Blood-Based Lateral-Flow Immunoassays Dipstick Test for Damaged Mitochondrial Electron Transport Chain in Pyruvate Treated Rats with Combined Blast Exposure and Hemorrhagic Shock
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Compliance and Animal Study Protocol
2.2. Study Design and Experimental Groups
- Sham group (n = 8): Rats in this group underwent anesthesia and catheter placement but were not subjected to injuries or resuscitation. Blood samples were collected solely for laboratory analyses.
- Control groups (n = 16, divided into two subgroups): These animals experienced blast injuries with or without hemorrhagic shock (HS) and received hypertonic saline (HTS) as a resuscitation fluid at a rate of 5 mL/kg/h. HTS was selected to match the volume and osmotic characteristics of the experimental treatment fluid.
- Treatment groups (n = 16, divided into two subgroups): rats in this group were exposed to the same injury conditions (blast with or without HS) and were resuscitated with sodium pyruvate administered at 5 mL/kg/h.
2.3. Preparation of Animals and Surgical Setup
2.4. Blast Injury
2.5. Induction of Controlled Hemorrhage and Resuscitation Procedures
3. Analytic Methods
3.1. Blood-Based Dipstick Test for the Measurement of Mitochondrial Enzymes as Biomarkers of Mitochondrial Damage
3.2. Statistical Evaluations
4. Results
4.1. Sodium Pyruvate Resuscitation Improves Mean Arterial Pressure in Response to Blast and/or HS Injury
4.2. Complex I Activity of the Electron Transport Chain in Animals Undergoing High-Intensity Blast Injury +/− HS with Sodium Pyruvate Infusion
4.3. Complex IV Activity of the Electron Transport Chain in Animals Undergoing High-Intensity Blast Injury +/− HS with Sodium Pyruvate Infusion
4.4. Pyruvate Dehydrogenase (PDH) Activity in Animals Undergoing High-Intensity Blast Injury +/− HS with Sodium Pyruvate Infusion
4.5. Plasma Lactate Concentration in Animals Undergoing High-Intensity Blast Injury +/− HS with Sodium Pyruvate Infusion
5. Discussion
Limitations of the Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Eastridge, B.J.; Mabry, R.L.; Seguin, P.; Cantrell, J.; Tops, T.; Uribe, P.; Mallett, O.; Zubko, T.; Oetjen-Gerdes, L.; Rasmussen, T.E.; et al. Death on the battlefield (2001–2011): Implications for the future of combat casualty care. J. Trauma Acute Care Surg. 2012, 73 (Suppl. 5), S431–S437. [Google Scholar] [CrossRef] [PubMed]
- Cernak, I.; Savic, J.; Ignjatovic, D.; Jevtic, M. Blast injury from explosive munitions. J. Trauma 1999, 47, 96–103, discussion 103–104. [Google Scholar] [CrossRef] [PubMed]
- Holcomb, J.B.; McMullin, N.R.; Pearse, L.; Caruso, J.; Wade, C.E.; Oetjen-Gerdes, L.; Champion, H.R.; Lawnick, M.; Farr, W.; Rodriguez, S.; et al. Causes of death in U.S. Special Operations Forces in the global war on terrorism: 2001–2004. Ann. Surg. 2007, 245, 986–991. [Google Scholar] [CrossRef]
- Taber, K.H.; Warden, D.L.; Hurley, R.A. Blast-related traumatic brain injury: What is known? J. Neuropsychiatry Clin. Neurosci. 2006, 18, 141–145. [Google Scholar] [CrossRef]
- Warden, D. Military TBI during the Iraq and Afghanistan wars. J. Head. Trauma Rehabil. 2006, 21, 398–402. [Google Scholar] [CrossRef]
- Martin, E.M.; Lu, W.C.; Helmick, K.; French, L.; Warden, D.L. Traumatic brain injuries sustained in the Afghanistan and Iraq wars. Am. J. Nurs. 2008, 108, 40–47, quiz 47–48. [Google Scholar] [CrossRef]
- Champion, H.R.; Bellamy, R.F.; Roberts, C.P.; Leppaniemi, A. A profile of combat injury. J. Trauma 2003, 54, S13–S19. [Google Scholar] [CrossRef]
- Ling, G.; Ecklund, J.M.; Bandak, F.A. Brain injury from explosive blast: Description and clinical management. Handb. Clin. Neurol. 2015, 127, 173–180. [Google Scholar] [CrossRef]
