Assessment of Inflammatory and Oxidative Stress Biomarkers for Predicting of Patients with Asymptomatic Carotid Artery Stenosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Groups
2.2. Ethical Approval
2.3. Biochemical Parameters
2.4. Tryptophan and Kynurenine Analysis
2.5. Statistical Analysis
3. Results
3.1. Demographic Data and Characteristics of Participants
3.2. Lipid Profiles of Participants
3.3. Inflammatory Biomarkers of Participants
3.4. Oxidative Stress Biomarkers of Participants
4. Discussion
5. Conclusions
6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- den Hartog, A.G.; Achterberg, S.; Moll, F.L.; Kappelle, L.J.; Visseren, F.L.J.; van der Graaf, Y.; Algra, A.; de Borst, G.J. Asymptomatic carotid artery stenosis and the risk of ischemic stroke according to subtype in patients with clinical manifest arterial disease. Stroke 2013, 44, 1002–1007. [Google Scholar] [CrossRef]
- Kim, H.W.; Regenhardt, R.W.; D’Amato, S.A.; Nahhas, M.I.; Dmytriw, A.A.; Hirsch, J.A.; Silverman, S.B.; Martinez-Gutierrez, J.C. Asymptomatic carotid artery stenosis: A summary of current state of evidence for revascularization and emerging high-risk features. J. Neurointerv. Surg. 2023, 15, 717–722. [Google Scholar] [CrossRef] [PubMed]
- Krist, A.H.; Davidson, K.W.; Mangione, C.M.; Barry, M.J.; Cabana, M.; Caughey, A.B.; Donahue, K.; Doubeni, C.A.; Epling, J.W.; Kubik, M.; et al. Screening for asymptomatic carotid artery stenosis: US preventive services task force recommendation statement. JAMA 2021, 325, 476–481. [Google Scholar] [PubMed]
- Mechtouff, L.; Rascle, L.; Crespy, V.; Canet-Soulas, E.; Nighoghossian, N.; Millon, A. A narrative review of the pathophysiology of ischemic stroke in carotid plaques: A distinction versus a compromise between hemodynamic and embolic mechanism. Ann. Transl. Med. 2021, 9, 1208. [Google Scholar] [CrossRef] [PubMed]
- StatPearls. NCBI Bookshelf. Atherosclerosis. Available online: https://www.ncbi.nlm.nih.gov/books/NBK507799/ (accessed on 17 January 2024).
- Chatzikonstantinou, A.; Wolf, M.E.; Schaefer, A.; Hennerici, M.G. Asymptomatic and symptomatic carotid stenosis: An obsolete classification? Stroke Res. Treat. 2012, 2012, 340798. [Google Scholar] [CrossRef] [PubMed]
- Constantinou, J.; Jayia, P.; Hamilton, G. Best evidence for medical therapy for carotid artery stenosis. J. Vasc. Surg. 2013, 58, 1129–1139. [Google Scholar] [CrossRef] [PubMed]
- Khan, H.; Shaikh, F.; Syed, M.H.; Mamdani, M.; Saposnik, G.; Qadura, M. Current biomarkers for carotid artery stenosis: A comprehensive review of the literature. Metabolites 2023, 13, 919. [Google Scholar] [CrossRef] [PubMed]
- Mughal, M.M.; Khan, M.K.; Demarco, J.K.; Majid, A.; Shamoun, F.; Abela, G.S. Symptomatic and asymptomatic carotid artery plaque. Expert. Rev. Cardiovasc. Ther. 2011, 9, 1315–1330. [Google Scholar] [CrossRef]
- Bir, S.; Kelley, R. Carotid atherosclerotic disease: A systematic review of pathogenesis and management. Brain Circ. 2022, 8, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Moriya, J. Critical roles of inflammation in atherosclerosis. J. Cardiol. 2019, 73, 22–27. [Google Scholar] [CrossRef]
- Soehnlein, O.; Libby, P. Targeting inflammation in atherosclerosis—From experimental insights to the clinic. Nat. Rev. Drug Discov. 2021, 20, 589–610. [Google Scholar] [CrossRef] [PubMed]
- Henein, M.Y.; Vancheri, S.; Longo, G.; Vancheri, F. The role of inflammation in cardiovascular disease. Int. J. Mol. Sci. 2022, 23, 12906. [Google Scholar] [CrossRef]
