A Longitudinal Assessment of Metabolic Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval and Informed Consent
2.2. Study Design
2.3. Statistical Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.T.; Loria, C.M.; Smith, S.C., Jr. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [PubMed]
- Barceló, M.A.; Rodríguez-Poncelas, A.; Saez, M.; Coll-de-Tuero, G. The dynamic behaviour of metabolic syndrome and its components in an eight-year population-based cohort from the Mediterranean. PLoS ONE 2017, 12, e0176665. [Google Scholar] [CrossRef] [PubMed]
- Chew, N.W.; Ng, C.H.; Tan, D.J.H.; Kong, G.; Lin, C.; Chin, Y.H.; Lim, W.H.; Huang, D.Q.; Quek, J.; Fu, C.E.; et al. The global burden of metabolic disease: Data from 2000 to 2019. Cell Metab. 2023, 35, 414–428.e3. [Google Scholar] [CrossRef]
- Saklayen, M.G. The global epidemic of the metabolic syndrome. Curr. Hypertens. Rep. 2018, 20, 12. [Google Scholar] [CrossRef] [PubMed]
- Galassi, A.; Reynolds, K.; He, J. Metabolic syndrome and risk of cardiovascular disease: A meta-analysis. Am. J. Med. 2006, 119, 812–819. [Google Scholar] [CrossRef] [PubMed]
- Noubiap, J.J.; Nansseu, J.R.; Lontchi-Yimagou, E.; Nkeck, J.R.; Nyaga, U.F.; Ngouo, A.T.; Tounouga, D.N.; Tianyi, F.L.; Foka, A.J.; Ndoadoumgue, A.L.; et al. Geographic distribution of metabolic syndrome and its components in the general adult population: A meta-analysis of global data from 28 million individuals. Diabetes Res. Clin. Pract. 2022, 188, 109924. [Google Scholar] [CrossRef]
- Madan, K.; Paliwal, S.; Sharma, S.; Kesar, S.; Chauhan, N.; Madan, M. Metabolic syndrome: The constellation of co-morbidities, a global threat. Endocr. Metab. Immune Disord. Drug Targets 2023, 23, 1491–1504. [Google Scholar] [CrossRef] [PubMed]
- Aringazina, A.; Kuandikov, T.; Arkhipov, V. Burden of the cardiovascular diseases in Central Asia. Cent. Asian J. Glob. Health 2018, 7, 321. [Google Scholar] [CrossRef] [PubMed]
- Kosherbayeva, L.; Akhtayeva, N.; Tolganbayeva, K.; Samambayeva, A. Trends in Avoidable Mortality in Kazakhstan from 2015 to 2021. Int. J. Health Policy Manag. 2024, 13, 7919. [Google Scholar] [CrossRef] [PubMed]
- Kulkayeva, G.; Harun-Or-Rashid, M.; Yoshida, Y.; Tulebayev, K.; Sakamoto, J. Cardiovascular disease risk factors among rural Kazakh population. Nagoya J. Med. Sci. 2012, 74, 51–61. [Google Scholar]
- Orazumbekova, B.; Issanov, A.; Atageldiyeva, K.; Berkinbayev, S.; Junusbekova, G.; Danyarova, L.; Shyman, Z.; Tashmanova, A.; Sarria-Santamera, A. Prevalence of Impaired Fasting Glucose and Type 2 Diabetes in Kazakhstan: Findings from Large Study. Front. Public. Health. 2022, 10, 810153. [Google Scholar] [CrossRef] [PubMed]
- Scuteri, A.; Laurent, S.; Cucca, F.; Cockcroft, J.; Cunha, P.G.; Mañas, L.R.; Raso, F.M.; Muiesan, M.L.; Ryliškytė, L.; Rietzschel, E.; et al. The Metabolic Syndrome and Arteries Research (MARE) Consortium. Metabolic syndrome across Europe: Different clusters of risk factors. Eur. J. Prev. Cardiol. 2015, 22, 486–491. [Google Scholar] [CrossRef] [PubMed]