- Walker, L.M.; Walker, P.D.; Imam, S.Z.; Ali, S.F.; Mayeux, P.R. Evidence for peroxynitrite formation in renal ischemia-reperfusion injury: Studies with the inducible nitric oxide synthase inhibitor L-N(6)-(1-Iminoethyl)lysine. J. Pharmacol. Exp. Ther. 2000, 295, 417–422. [Google Scholar]
- Guo, W.H.; Chan, K.L.; Fung, P.P.; Chan, K.W.; Tam, P.K. Nitric oxide protects segmental intestinal grafts from ischemia and reperfusion injury. Transpl. Proc. 2000, 32, 1297–1298. [Google Scholar] [CrossRef]
- Chaudry, I.H.; Ohkawa, M.; Clemens, M.G.; Baue, A.E. Alterations in electron transport and cellular metabolism with shock and trauma. Prog. Clin. Biol. Res. 1983, 111, 67–88. [Google Scholar] [PubMed]
- Cernak, I.; Merkle, A.C.; Koliatsos, V.E.; Bilik, J.M.; Luong, Q.T.; Mahota, T.M.; Xu, L.; Slack, N.; Windle, D.; Ahmed, F.A. The pathobiology of blast injuries and blast-induced neurotrauma as identified using a new experimental model of injury in mice. Neurobiol. Dis. 2011, 41, 538–551. [Google Scholar] [CrossRef] [PubMed]
- Karabatsiakis, A.; Bock, C.; Salinas-Manrique, J.; Kolassa, S.; Calzia, E.; Dietrich, D.E.; Kolassa, I.T. Mitochondrial respiration in peripheral blood mononuclear cells correlates with depressive subsymptoms and severity of major depression. Transl. Psychiatry 2014, 4, e397. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Benford, B.; Li, Z.Z.; Ling, G.S. Role of pyruvate dehydrogenase complex in traumatic brain injury and Measurement of pyruvate dehydrogenase enzyme by dipstick test. J. Emerg. Trauma Shock. 2009, 2, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Mongan, P.D.; Karaian, J.; Van Der Schuur, B.; Via, D.K.; Sharma, P. Pyruvate Prevents Pyruvate Dehydrogenase Deactivation, Oxidative Damage, and Poly-ADP Ribose Polymerase (PARP) Activation during Hemorrhagic Shock in Swine. J. Surg. Res. 2003, 112, 180–188. [Google Scholar] [CrossRef]
- Tawadrous, Z.S.; Delude, R.L.; Fink, M.P. Resuscitation from hemorrhagic shock with Ringer’s ethyl pyruvate solution improves survival and ameliorates intestinal mucosal hyperpermeability in rats. Shock 2002, 17, 473–477. [Google Scholar] [CrossRef]
- Yang, R.; Gallo, D.J.; Baust, J.J.; Uchiyama, T.; Watkins, S.K.; Delude, R.L.; Fink, M.P. Ethyl pyruvate modulates inflammatory gene expression in mice subjected to hemorrhagic shock. Am. J. Physiol. Gastrointest. Liver Physiol. 2002, 283, G212–G221. [Google Scholar] [CrossRef]
- Yako, H.; Niimi, N.; Takaku, S.; Kato, A.; Kato, K.; Sango, K. Role of Exogenous Pyruvate in Maintaining Adenosine Triphosphate Production under High-Glucose Conditions through PARP-Dependent Glycolysis and PARP-Independent Tricarboxylic Acid Cycle. Int. J. Mol. Sci. 2024, 25, 11089. [Google Scholar] [CrossRef]
- Sharma, P.; Walsh, K.T.; Kerr-Knott, K.A.; Karaian, J.E.; Mongan, P.D. Pyruvate modulates hepatic mitochondrial functions and reduces apoptosis indicators during hemorrhagic shock in rats. Anesthesiology 2005, 103, 65–73. [Google Scholar] [CrossRef]
- Sharma, P.; Vyacheslav, M.; Carissa, C.; Vanessa, R.; Bodo, M. Pyruvate dose response studies targeting the vital signs following hemorrhagic shock. J. Emerg. Trauma Shock. 2015, 8, 159–166. [Google Scholar] [CrossRef]
- Kawa, L.; Kamnaksh, A.; Long, J.B.; Arborelius, U.P.; Hokfelt, T.; Agoston, D.V.; Risling, M. A Comparative Study of Two Blast-Induced Traumatic Brain Injury Models: Changes in Monoamine and Galanin Systems Following Single and Repeated Exposure. Front. Neurol. 2018, 9, 479. [Google Scholar] [CrossRef] [PubMed]
