina and Webb’s trispherical system | 1978 | Inadequate fixation and failure of glenoid component |
Cofield’s TSA metal-backed glenoid | 1980 | Inadequate fixation led to glenoid loosening |
Neer Mark III | 1981 | High rates of component loosening and problems with scapula fixation |
Kessel prosthesis | 1985 | Glenoid loosening |
Second generation modular TSAs | 1985 | Inadequate fixation led to glenoid loosening |
Grammont’s Trompette: glenoid baseplate with press-fit central peg | 1985 | Notching, loosening, and breakage of the glenoid component |
Delta III reverse | 1991 | Instability, scapula fracture, and glenoid loosening |
Grammont III variation | 1994 | Medial impingement and instability |
Monoblock tantalum metal-backed glenoid TSA | 2013 | Fracture of the glenoid peg-base plate junction |
Lateralized RSA |
Hip Implant | Year | Description of Failure Mode |
---|---|---|
Rizzoli stem | 1977 | Elliptical proximal body and round distal required excessive reaming and weakened cortical bone |
Modular taper fluted titanium femoral stem | 1982 | Late loosening when implanted without cement |
Birmingham hip resurfacing | 1997 | Femoral neck fracture |
Shoulder Implant | Year | Description of Failure Mode |
---|---|---|
Jules Emile Péan | 1893 | Chronic infection |
König ivory prosthesis | 1914 | Infection and septic loosening |
Neer Mark I | 1973 | Size of prosthesis prevented rotator cuff attachment, superior migration, pain, and dysfunction |
Swanson bipolar HA 1 | 1975 | Greater tuberosity osteotomy led to superior migration, instability, and poor functional results |
Bickel implant | 1977 | Extensive bone removal for implantation led to high complication rates |
Mazas nonconstrained TSA 2 | 1977 | Resected supraspinatus led to poor outcomes, instability, and glenoid loosening |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrews, R.; Layuno-Matos, J.G.; Frankle, M.A. Common Factors in Shoulder and Hip Arthroplasty Implant Failures: A Historical Review. J. Clin. Med. 2024, 13, 2370. https://doi.org/10.3390/jcm13082370
Andrews R, Layuno-Matos JG, Frankle MA. Common Factors in Shoulder and Hip Arthroplasty Implant Failures: A Historical Review. Journal of Clinical Medicine. 2024; 13(8):2370. https://doi.org/10.3390/jcm13082370
Chicago/Turabian StyleAndrews, Reed, Josué G. Layuno-Matos, and Mark A. Frankle. 2024. "Common Factors in Shoulder and Hip Arthroplasty Implant Failures: A Historical Review" Journal of Clinical Medicine 13, no. 8: 2370. https://doi.org/10.3390/jcm13082370
APA StyleAndrews, R., Layuno-Matos, J. G., & Frankle, M. A. (2024). Common Factors in Shoulder and Hip Arthroplasty Implant Failures: A Historical Review. Journal of Clinical Medicine, 13(8), 2370. https://doi.org/10.3390/jcm13082370