Stress and Heart in Remodeling Process: Multiple Stressors at the Same Time Kill
Abstract
:1. Introduction
2. Chronic Stress
3. Stress and Brain
4. Stress and Heart
5. Updated Knowledge for Superposed Multiple Stressors
- The effect of superposed multiple stressors is independent from the type of stress and complex SHM with tissue heterogeneity in human beings (Figure 3a–c) having a striking difference from the regular segmental remodeling progression in small animals under stress induction determined by microimaging [12,13,14].
- Segmental LV remodeling instead of cross-sectional measurements could contribute to the prediction of future global LV remodeling and heart failure development due to basal apical discordance as we have recently proposed in patients with mechanic stress in aortic stenosis and functional stress in hypertension due to increased afterload, respectively [25,30,31,32].
- The dominant role of the type of stress is not known in SHM, since there is a lack of the pooled data regarding segmental remodeling around the world as we recently have pointed out in our editorial [31].
- There is a need to work on cell biology to search cellular levels of myocardial tissue to prove SHM as the specific location of Selye’s theory on nonspecific general adaptive responses to stressors [17].
- We pointed out the importance of stress-induced exaggerated hypertension and hemodynamic overload under stress in the patients with BSH [1,15,25]. Years later, we realized the importance of emotional factors on very complex BSH [2,5,6,7,15,16,31] after we validated BSH as the early imaging biomarker during very regular LV remodeling in small animals using 3rd-generation microscopic ultrasonography [12,13,14].
- In addition to increased stress scores and more cognitive problems in hypertensives [6,15,16] compared to non-hypertensives, it was shown that recurrent ASC is more commonly detected in hypertensive patients possibly due to hemodynamic fluctuations [21,34]. Long-term variability in blood pressure is now known to be related to increased mortality than the effect of mean blood pressure [35,36].
- In addition to its relation to SHM, superposed multiple stressors including increased adrenergic overdrive [9,21,34], cognitive disorders [6,15,16], chronic or exercise hypertension [1], which are also associated with increased cardiovascular mortality [37,38], are more likely dangerous since each risk is associated with LV remodeling with hemodynamic overload [1,2,5,6,7,8,9,25,26,27,28] and represents hemodynamic fluctuations due to blood pressure variability which is associated with increased mortality [35,36].
6. Future Perspective
7. Stress History
8. Autonomic Nervous System and Stressed Heart Findings
9. Nonspecific Stress Adaptation of Selye and Segmental Remodeling
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
SHM | stressed heart morphology |
BSH | basal septal hypertrophy |
ASC | acute stress cardiomyopathy |
LV | left ventricular |
ANS | autonomic nervous system |
References
- Yalçin, F.; Yalçin, H.; Abraham, T.P. Exercise hypertension should be recalled in basal septal hypertrophy as the early imaging biomarker in patients with stressed heart morphology. Blood Press. Monit. 2020, 25, 118–119. [Google Scholar] [CrossRef] [PubMed]
- Yalçin, F.; Yalçin, H.; Abraham, T. Stress-induced regional features of left ventricle is related to pathogenesis of clinical conditions with both acute and chronic stress. Int. J. Cardiol. 2010, 145, 367–368. [Google Scholar] [CrossRef] [PubMed]