- Zhu, Y.; Xian, X.; Wang, Z.; Bi, Y.; Chen, Q.; Han, X.; Tang, D.; Chen, R. Research progress on the relationship between atherosclerosis and inflammation. Biomolecules 2018, 8, 80. [Google Scholar] [CrossRef]
- Della Corte, V.; Todaro, F.; Cataldi, M.; Tuttolomondo, A. Atherosclerosis and its related laboratory biomarkers. Int. J. Mol. Sci. 2023, 24, 15546. [Google Scholar] [CrossRef]
- Larsen, B.T.; Campbell, W.B.; Gutterman, D.D. Beyond vasodilatation: Non-vasomotor roles of epoxyeicosatrienoic acids in the cardiovascular system. Trends Pharmacol. Sci. 2007, 28, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Ait-Oufella, H.; Taleb, S.; Mallat, Z.; Tedgui, A. Recent advances on the role of cytokines in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 969–979. [Google Scholar] [CrossRef] [PubMed]
- Soeki, T.; Sata, M. Inflammatory biomarkers and atherosclerosis. Int. Heart J. 2016, 57, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, S.H.; Boroumand, M.A. Expanded network of inflammatory markers of atherogenesis: Where are we now? Open Cardiovasc. Med. J. 2010, 4, 38–44. [Google Scholar] [CrossRef]
- Beccacece, L.; Abondio, P.; Bini, C.; Pelotti, S.; Luiselli, D. The link between prostanoids and cardiovascular diseases. Int. J. Mol. Sci. 2023, 24, 4193. [Google Scholar] [CrossRef]
- Inoue, T.; Eguchi, Y.; Matsumoto, T.; Kijima, Y.; Kato, Y.; Ozaki, Y.; Waseda, K.; Oda, H.; Seiki, K.; Node, K.; et al. Lipocalin-type prostaglandin D synthase is a powerful biomarker for severity of stable coronary artery disease. Atherosclerosis 2008, 201, 385–391. [Google Scholar] [CrossRef]
- Bäck, M.; Labat, C.; Stanke-Labesque, F.; Benetos, A. Leukotrienes as biomarkers of cardiovascular disease. In Biomarkers in Cardiovascular Disease; Patel, V., Preedy, V., Eds.; Springer: Dordrecht, The Netherlands, 2015. [Google Scholar]
- Wang, X.; Baskaran, L.; Chan, M.; Boisvert, W.; Hausenloy, D.J. Targeting leukotriene biosynthesis to prevent atherosclerotic cardiovascular disease. Cond. Med. 2023, 6, 33–41. [Google Scholar] [PubMed]
- Colazzo, F.; Gelosa, P.; Tremoli, E.; Sironi, L.; Castiglioni, L. Role of the cysteinyl leukotrienes in the pathogenesis and progression of cardiovascular diseases. Mediators Inflamm. 2017, 2017, 2432958. [Google Scholar] [CrossRef] [PubMed]
- Berg, M.; Polyzos, K.A.; Agardh, H.; Baumgartner, R.; Forteza, M.J.; Kareinen, I.; Gistera, A.; Bottcher, G.; Hurt-Camejo, E.; Hansson, G.K.; et al. 3-Hydroxyanthralinic acid metabolism controls the hepatic SREBP/lipoprotein axis, inhibits inflammasome activation in macrophages, and decreases atherosclerosis in Ldlr−/− mice. Cardiovasc. Res. 2020, 116, 1948–1957. [Google Scholar] [CrossRef]
- Savitz, J. The kynurenine pathway: A finger in every pie. Mol. Psychiatry 2020, 25, 131–147. [Google Scholar] [CrossRef]
- Schröcksnadel, K.; Wirleitner, B.; Winkler, C.; Fuchs, D. Monitoring tryptophan metabolism in chronic immune activation. Clin. Chim. Acta 2006, 364, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Theiler-Schwetz, V.; Trummer, C.; Grübler, M.R.; Keppel, M.H.; Zittermann, A.; Tomaschitz, A.; März, W.; Meinitzer, A.; Pilz, S. Associations of parameters of the tryptophan–kynurenine pathway with cardiovascular risk factors in hypertensive patients. Nutrients 2023, 15, 256. [Google Scholar] [CrossRef]