- Clark, A.L.; Merritt, V.C.; Bigler, E.D.; Bangen, K.J.; Werhane, M.; Sorg, S.F.; Bondi, M.W.; Schiehser, D.M.; Delano-Wood, L. Blast-Exposed Veterans With Mild Traumatic Brain Injury Show Greater Frontal Cortical Thinning and Poorer Executive Functioning. Front. Neurol. 2018, 9, 873. [Google Scholar] [CrossRef] [PubMed]
- McKee, A.C.; Stern, R.A.; Nowinski, C.J.; Stein, T.D.; Alvarez, V.E.; Daneshvar, D.H.; Lee, H.S.; Wojtowicz, S.M.; Hall, G.; Baugh, C.M.; et al. The spectrum of disease in chronic traumatic encephalopathy. Brain 2013, 136, 43–64. [Google Scholar] [CrossRef] [PubMed]
- Saha, B.; Sahu, G.; Sharma, P. A Novel Therapeutic Approach With Sodium Pyruvate on Vital Signs, Acid–Base, and Metabolic Disturbances in Rats With a Combined Blast and Hemorrhagic Shock. Front. Neurol. 2022, 13, 938076. [Google Scholar] [CrossRef]
- Sinha, S.; Raheja, A.; Samson, N.; Bhoi, S.; Selvi, A.; Sharma, P.; Sharma, B.S. Blood mitochondrial enzymatic assay as a predictor of long-term outcome in severe traumatic brain injury. J. Clin. Neurosci. 2016, 30, 31–38. [Google Scholar] [CrossRef]
- Arun, P.; Abu-Taleb, R.; Oguntayo, S.; Wang, Y.; Valiyaveettil, M.; Long, J.B.; Nambiar, M.P. Acute mitochondrial dysfunction after blast exposure: Potential role of mitochondrial glutamate oxaloacetate transaminase. J. Neurotrauma 2013, 30, 1645–1651. [Google Scholar] [CrossRef]
- Correia, S.C.; Santos, R.X.; Perry, G.; Zhu, X.; Moreira, P.I.; Smith, M.A. Mitochondria: The missing link between preconditioning and neuroprotection. J. Alzheimers Dis. 2010, 20 (Suppl. 2), S475–S485. [Google Scholar] [CrossRef]
- Forcione, M.; Ganau, M.; Prisco, L.; Chiarelli, A.M.; Bellelli, A.; Belli, A.; Davies, D.J. Mismatch between Tissue Partial Oxygen Pressure and Near-Infrared Spectroscopy Neuromonitoring of Tissue Respiration in Acute Brain Trauma: The Rationale for Implementing a Multimodal Monitoring Strategy. Int. J. Mol. Sci. 2021, 22, 1122. [Google Scholar] [CrossRef]
- Campos-Pires, R.; Ong, B.E.; Koziakova, M.; Ujvari, E.; Fuller, I.; Boyles, C.; Sun, V.; Ko, A.; Pap, D.; Lee, M.; et al. Repetitive, but Not Single, Mild Blast TBI Causes Persistent Neurological Impairments and Selective Cortical Neuronal Loss in Rats. Brain Sci. 2023, 13, 1298. [Google Scholar] [CrossRef]
- Opii, W.O.; Nukala, V.N.; Sultana, R.; Pandya, J.D.; Day, K.M.; Merchant, M.L.; Klein, J.B.; Sullivan, P.G.; Butterfield, D.A. Proteomic identification of oxidized mitochondrial proteins following experimental traumatic brain injury. J. Neurotrauma 2007, 24, 772–789. [Google Scholar] [CrossRef]
- Ariyannur, P.S.; Xing, G.; Barry, E.S.; Benford, B.; Grunberg, N.E.; Sharma, P. Effects of Pyruvate Administration on Mitochondrial Enzymes, Neurological Behaviors, and Neurodegeneration after Traumatic Brain Injury. Aging Dis. 2021, 12, 983. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, I. Altered mitochondria, energy metabolism, voltage-dependent anion channel, and lipid rafts converge to exhaust neurons in Alzheimer’s disease. J. Bioenerg. Biomembr. 2009, 41, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Vlkolinsky, R.; Cairns, N.; Lubec, G. Decreased levels of complex III core protein 1 and complex V beta chain in brains from patients with Alzheimer’s disease and Down syndrome. Cell Mol. Life Sci. 2000, 57, 1810–1816. [Google Scholar] [CrossRef]
- Kushnareva, Y.; Murphy, A.N.; Andreyev, A. Complex I-mediated reactive oxygen species generation: Modulation by cytochrome c and NAD(P)+ oxidation-reduction state. Biochem. J. 2002, 368, 545–553. [Google Scholar] [CrossRef]
- Vandromme, M.J.; Griffin, R.L.; Weinberg, J.A.; Rue, L.W., 3rd; Kerby, J.D. Lactate is a better predictor than systolic blood pressure for determining blood requirement and mortality: Could prehospital measures improve trauma triage? J. Am. Coll. Surg. 2010, 210, 861–867. [Google Scholar] [CrossRef]