- Yalçin, F.; Topaloglu, C.; Kuçukler, N.; Ofgeli, M.; Abraham, T.P. Could early septal involvement in the remodeling process be related to the advance hypertensive heart disease? Int. J. Cardiol. Heart Vasc. 2015, 7, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Fang, F.; Yip, G.W.-K.; Sanderson, J.E.; Feng, W.; Xie, J.-M.; Luo, X.-X.; Lee, A.P.-W.; Lam, Y.-Y. Left ventricular long-axis performance during exercise is an important prognosticator in patients with heart failure and preserved ejection fraction. Int. J. Cardiol. 2015, 178, 131–135. [Google Scholar] [CrossRef] [PubMed]
- Yalçin, F.; Muderrisoğlu, H. Tako-tsubo cardiomyopathy may be associated with cardiac geometric features as observed in hypertensive heart disease. Int. J. Cardiol. 2009, 135, 251–252. [Google Scholar] [CrossRef] [PubMed]
- Yalçin, F.; Çağatay, B.; Küçükler, N.; Abraham, T.P. Geomeric and functional aspects in hypertension and takotsubo: Importance of basal septal hypertrophy. Eur. J. Prev. Cardiol. 2023, 30, 1996–1997. [Google Scholar] [CrossRef] [PubMed]
- Yalçin, F.; Yalçin, H.; Abraham, M.R.; Abraham, T.P. Ultimate phases of hypertensive heart disease and stressed heart morphology by conventional and novel cardiac imaging. Am. J. Cardiovasc. Dis. 2021, 11, 628–634. [Google Scholar] [PubMed]
- Yalçin, F.; Abraham, R.; Abraham, T.P. Myocardial Aspects in Aortic Stenosis and Functional Increased Afterload Conditions in Patients with Stressed Heart Morphology. Ann. Thorac. Cardiovasc. Surg. 2021, 27, 332–334. [Google Scholar] [CrossRef]
- Yalçin, F. Stressed Heart Morphology: Specific Finding for Superposed Multiple Stressors, 1st ed.; Yalçin, F., Ed.; Klinikleri: Ankara, Türkiye, 2022. [Google Scholar]
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: A pooled analysis of 1201 population-representative studies with 104 million participants. Lancet 2021, 398, 957–980. [Google Scholar] [CrossRef]
- Ratey, J.; Hagerman, E. Spark: The Revolutionary New Science of Exercise and the Brain; Little, Brown Spark: New York, NY, USA, 2008; Volume 59. [Google Scholar]
- Yalçin, F.; Kucukler, N.; Cingolani, O.H.; Mbiyangandu, B.; Sorensen, L.; Pinherio, A.; Abraham, M.R.; Abraham, T.P. Evolution of ventricular hypertrophy and myocardial mechanics in physiological and pathological hypertrophy. J. Appl. Physiol. 2019, 126, 354–362. [Google Scholar] [CrossRef]
- Yalcin, F.; Kucukler, N.; Cingolani, O.; Mbiyangandu, B.; Sorensen, L.L.; Pinheiro, A.C.; Abraham, M.R.; Abraham, T.P. Intracavitary gradients in mice with early regional remodeling at the compensatory hyperactive stage prior to lv tissue dysfunction. J. Am. Coll. Cardiol. 2020, 75, 1585. [Google Scholar] [CrossRef]
- Yalçin, F.; Yalçin, H.; Abraham, R.; Abraham, T.P. Hemodynamic stress and microscopic remodeling. Int. J. Cardiol. Cardiovasc. Risk Prev. 2021, 11, 200115. [Google Scholar] [CrossRef] [PubMed]
- Yalçin, F.; Abraham, R.; Abraham, T.P. Basal septal hypertrophy: Extremely sensitive region to variety of stress stimuli and stressed heart morphology. J. Hypertens. 2022, 40, 626–627. [Google Scholar] [CrossRef]
- Yalcin, F.; Melek, I.; Mutlu, T. Stressed heart morphology and neurologic stress core effect beyond hemodynamic stress on focal geometry. J. Hypertens. 2022, 40, e79. [Google Scholar]
- Selye, H. The Stress of Life; McGraw-Hill: New York, NY, USA, 1956. [Google Scholar]