- Chew, N.; Ng, C.H.; Tan, D.; Kong, G.; Lin, C.X.; Chin, Y.H.; Foo, R.; Chan, M.; Muthiah, M. Global burden of metabolic diseases: Data from Global Burden of Disease 2000–2019. Eur. Heart J. 2019, 44 (Suppl. 1), ehac779-131. [Google Scholar]
- Sadykova, A.; Shalkharova, Z.S.; Shalkharova, Z.N.; Sadykova, K.; Madenbay, K.; Zhunissova, M.; Nuskabayeva, G.; Askarova, S.; Grjibovski, A.M. Metabolic syndrome and its components in southern Kazakhstan: A cross-sectional study. Int. Health 2018, 10, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Razbek, J.; Zhang, Y.; Xia, W.-J.; Xu, W.-T.; Li, D.-Y.; Yin, Z.; Cao, M.-Q. Study on dynamic progression and risk assessment of metabolic syndrome based on multi-state Markov model. Diabetes Metab. Syndr. Obes. Targets Ther. 2022, 15, 2497–2510. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, P.; Khalili, D.; Seif, M.; Rezaianzadeh, A. Dynamic behavior of metabolic syndrome progression: A comprehensive systematic review on recent discoveries. BMC Endocr. Disord. 2021, 21, 54. [Google Scholar] [CrossRef] [PubMed]
- International Diabetes Federation. The IDF Consensus Worldwide Definition of the Metabolic Syndrome; International Diabetes Federation: Brussels, Belgium, 2006. [Google Scholar]
- Ambroselli, D.; Masciulli, F.; Romano, E.; Catanzaro, G.; Besharat, Z.M.; Massari, M.C.; Ferretti, E.; Migliaccio, S.; Izzo, L.; Ritieni, A.; et al. New advances in metabolic syndrome, from prevention to treatment: The role of diet and food. Nutrients 2023, 15, 640. [Google Scholar] [CrossRef]
- Ormazabal, V.; Nair, S.; Elfeky, O.; Aguayo, C.; Salomon, C.; Zuñiga, F.A. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc. Diabetol. 2018, 17, 122. [Google Scholar] [CrossRef]
- Thomaz, F.S.; John, O.D.; Sinha, P.; Shafie, S.R.; Worrall, S. The Metabolic Syndrome: An Overview and Proposed Mechanisms. Obesities 2024, 4, 226–255. [Google Scholar] [CrossRef]
- Fahed, G.; Aoun, L.; Bou Zerdan, M.; Allam, S.; Bou Zerdan, M.; Bouferraa, Y.; Assi, H.I. Metabolic Syndrome: Updates on Pathophysiology and Management in 2022. Int. J. Mol. Sci. 2022, 23, 786. [Google Scholar] [CrossRef] [PubMed]
- Akhmetova, K.; Vochshenkova, T.; Dalenov, E.; Abduldayeva, A.; Azhenov, T. Determination of the association of some polymorphisms with metabolic syndrome in residents of the city of Nur-Sultan. J. Clin. Med. Kazakhstan 2021, 18, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Huo, D.; Tao, L.; Li, X.; Wang, W.; Wang, Z.; Chen, D.; Zhu, H.; Yang, X.; Luo, Y.; Guo, X. Association of blood pressure with development of metabolic syndrome components: A five-year retrospective cohort study in Beijing. BMC Public Health 2013, 13, 912. [Google Scholar] [CrossRef] [PubMed]