- Baumgartner, R.; Forteza, M.J.; Ketelhuth, D.F.J. The interplay between cytokines and the kynurenine pathway in inflammation and atherosclerosis. Cytokine 2019, 122, 154148. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, R.; Berg, M.; Matic, L.; Polyzos, K.P.; Forteza, M.J.; Hjorth, S.A.; Schwartz, T.W.; Paulsson-Berne, G.; Hansson, G.K.; Hedin, U.; et al. Evidence that a deviation in the kynurenine pathway aggravates atherosclerotic disease in humans. J. Intern. Med. 2021, 289, 53–68. [Google Scholar] [CrossRef]
- Teunis, C.; Stroes, E.; Boekholdt, M.; Wareham, N.; Murphy, A.; Nieuwdorp, M.; Hazen, S.; Hanssen, N. Tryptophan metabolites and incident cardiovascular disease in the EPIC-Norfolk prospective population study. Atherosclerosis 2023, 379, 77. [Google Scholar] [CrossRef]
- Mangge, H.; Reininghaus, E.; Fuchs, D. Chapter 10: Role of kynurenine pathway in cardiovascular diseases. In Targeting the Broadly Pathogenic Kynurenine Pathway; Mittal, S., Ed.; Springer: Cham, Switzerland, 2015; pp. 133–143. [Google Scholar]
- Jasiewicz, M.; Moniuszko, M.; Pawlak, D.; Knapp, M.; Rusak, M.; Kazimierczyk, R.; Musial, W.J.; Dabrowska, M.; Kaminski, K.A. Activity of the kynurenine pathway and its interplay with immunity in patients with pulmonary arterial hypertension. Heart 2016, 102, 230–237. [Google Scholar] [CrossRef]
- Song, P.; Ramprasath, T.; Wang, H.; Zou, M.H. Abnormal kynurenine pathway of tryptophan catabolism in cardiovascular diseases. Cell. Mol. Life Sci. 2017, 74, 2899–2916. [Google Scholar] [CrossRef] [PubMed]
- Ala, M.; Eftekhar, S.P. The Footprint of kynurenine pathway in cardiovascular diseases. Int. J. Tryptophan Res. 2022, 15, 11786469221096643. [Google Scholar] [CrossRef] [PubMed]
- Benitez, T.; Vanderwoude, E.; Han, Y.; Byun, J.; Konje, V.C.; Gillespie, B.W.; Saran, R.; Mathew, A.V. Kynurenine pathway metabolites predict subclinical atherosclerotic disease and new cardiovascular events in chronic kidney disease. Clin. Kidney J. 2022, 15, 1952–1965. [Google Scholar] [CrossRef] [PubMed]
- Gáspár, R.; Halmi, D.; Demján, V.; Berkecz, R.; Pipicz, M.; Csont, T. Kynurenine pathway metabolites as potential clinical biomarkers in coronary artery disease. Front. Immunol. 2022, 12, 768560. [Google Scholar] [CrossRef] [PubMed]
- Erten, Y.; Öztürk, M.A.; Oktar, S.; Pasaoglu, H.; Reis, K.A.; Derici, Ü.; Elbeg, S.; Güz, G.; Bali, M.; Arinsoy, T.; et al. Association between neopterin and carotid intima-media thickness in hemodialysis patients. Nephron Clin. Pract. 2005, 101, 134–138. [Google Scholar] [CrossRef]
- Eisenhut, M. Neopterin in diagnosis and monitoring of infectious diseases. J. Biomark. 2013, 2013, 196432. [Google Scholar] [CrossRef]
- Heneberk, O.; Wurfelova, E.; Radochova, V. Neopterin, the cell-mediated immune response biomarker, in inflammatory periodontal diseases: A narrative review of a more than fifty years old biomarker. Biomedicines 2023, 11, 1294. [Google Scholar] [CrossRef]
- Erren, M.; Reinecke, H.; Junker, R.; Fobker, M.; Schulte, H.; Schurek, J.O.; Kropf, J.; Kerber, S.; Breithardt, G.; Assmann, G.; et al. Systemic inflammatory parameters in patients with atherosclerosis of the coronary and peripheral arteries. Arterioscler. Thromb. Vasc. Biol. 1999, 19, 2355–2363. [Google Scholar] [CrossRef]