- Schlaich, M.P.; Kaye, D.M.; Lambert, E.; Sommerville, M.; Socratous, F.; Esler, M.D. Relation between cardiac sympathetic activity and hypertensive left ventricular hypertrophy. Circulation 2003, 108, 560–565. [Google Scholar] [CrossRef] [PubMed]
- Holmgren, S.; Abrahamsson, T.; Almgren, O. Adrenergic innervation of coronary arteries and ventricular myocardium in the pig: Fluorescence microscopic appearance in the normal state and after ischemia. Basic. Res. Cardiol. 1985, 80, 18–26. [Google Scholar] [CrossRef]
- Kawano, H.; Okada, R.; Yano, K. Histological study on the distribution of autonomic nerves in the human heart. Heart Vessel. 2003, 18, 32–39. [Google Scholar] [CrossRef]
- Liang, J.; Zhang, J.; Xu, Y.; Teng, C.; Lu, X.; Wang, Y.; Zuo, X.; Li, Q.; Huang, Z.; Ma, J.; et al. Conventional cardiovascular risk factors associated with Takotsubo cardiomyopathy: A comprehensive review. Clin. Cardiol. 2021, 44, 1033–1040. [Google Scholar] [CrossRef]
- Osteraas, N.D.; Lee, V.H. Chapter 4—Neurocardiology. In Critical Care Neurology Part I; Handbook of Clinical Neurology; Wijdicks, E.F.M., Kramer, A.H., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; Volume 140, pp. 49–65. [Google Scholar]
- Taggart, P. Brain-heart interactions and cardiac ventricular arrhythmias. Neth. Heart J. 2012, 21, 78–81. [Google Scholar] [CrossRef]
- Frommeyer, G.; Eckardt, L.; Breithardt, G. Panic attacks and supraventricular tachycardias: The chicken or the egg? Neth. Heart J. 2013, 21, 74–77. [Google Scholar] [CrossRef]
- Yalçin, F.; Yalçin, H.; Küçükler, N.; Arslan, S.; Akkuş, O.; Kurtul, A.; Abraham, M.R. Basal Septal Hypertrophy as the Early Imaging Biomarker for Adaptive Phase of Remodeling Prior to Heart Failure. J. Clin. Med. 2021, 11, 75. [Google Scholar] [CrossRef] [PubMed]
- Yalçin, F.; Yiǧit, F.; Erol, T.; Baltali, M.; Korkmaz, M.E.; Müderrisoǧlu, H. Effect of dobutamine stress on basal septal tissue dynamics in hypertensive patients with basal septal hypertrophy. J. Hum. Hypertens. 2006, 20, 628–630. [Google Scholar] [CrossRef] [PubMed]
- Yalçin, F.; Muderrisoglu, H.; Korkmaz, M.E.; Ozin, B.; Baltali, M.; Yigit, F. The effect of dobutamine stress on left ventricular outflow tract gradients in hypertensive patients with basal septal hypertrophy. Angiology 2004, 55, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Yalçin, F.; Schindler, T.; Abraham, T.P. Hypertension should be ruled out in patients with hyperdynamic left ventricle on radionuclide myocardial perfusion imaging, diastolic dysfunction and dyspnea on exertion. Int. J. Cardiol. Heart Vasc. 2015, 7, 149–150. [Google Scholar] [CrossRef] [PubMed]
- Wittstein, I.S.; Thiemann, D.R.; Lima, J.A.C.; Baughman, K.L.; Schulman, S.P.; Gerstenblith, G.; Wu, K.C.; Rade, J.J.; Bivalacqua, T.J.; Champion, H.C. Neurohumoral features of myocardial stunning due to sudden emotional stress. N. Engl. J. Med. 2005, 352, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Korhonen, P.E.; Kautiainen, H.; Järvenpää, S.; Kantola, I. Target organ damage and cardiovascular risk factors among subjects with previously undiagnosed hypertension. Eur. J. Prev. Cardiol. 2014, 21, 980–988. [Google Scholar] [CrossRef] [PubMed]
- Yalcin, F.; Garcia, M.J. It is time to focus on “Segmental Remodeling” with validated biomarkers as “Stressed Heart Morphology” in prevention of heart failure. J. Clin. Med. 2022, 11, 4180. [Google Scholar] [CrossRef] [PubMed]