- Stanciu, S.; Rusu, E.; Miricescu, D.; Radu, A.C.; Axinia, B.; Vrabie, A.M.; Ionescu, R.; Jinga, M.; Sirbu, C.A. Links between Metabolic Syndrome and Hypertension: The Relationship with the Current Antidiabetic Drugs. Metabolites 2023, 13, 87. [Google Scholar] [CrossRef] [PubMed]
- Kotsis, M.; Stabouli, S.; Papakatsika, S.; Rizos, Z.; Parati, G. Blood pressure control and components of the metabolic syndrome: The GOOD survey. Cardiovasc. Diabetol. 2009, 8, 51. [Google Scholar] [CrossRef]
- Yanai, H.; Tomono, Y.; Ito, K.; Furutani, N.; Yoshida, H.; Tada, N. The underlying mechanisms for development of hypertension in the metabolic syndrome. Nutr. J. 2008, 7, 10. [Google Scholar] [CrossRef] [PubMed]
- Alegría Ezquerra, E.; Castellano Vázquez, J.M.; Alegría Barrero, A. Obesity, metabolic syndrome, and diabetes: Cardiovascular implications and therapy. Rev. Esp. Cardiol. 2008, 61, 752–764. [Google Scholar] [CrossRef] [PubMed]
- Luengo Fernández, E.; Ordóñez Rubio, B.; Bergua Martínez, C.; Laclaustra Gimeno, M. Obesidad, dislipemia y síndrome metabólicoObesity, Dyslipidemia, and Metabolic Syndrome. Rev. Española De Cardiol. Supl. 2005, 5, 21D–29D. [Google Scholar] [CrossRef]
- Ross, R.; Neeland, I.J.; Yamashita, S.; Shai, I.; Seidell, J.; Magni, P.; Santos, R.D.; Arsenault, B.; Cuevas, A.; Hu, F.B.; et al. Waist circumference as a vital sign in clinical practice: A Consensus Statement from the IAS and ICCR Working Group on Visceral Obesity. Nat. Rev. Endocrinol. 2020, 16, 177–189. [Google Scholar] [CrossRef]
- Lopez-Lopez, J.P.; Cohen, D.D.; Ney-Salazar, D.; Martinez, D.; Otero, J.; Gomez-Arbelaez, D.; Camacho, P.A.; Sanchez-Vallejo, G.; Arcos, E.; Narvaez, C.; et al. The prediction of metabolic syndrome alterations is improved by combining waist circumference and handgrip strength measurements compared to either alone. Cardiovasc. Diabetol. 2021, 20, 68. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.X.; Chaudhary, N.; Akinyemiju, T. Metabolic syndrome prevalence by race/ethnicity and sex in the United States, National Health and Nutrition Examination Survey, 1988–2012. Prev. Chronic Dis. 2017, 14, E24. [Google Scholar] [CrossRef]
- Zyoud, S.H.; Shakhshir, M.; Abushanab, A.S.; Koni, A.; Shahwan, M.; Jairoun, A.A.; Abu Taha, A.; Abushamma, F.; Al-Jabi, S.W. Mapping the knowledge structure of research on insulin resistance and metabolic syndrome: A global perspective. Transl. Med. Commun. 2024, 9, 6. [Google Scholar] [CrossRef]
- Zhao, X.; An, X.; Yang, C.; Sun, W.; Ji, H.; Lian, F. The crucial role and mechanism of insulin resistance in metabolic disease. Front. Endocrinol. 2023, 14, 1149239. [Google Scholar] [CrossRef] [PubMed]
- Institute for Health Metrics and Evaluation (IHME). Kazakhstan: Country Profile. Seattle (WA): IHME. Available online: https://www.healthdata.org/research-analysis/health-by-location/profiles/kazakhstan (accessed on 21 October 2024).