- Avanzas, P.; Arroyo-Espliguero, R.; Quiles, J.; Roy, D.; Kaski, J.C. Elevated serum neopterin predicts future adverse cardiac events in patients with chronic stable angina pectoris. Eur. Heart J. 2005, 26, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Grammer, T.B.; Fuchs, D.; Boehm, B.O.; Winkelmann, B.R.; Maerz, W. Neopterin as a predictor of total and cardiovascular mortality in individuals undergoing angiography in the Ludwigshafen Risk and Cardiovascular Health study. Clin. Chem. 2009, 55, 1135–1146. [Google Scholar] [CrossRef] [PubMed]
- Murr, C.; Grammer, T.B.; Meinitzer, A.; Kleber, M.E.; März, W.; Fuchs, D. Immune activation and inflammation in patients with cardiovascular disease are associated with higher phenylalanine to tyrosine ratios: The Ludwigshafen Risk and Cardiovascular Health Study. J. Amino Acids 2014, 2014, 783730. [Google Scholar] [CrossRef]
- Garcia-Moll, X.; Coccolo, F.; Cole, D.; Kaski, J.C. Serum neopterin and complex stenosis morphology in patients with unstable angina. J. Am. Coll. Cardiol. 2000, 35, 956–962. [Google Scholar] [CrossRef]
- Zouridakis, E.; Avanzas, P.; Arroyo-Espliguero, R.; Fredericks, S.; Kaski, J.C. Markers of inflammation and rapid coronary artery disease progression in patients with stable angina pectoris. Circulation 2004, 110, 1747–1753. [Google Scholar] [CrossRef] [PubMed]
- Sugioka, K.; Naruko, T.; Hozumi, T.; Nakagawa, M.; Kitabayashi, C.; Ikura, Y.; Shirai, N.; Matsumura, Y.; Ehara, S.; Ujino, K.; et al. Elevated levels of neopterin are associated with carotid plaques with complex morphology in patients with stable angina pectoris. Atherosclerosis 2010, 208, 524–530. [Google Scholar] [CrossRef]
- Adachi, T.; Naruko, T.; Itoh, A.; Komatsu, R.; Abe, Y.; Shirai, N.; Yamashita, H.; Ehara, S.; Nakagawa, M.; Kitabayashi, C.; et al. Neopterin is associated with plaque inflammation and destabilisation in human coronary atherosclerotic lesions. Heart 2007, 93, 1537–1541. [Google Scholar] [CrossRef]
- Sonaglioni, A.; Esposito, V.; Caruso, C.; Nicolosi, G.L.; Bianchi, S.; Lombardo, M.; Gensini, G.F.; Ambrosio, G. Association between neutrophil to lymphocyte ratio and carotid artery wall thickness in healthy pregnant women. Eur. J. Obstet. Gynecol. Reprod. Biol. 2020, 255, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.I.; Wu, X.; Boström, K.I.; Tran, H.A.; Friedlander, A.H. Red cell distribution width, unlike neutrophil lymphocyte ratio is unable to accurately gauge enhanced systemic inflammation associated with panoramic imaged carotid plaque. Mil. Med. 2021, 186, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Friedlander, A.H.; Lee, U.K.; Polanco, J.C.; Tran, H.A.; Chang, T.I.; Redman, R.S. Positive association between neutrophil-lymphocyte ratio and presence of panoramically imaged carotid atheromas among men. J. Oral Maxillofac. Surg. 2019, 77, 321–327. [Google Scholar] [CrossRef]
- Corriere, T.; Di Marca, S.; Cataudella, E.; Pulvirenti, A.; Alaimo, S.; Stancanelli, B.; Malatino, L. Neutrophil-to-lymphocyte ratio is a strong predictor of atherosclerotic carotid plaques in older adults. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y. High red blood cell distribution width is closely associated with risk of carotid artery atherosclerosis in patients with hypertension. Exp. Clin. Cardiol. 2010, 15, 37–40. [Google Scholar]
- Danese, E.; Lippi, G.; Montagnana, M. Red blood cell distribution width and cardiovascular diseases. J. Thorac. Dis. 2015, 7, E402–E411. [Google Scholar] [PubMed]