- Yalçin, F.; Abraham, M.R.; Abraham, T.P. It is time to assess left ventricular segmental remodelling in aortic stenosis. Eur. Heart J.-Cardiovasc. Imaging 2022, 23, e299–e300. [Google Scholar] [CrossRef] [PubMed]
- Werhahn, S.M.; Kreusser, J.S.; Hagenmüller, M.; Beckendorf, J.; Diemert, N.; Hoffmann, S.; Schultz, J.-H.; Backs, J.; Dewenter, M. Adaptive versus maladaptive cardiac remodelling in response to sustained β-adrenergic stimulation in a new “ISO on/off model”. PLoS ONE 2021, 16, e0248933. [Google Scholar] [CrossRef]
- Spes, C.; Knape, A.; Mudra, H. Recurrent tako–tsubo–like left ventricular dysfunction (apical ballooning) in a patient with pheochromocytoma—A case report. Clin. Res. Cardiol. 2006, 95, 307–311. [Google Scholar] [CrossRef]
- Stevens, S.L.; Wood, S.; Koshiaris, C.; Law, K.; Glasziou, P.; Stevens, R.J.; McManus, R.J. Blood pressure variability and cardiovascular disease: Systematic review and meta-analysis. BMJ 2016, 354, i4098. [Google Scholar] [CrossRef]
- Wang, J.; Shi, X.; Ma, C.; Zheng, H.; Xiao, J.; Bian, H.; Ma, Z.; Gong, L. Visit-to-visit blood pressure variability is a risk factor for all-cause mortality and cardiovascular disease: A systematic review and meta-analysis. J. Hypertens. 2017, 35, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Mundal, R.; Kjeldsen, S.E.; Sandvik, L.; Erikssen, G.; Thaulow, E.; Erikssen, J. Exercise blood pressure predicts mortality from myocardial infarction. Hypertension 1996, 27, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Schultz, M.G.; Otahal, P.; Cleland, V.J.; Blizzard, L.; Marwick, T.H.; Sharman, J.E. Exercise-induced hypertension, cardiovascular events, and mortality in patients undergoing exercise stress testing: A systematic review and meta-analysis. Am. J. Hypertens. 2013, 26, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Hüzmeli, I.; Katayifçi, N.; Yalçin, F.; Hüzmeli, E.D. Effects of different ınspiratory muscle training protocols on exercise capacity, respiratory muscle strength, and health-related quality of life in Patients with Hypertension. Int. J. Clin. Pract. 2024, 2024, 4136457. [Google Scholar] [CrossRef] [PubMed]
- Selye, H. The general adaptation syndrome and the diseases of adaptation. J. Clin. Endocrinol. Metab. 1946, 6, 117–230. [Google Scholar] [CrossRef] [PubMed]
- Selye, H. The Story of the Adaptation Syndrome; Aeta, Inc.: Montreal, QC, Canada, 1952; Volume 35. [Google Scholar]
- Selye, H. The Significance of the Adrenals for Adaptation. Science 1937, 85, 247–248. [Google Scholar] [CrossRef] [PubMed]
- Selye, H. Experimental evidence supporting the conception of “adaptation energy”. Am. J. Physiol. Content 1938, 123, 758–765. [Google Scholar] [CrossRef]
- Selye, H. Role of somatotrophic hormone in the production of malignant nephrosclerosis, periarteritis nodosa, and hypertensive disease. Br. Med. J. 1951, 1, 263–270. [Google Scholar] [CrossRef]
- Selye, H. Stress of My Life. 143. Illustration; Rockefeller Foundation Archives, Rockefeller Archive Center, Sleepy Hollow: New York, NY, USA, 1950. [Google Scholar]
- Cox, T. Stress; Macmillan: London, UK, 1978; p. 174. [Google Scholar]
- Waxenbaum, J.A.; Reddy, V.; Varacallo, M. Anatomy, Autonomic Nervous System; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Macefield, V. Finding inspiration in high blood pressure. Exp. Physiol. 2016, 101, 1449–1450. [Google Scholar] [CrossRef]
- Simms, A.E.; Paton, J.F.R.; Pickering, A.E.; Allen, A.M. Amplified respiratory–sympathetic coupling in the spontaneously hypertensive rat: Does it contribute to hypertension? J. Physiol. 2009, 587, 597–610. [Google Scholar] [CrossRef] [PubMed]