- Sadykova, A.; Shalkharova, Z. Prevalence of metabolic syndrome among civil servants in Kazakhstan. Med. Kazakhstan 2018, 2018, 9–15. [Google Scholar]
- Yang, W.; Guo, S.; Wang, H.; Li, Y.; Zhang, X.; Hu, Y.; Guo, H.; Wang, K.; Yan, Y.; Zhang, J.; et al. The association of metabolic syndrome with the development of cardiovascular disease among Kazakhs in remote rural areas of Xinjiang, China: A cohort study. BMC Public Health 2021, 21, 216. [Google Scholar] [CrossRef] [PubMed]
- Cortez-Dias, N.; Martins, S.R.; Belo, A.; Fiuza, M.; VALSIM Study Investigators. Association of metabolic risk factors with uncontrolled hypertension: Comparison of the several definitions of metabolic syndrome. J. Hypertens. 2013, 31, 1991–1997. [Google Scholar] [CrossRef]
- Xiao, J.; Hua, T.; Shen, H.; Zhang, M.; Wang, X.J.; Gao, Y.X.; Lu, Q.; Wu, C. Associations of metabolic disorder factors with the risk of uncontrolled hypertension: A follow-up cohort in rural China. Sci. Rep. 2017, 7, 743. [Google Scholar] [CrossRef]
- Jamali, Z.; Ayoobi, F.; Jalali, Z.; Bidaki, R.; Lotfi, M.A.; Esmaeili-Nadimi, A.; Khalili, P. Metabolic syndrome: A population-based study of prevalence and risk factors. Sci. Rep. 2024, 14, 3987. [Google Scholar] [CrossRef]
- Jiang, B.; Li, B.; Wang, Y.; Han, B.; Wang, N.; Li, Q.; Yang, W.; Huang, G.; Wang, J.; Chen, Y.; et al. The nine-year changes of the incidence and characteristics of metabolic syndrome in China: Longitudinal comparisons of the two cross-sectional surveys in a newly formed urban community. Cardiovasc. Diabetol. 2016, 15, 84. [Google Scholar] [CrossRef] [PubMed]
- Yi, Q.; Li, X.; He, Y.; Xia, W.; Shao, J.; Ye, Z.; Song, P. Associations of dietary inflammatory index with metabolic syndrome and its components: A systematic review and meta-analysis. Public Health Nutr. 2021, 24, 5463–5470. [Google Scholar] [CrossRef] [PubMed]
- Turkistan (City). Available online: https://en.wikipedia.org/wiki/Turkistan_(city) (accessed on 13 December 2024).
- Topping, J.; Reardon, M.; Coleman, J.; Hunter, B.; Shojima-Perera, H.; Thyer, L.; Simpson, P. A comparison of venous versus capillary blood samples when measuring blood glucose using a point-of-care, capillary-based glucometer. Prehosp. Disaster Med. 2019, 34, 506–509. [Google Scholar] [CrossRef]
- Alshaer, A.; Badgheish, B.A.; Alsadah, Z.H.; Sewify, K.; Alghazal, S.; Alzahrani, S.; Qadi, A.; Alqahtani, R.; Farsani, G.A.; Shilash, A. Comparing the accuracy of point-of-care with laboratory (capillary, venous, and arterial) blood glucose levels in critically ill patients with and without shock. BMC Res. Notes 2022, 15, 372. [Google Scholar] [CrossRef]
- Boriboonhirunsarn, D.; Robkhonburi, A.; Asad-dehghan, M. Accuracy of capillary blood glucose for 50-g glucose challenge test for gestational diabetes screening. Diabetol. Int. 2022, 13, 561–565. [Google Scholar] [CrossRef] [PubMed]
- Sagkal Midilli, T.; Ergin, E.; Baysal, E.; Arı, Z. Comparison of glucose values of blood samples taken in three different ways. Clin. Nurs. Res. 2019, 28, 436–455. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, H.; Howard, A.G.; Adair, L.S.; Popkin, B.M.; Su, C.; Du, W.; Zhang, B.; Gordon-Larsen, P. Six-Year Incidence of Cardiometabolic Risk Factors in a Population-Based Cohort of Chinese Adults Followed from 2009 to 2015. J. Am. Heart Assoc. 2019, 8, e011368. [Google Scholar] [CrossRef] [PubMed]
- National Heart, Lung, and Blood Institute. Causes of Metabolic Syndrome. Bethesda (MD): National Institutes of Health. Available online: https://www.nhlbi.nih.gov/health/metabolic-syndrome/causes (accessed on 21 January 2025).