- Yan, E.B.; Hellewell, S.C.; Bellander, B.M.; Agyapomaa, D.A.; Morganti-Kossmann, M.C. Post-traumatic hypoxia exacerbates neurological deficit, neuroinflammation and cerebral metabolism in rats with diffuse traumatic brain injury. J. Neuroinflammation 2011, 8, 147. [Google Scholar] [CrossRef]
- Ziabreva, I.; Campbell, G.; Rist, J.; Zambonin, J.; Rorbach, J.; Wydro, M.M.; Lassmann, H.; Franklin, R.J.; Mahad, D. Injury and differentiation following inhibition of mitochondrial respiratory chain complex IV in rat oligodendrocytes. Glia 2010, 58, 1827–1837. [Google Scholar] [CrossRef]
- Singh, I.N.; Sullivan, P.G.; Deng, Y.; Mbye, L.H.; Hall, E.D. Time course of post-traumatic mitochondrial oxidative damage and dysfunction in a mouse model of focal traumatic brain injury: Implications for neuroprotective therapy. J. Cereb. Blood Flow. Metab. 2006, 26, 1407–1418. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, X.; Jiang, W. The Role of Mitochondrial Pyruvate Carrier in Neurological Disorders. Mol. Neurobiol. 2024. [Google Scholar] [CrossRef]
- Reed, L. Regulation of mammalian pyruvate dehydrogenase complex by a phosphorylation-dephosphorylation cycle. Curr. Top. Cell Regul. 1981, 18, 95–106. [Google Scholar]
- Mongan, P.D.; Capacchione, J.; Fontana, J.L.; West, S.; Bunger, R. Pyruvate improves cerebral metabolism during hemorrhagic shock. Am. J. Physiol. Heart Circ. Physiol. 2001, 281, H854–H864. [Google Scholar] [CrossRef] [PubMed]
- Zangari, J.; Petrelli, F.; Maillot, B.; Martinou, J.C. The Multifaceted Pyruvate Metabolism: Role of the Mitochondrial Pyruvate Carrier. Biomolecules 2020, 10, 1068. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.Q.; Li, X.; Tang, K.; Sharma, N.M.; Wyatt, T.A.; Patel, K.P.; Gao, L.; Bidasee, K.R.; Rozanski, G.J. Pyruvate Restores beta-Adrenergic Sensitivity of L-type Ca2+ Channels in Failing Rat Heart: Role of Protein Phosphatase. Am. J. Physiol. Heart Circ. Physiol. 2013, 304, H1352–H1360. [Google Scholar] [CrossRef]
- Wang, Y.M.; Zhu, N.; Zhou, Y.M.; Su, R.; Li, H.L.; Zhou, J.X. The combination of arterial lactate level with GCS-pupils score to evaluate short term prognosis in traumatic brain injury: A retrospective study. BMC Neurol. 2022, 22, 430. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okonkwo, E.; Saha, B.; Sahu, G.; Bera, A.; Sharma, P. Blood-Based Lateral-Flow Immunoassays Dipstick Test for Damaged Mitochondrial Electron Transport Chain in Pyruvate Treated Rats with Combined Blast Exposure and Hemorrhagic Shock. J. Clin. Med. 2025, 14, 754. https://doi.org/10.3390/jcm14030754
Okonkwo E, Saha B, Sahu G, Bera A, Sharma P. Blood-Based Lateral-Flow Immunoassays Dipstick Test for Damaged Mitochondrial Electron Transport Chain in Pyruvate Treated Rats with Combined Blast Exposure and Hemorrhagic Shock. Journal of Clinical Medicine. 2025; 14(3):754. https://doi.org/10.3390/jcm14030754
Chicago/Turabian StyleOkonkwo, Evans, Biswajit Saha, Geetaram Sahu, Alakesh Bera, and Pushpa Sharma. 2025. "Blood-Based Lateral-Flow Immunoassays Dipstick Test for Damaged Mitochondrial Electron Transport Chain in Pyruvate Treated Rats with Combined Blast Exposure and Hemorrhagic Shock" Journal of Clinical Medicine 14, no. 3: 754. https://doi.org/10.3390/jcm14030754
APA StyleOkonkwo, E., Saha, B., Sahu, G., Bera, A., & Sharma, P. (2025). Blood-Based Lateral-Flow Immunoassays Dipstick Test for Damaged Mitochondrial Electron Transport Chain in Pyruvate Treated Rats with Combined Blast Exposure and Hemorrhagic Shock. Journal of Clinical Medicine, 14(3), 754. https://doi.org/10.3390/jcm14030754