- Cipriano, G.F.; Cipriano, G.; Santos, F.V.; Güntzel Chiappa, A.M.; Pires, L.; Cahalin, L.P.; Chiappa, G.R. Current insights of inspiratory muscle training on the cardiovascular system: A systematic review with meta-analysis. Integr. Blood Press. Control. 2019, 12, 1–11. [Google Scholar] [CrossRef] [PubMed]
- da Silva, C.D.; de Abreu, R.M.; Rehder-Santos, P.; De Noronha, M.; Catai, A.M. Can respiratory muscle training change the blood pressure levels in hypertension? A systematic review with meta-analysis. Scand. J. Med. Sci. Sports 2021, 31, 1384–1394. [Google Scholar] [CrossRef]
- Ublosakka-Jones, C.; Tongdee, P.; Pachirat, O.; Jones, D.A. Slow loaded breathing training improves blood pressure, lung capacity and arm exercise endurance for older people with treated and stable isolated systolic hypertension. Exp. Gerontol. 2018, 108, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Stutz, J.; Casutt, S.; Spengler, C.M. Respiratory muscle endurance training improves exercise performance but does not affect resting blood pressure and sleep in healthy active elderly. Eur. J. Appl. Physiol. 2022, 122, 2515–2531. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Guan, L.; Zhang, X.; Li, X.; Yang, Y.; Guo, B.; Ou, Y.; Lin, L.; Zhou, L.; Chen, R. Effects of two types of equal-intensity inspiratory muscle training in stable patients with chronic obstructive pulmonary disease: A randomised controlled trial. Respir. Med. 2017, 132, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Trevisol, D.J.; Moreira, L.B.; Kerkhoff, A.; Fuchs, S.C.; Fuchs, F.D. Health-related quality of life and hypertension: A systematic review and meta-analysis of observational studies. J. Hypertens. 2011, 29, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Cheung, B.M.Y.; Lo, J.L.F.; Fong, D.Y.T.; Chan, M.Y.; Wong, S.H.T.; Wong, V.C.W.; Lam, K.S.L.; Lau, C.P.; Karlberg, J.P.E. Randomized controlled trial of qigong in the treatment of mild essential hypertension. J. Hum. Hypertens. 2005, 19, 697–704. [Google Scholar] [CrossRef] [PubMed]
- Fincham, G.W.; Strauss, C.; Montero-Marin, J.; Cavanagh, K. Effect of breathwork on stress and mental health: A meta-analysis of randomized-controlled trials. Sci. Rep. 2023, 13, 432. [Google Scholar] [CrossRef]
- Ferreira, J.B.; Plentz, R.D.M.; Stein, C.; Casali, K.R.; Arena, R.; Lago, P.D. Inspiratory muscle training reduces blood pressure and sympathetic activity in hypertensive patients: A randomized controlled trial. Int. J. Cardiol. 2013, 166, 61–67. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yalçin, F.; Abraham, M.R.; Garcia, M.J. Stress and Heart in Remodeling Process: Multiple Stressors at the Same Time Kill. J. Clin. Med. 2024, 13, 2597. https://doi.org/10.3390/jcm13092597
Yalçin F, Abraham MR, Garcia MJ. Stress and Heart in Remodeling Process: Multiple Stressors at the Same Time Kill. Journal of Clinical Medicine. 2024; 13(9):2597. https://doi.org/10.3390/jcm13092597
Chicago/Turabian StyleYalçin, Fatih, Maria Roselle Abraham, and Mario J. Garcia. 2024. "Stress and Heart in Remodeling Process: Multiple Stressors at the Same Time Kill" Journal of Clinical Medicine 13, no. 9: 2597. https://doi.org/10.3390/jcm13092597
APA StyleYalçin, F., Abraham, M. R., & Garcia, M. J. (2024). Stress and Heart in Remodeling Process: Multiple Stressors at the Same Time Kill. Journal of Clinical Medicine, 13(9), 2597. https://doi.org/10.3390/jcm13092597