- Li, W.; Qiu, X.; Ma, H.; Geng, Q. Incidence and long-term specific mortality trends of metabolic syndrome in the United States. Front. Endocrinol. 2023, 13, 1029736. [Google Scholar] [CrossRef]
- Ranasinghe, P.; Mathangasinghe, Y.; Jayawardena, R.; Hills, A.P.; Misra, A. Prevalence and trends of metabolic syndrome among adults in the Asia-Pacific region: A systematic review. BMC Public Health 2017, 17, 101. [Google Scholar] [CrossRef] [PubMed]
- Jayant, S.S.; Gupta, R.; Rastogi, A.; Sachdeva, N.; Ram, S.; Dutta, P.; Bhansali, A.; Bhadada, S.K. Incidence and predictors of metabolic syndrome in Asian-Indians: A 10-year population-based prospective cohort study. Int. J. Diabetes Dev. Ctries. 2023, 43, 916–922. [Google Scholar] [CrossRef] [PubMed]
- Bakhshayeshkaram, M.; Heydari, S.T.; Honarvar, B.; Keshani, P.; Roozbeh, J.; Dabbaghmanesh, M.H.; Lankarani, K.B. Incidence of metabolic syndrome and determinants of its progression in Southern Iran: A 5-year longitudinal follow-up study. J. Res. Med. Sci. 2020, 25, 103. [Google Scholar] [CrossRef]
- Martínez-Cruz, B.; Vitalis, R.; Ségurel, L.; Austerlitz, F.; Georges, M.; Théry, S.; Quintana-Murci, L.; Hegay, T.; Aldashev, A.; Nasyrova, F.; et al. In the heartland of Eurasia: The multilocus genetic landscape of Central Asian populations. Eur. J. Hum. Genet. 2011, 19, 216–223. [Google Scholar] [CrossRef]
- Karabay, A.; Bolatov, A.; Varol, H.A.; Chan, M.Y. A Central Asian food dataset for personalized dietary interventions. Nutrients 2023, 15, 1728. [Google Scholar] [CrossRef]
- Barbazza, E.; Yegeubayeva, S.; Akkazieva, B.; Tsoyi, E.; Zheleznyakov, E.; Tello, J.E. Improving clinical practice in primary care for the prevention and control of noncommunicable diseases: A multi-actor approach to two regional pilot projects in Kazakhstan. Cardiovasc. Diagn. Ther. 2019, 9, 129–139. [Google Scholar] [CrossRef]
Categories | Baseline | Follow-Up | p Values | |
---|---|---|---|---|
Sex | Male | 21.2% | ||
Female | 78.8% | |||
Age Mean (SD) | 40.9 (10.9) | 52.9 (10.7) | ||
<36 years | 34.3% | 5.7% | ||
36–45 years | 29.7% | 22.5% | ||
>45 years | 35.9% | 71.8% | ||
Systolic Blood Pressure Mean (SD); Median | 113.29 (17.19); 110 | 120.37 (18.56); 120 | <0.001 * | |
Diastolic Blood Pressure Mean (SD); Median | 75.42 (11.28); 75 | 78.25 (11.17); 80 | <0.001 * | |
Waist Circumference Mean (SD); Median | 90.169 (14.17); 90 | 93.90 (14.20); 94 | <0.001 * | |
Triglycerides Mean (SD); Median | 1.28 (0.35) 1.29 | 1.55 (0.71); 1.37 | <0.001 * | |
HDL Mean (SD); Median | 1.52 (0.27); 1.46 | 1.34 (0.61); 1.23 | <0.001 * | |
Glucose Mean (SD); Median | 4.98 (0.84); 4.9 | 5.29 (1.22); 5.4 | <0.001 * | |
Raised Blood Pressure | 20.5% | 33.9% | <0.001 ** | |
Raised Glucose | 10.8% | 26.5% | 0.001 ** | |
Raised Triglycerides | 6.5% | 36.9% | 0.497 ** | |
Raised Waist Circumference | 65.9% | 74.4% | <0.001 ** | |
Reduced HDL | 4.6% | 50.9% | 0.027 | |
Number of MetS Components Mean (SD) | 1.08 (0.76) | 2.23 (1.30) | <0.001 | |
Number of MetS Components Median | 1 | 2 | ||