- Nam, J.S.; Ahn, C.W.; Kang, S.; Kim, K.R.; Park, J.S. Red blood cell distribution width is associated with carotid atherosclerosis in people with type 2 diabetes. J. Diabetes Res. 2018, 2018, 1792760. [Google Scholar] [CrossRef]
- Jia, H.; Li, H.; Zhang, Y.; Li, C.; Hu, Y.; Xia, C. Association between red blood cell distribution width (RDW) and carotid artery atherosclerosis (CAS) in patients with primary ischemic stroke. Arch. Gerontol. Geriatr. 2015, 61, 72–75. [Google Scholar] [CrossRef]
- Witarto, B.S.; Visuddho, V.; Aldian, F.M.; Atmaja, M.S.S.; Ariyanto, M.V.; Witarto, A.P.; Wungu, C.D.K.; Susilo, H.; Alsagaff, M.Y.; Rohman, M.S. Blood-based circulating microRNAs as diagnostic biomarkers for subclinical carotid atherosclerosis: A systematic review and meta-analysis with bioinformatics analysis. Diabetes Metab. Syndr. 2023, 17, 102860. [Google Scholar] [CrossRef] [PubMed]
- Carmona-Maurici, J.; Ricart-Jané, D.; Viñas, A.; López-Tejero, M.D.; Eskubi-Turró, I.; Miñarro, A.; Baena-Fustegueras, J.A.; Peinado-Onsurbe, J.; Pardina, E. Circulating miRNAs as biomarkers of subclinical atherosclerosis associated with severe obesity before and after bariatric surgery. Obes. Facts 2024, 17, 602–612. [Google Scholar] [CrossRef]
- Zehrfeld, N.; Abelmann, M.; Benz, S.; Seeliger, T.; Engelk, F.; Skripuletz, T.; Baer, C.; Thum, T.; Witte, T.; Sonnenschein, K.; et al. miRNAs as potential biomarkers for subclinical atherosclerosis in Sjögren’s disease. RMD Open 2024, 10, e004434. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.-C.; Juo, S.-H.H. MicroRNAs in atherosclerosis. Kaohsiung J. Med. Sci. 2012, 28, 631–640. [Google Scholar] [CrossRef] [PubMed]
- Mir, R.; Elfaki, I.; Khullar, N.; Waza, A.A.; Jha, C.; Mir, M.M.; Nisa, S.; Mohammad, B.; Mir, T.A.; Maqbool, M.; et al. Role of selected miRNAs as diagnostic and prognostic biomarkers in cardiovascular diseases, including coronary artery disease, myocardial infarction and atherosclerosis. J. Cardiovasc. Dev. Dis. 2021, 8, 22. [Google Scholar] [CrossRef] [PubMed]
- Fatkhullinai, A.R.; Peshkova, I.O.; Koltsova, E.K. The role of cytokines in the development of atherosclerosis. Biochemistry 2016, 81, 1358–1370. [Google Scholar] [CrossRef] [PubMed]
- Tousoulis, D.; Oikonomou, E.; Economou, E.K.; Crea, F.; Kaski, J.C. Inflammatory cytokines in atherosclerosis: Current therapeutic approaches. Eur. Heart J. 2016, 37, 1723–1732. [Google Scholar] [CrossRef]
- Marchio, P.; Guerra-Ojeda, S.; Vila, J.M.; Aldasoro, M.; Victor, V.M.; Mauricio, M.D. Targeting early atherosclerosis: A focus on oxidative stress and inflammation. Oxid. Med. Cell Longev. 2019, 2019, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Batty, M.; Bennett, M.R.; Yu, E. The role of oxidative stress in atherosclerosis. Cells 2022, 11, 3843. [Google Scholar] [CrossRef] [PubMed]
- Hackam, D.G. Optimal medical management of asymptomatic carotid stenosis. Stroke 2021, 52, 2191–2198. [Google Scholar] [CrossRef] [PubMed]
- Gasior, S.A.; O’Donnell, J.P.M.; Davey, M.; Clarke, J.; Jalali, A.; Ryan, É.; Aherne, T.M.; Walsh, S.R. Optimal management of asymptomatic carotid artery stenosis: A systematic review and network meta-analysis. Eur. J. Vasc. Endovasc. Surg. 2023, 65, 690–699. [Google Scholar] [CrossRef]
- Libby, P.; Hansson, G.K. Inflammation and immunity in diseases of the arterial tree: Players and layers. Circ. Res. 2015, 116, 307–311. [Google Scholar] [CrossRef] [PubMed]