Metabolic Syndrome | – | 40.3% | ||
Total | 434 |
Incidence of Metabolic Syndrome% | p-Value | |
---|---|---|
<36 years | 26.8% | <0.001 |
36–45 years | 43.4% | |
>45 years | 50.6% | |
Men | 44.6% | 0.350 |
Women | 39.2% | |
0 MetS Component | 13.6% | <0.001 |
1 MetS Component | 37.6% | |
2 MetS Components | 63.7% | |
Raised Blood Pressure | 64.0% | <0.001 |
Raised Glucose | 51.1% | 0.112 |
Raised Waist Circumference | 53.15 | <0.001 |
Raised Triglycerides | 50.0% | 0.280 |
Reduced HDL | 40.8% | 0.335 |
Age | SBP | DBP | WC | TG | HDL | Glucose | |
---|---|---|---|---|---|---|---|
No MetS at follow-up | 38.69 | 108.36 | 72.39 | 85.710 | 1.21 | 1.51 | 4.83 |
MetS at follow-up | 44.09 | 118.66 | 79.06 | 96.769 | 1.37 | 1.52 | 5.05 |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.631 | 0.015 |
OR incidence of MetS IC95% | 1.05 1.0–1.07 | 1.04 1.02–1.05 | 1.06 1.04–1.08 | 1.08 1.06–1.10 | 4.29 2.24–8.23 | 1.20 0.58–2.47 | 1.35 0.99–1.84 |
(A) | OR | IC95% |
Diastolic Blood Pressure | 1.04 | 1.02–1.07 |
Waist Circumference | 1.06 | 1.04–1.08 |
(B) | OR | IC95% |
Raised Blood Pressure | 2.97 | 1.77–4.99 |
Raised Waist Circumference | 5.71 | 3.43–9.51 |
(C) | OR | IC95% |
0 MetS Components | REF | |
1 MetS Components | 3.82 | 2.05–7.13 |
2 MetS Components | 11.11 | 5.86–21.09 |
Categories | Incidence of MetS | p Values | ||
---|---|---|---|---|
HOMA IR | Mean 1.71 | OR 1.06 (0.75–1.48) | ||
Median 1.63 | ||||
Tertiles of IR | 42.6% | 36.0% | p = 0.989 | |
44.5% | 35.5% | |||
12.9% | 37.0% | |||
HOMA beta | Mean 169.46 | OR 1.00 (0.99–1.00) | ||
Median 115.14 | ||||
Tertiles of beta cell deficit | 5.7% | 25.0% | p = 0.678 | |
14.3% | 33.3% | |||
80.0% | 36.9% | |||
IFG | 2.4% | OR 2.38 (0.76–7.43) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aidarbekova, D.; Sadykova, K.; Saruarov, Y.; Nurdinov, N.; Zhunissova, M.; Babayeva, K.; Nemetova, D.; Turmanbayeva, A.; Bekenova, A.; Nuskabayeva, G.; et al. A Longitudinal Assessment of Metabolic Syndrome. J. Clin. Med. 2025, 14, 747. https://doi.org/10.3390/jcm14030747
Aidarbekova D, Sadykova K, Saruarov Y, Nurdinov N, Zhunissova M, Babayeva K, Nemetova D, Turmanbayeva A, Bekenova A, Nuskabayeva G, et al. A Longitudinal Assessment of Metabolic Syndrome. Journal of Clinical Medicine. 2025; 14(3):747. https://doi.org/10.3390/jcm14030747
Chicago/Turabian StyleAidarbekova, Dilbar, Karlygash Sadykova, Yerbolat Saruarov, Nursultan Nurdinov, Mira Zhunissova, Kumissay Babayeva, Dinara Nemetova, Ainur Turmanbayeva, Aigerim Bekenova, Gulnaz Nuskabayeva, and et al. 2025. "A Longitudinal Assessment of Metabolic Syndrome" Journal of Clinical Medicine 14, no. 3: 747. https://doi.org/10.3390/jcm14030747
APA StyleAidarbekova, D., Sadykova, K., Saruarov, Y., Nurdinov, N., Zhunissova, M., Babayeva, K., Nemetova, D., Turmanbayeva, A., Bekenova, A., Nuskabayeva, G., & Sarria-Santamera, A. (2025). A Longitudinal Assessment of Metabolic Syndrome. Journal of Clinical Medicine, 14(3), 747. https://doi.org/10.3390/jcm14030747