- Alfarisi, H.A.H.; Mohamed, Z.B.H.; Ibrahim, M.B. Basic pathogenic mechanisms of atherosclerosis. Egypt. J. Basic. Appl. Sci. 2020, 7, 116–125. [Google Scholar] [CrossRef]
- Spagnoli, L.G.; Bonanno, E.; Sangiorgi, G.; Mauriello, A. Role of inflammation in atherosclerosis. J. Nucl. Med. 2007, 48, 1800–1815. [Google Scholar] [CrossRef] [PubMed]
- Melhem, N.J.; Taleb, S. Tryptophan: From diet to cardiovascular diseases. Int. J. Mol. Sci. 2021, 22, 9904. [Google Scholar] [CrossRef]
- Hong, L.Z.; Xue, Q.; Shao, H. Inflammatory markers related to innate and adaptive immunity in atherosclerosis: Implications for disease prediction and prospective therapeutics. J. Inflamm. Res. 2021, 14, 379–392. [Google Scholar] [CrossRef]
- Amezcua-Castillo, E.; González-Pacheco, H.; Sáenz-San Martín, A.; Méndez-Ocampo, P.; Gutierrez-Moctezuma, I.; Massó, F.; Sierra-Lara, D.; Springall, R.; Rodríguez, E.; Arias-Mendoza, A.; et al. C-reactive protein: The quintessential marker of systemic inflammation in coronary artery disease—Advancing toward precision medicine. Biomedicines 2023, 11, 2444. [Google Scholar] [CrossRef]
- Wang, T.J.; Nam, B.H.; Wilson, P.W.F.; Wolf, P.A.; Levy, D.; Polak, J.F.; D’Agostino, R.B.; O’Donnell, C.J. Association of C-reactive protein with carotid atherosclerosis in men and women: The Framingham Heart Study. Arterioscler. Thromb. Vasc. Biol. 2002, 22, 1662–1667. [Google Scholar] [CrossRef] [PubMed]
- Arthurs, Z.M.; Andersen, C.; Starnes, B.W.; Sohn, V.Y.; Mullenix, P.S.; Perry, J. A prospective evaluation of C-reactive protein in the progression of carotid artery stenosis. J. Vasc. Surg. 2008, 47, 744–751. [Google Scholar] [CrossRef]
- Puz, P.; Lasek-Bal, A.; Ziaja, D.; Kazibutowska, Z.; Ziaja, K. Clinical research Inflammatory markers in patients with internal carotid artery stenosis. Arch. Med. Sci. 2013, 9, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Wang, A.; Liu, X.; Chen, S.; Zhu, Y.; Liu, Y.; Huang, K.; Wu, J.; Chen, S.; Wu, S.; et al. Association between high sensitivity C-reactive protein and prevalence of asymptomatic carotid artery stenosis. Atherosclerosis 2016, 246, 44–49. [Google Scholar] [CrossRef]
- Moss, J.W.; Ramji, D.P. Cytokines: Roles in atherosclerosis disease progression and potential therapeutic targets. Future Med. Chem. 2016, 8, 1317–1330. [Google Scholar] [CrossRef]
- Ma, J.; Luo, J.; Sun, Y.; Zhao, Z. Cytokines associated with immune response in atherosclerosis. Am. J. Transl. Res. 2022, 14, 6424–6444. [Google Scholar] [PubMed]
- Sadok, I.; Gamian, A.; Staniszewska, M.M. Chromatographic analysis of tryptophan metabolites. J. Sep. Sci. 2017, 40, 3020–3045. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, A.; Ikeda, Y.; Yoshikawa, S.; Taniguchi, K.; Sawamura, H.; Morikawa, S.; Nakashima, M.; Asai, T.; Matsuda, S. The tryptophan and kynurenine pathway involved in the development of immune-related diseases. Int. J. Mol. Sci. 2023, 24, 5742. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, X.; Liu, X.; Xie, C.; Shi, J. The role of the kynurenine pathway in cardiovascular disease. Front. Cardiovasc. Med. 2024, 11, 1406856. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Liu, D.; Song, P.; Zou, M.H. Deregulated tryptophan-kynurenine pathway is linked to inflammation, oxidative stress, and immune activation pathway in cardiovascular diseases. Front. Biosci. 2015, 20, 1116–1143. [Google Scholar]
- Bays, H.E.; Taub, P.R.; Epstein, E.; Michos, E.D.; Ferraro, R.A.; Bailey, A.L.; Kelli, H.M.; Ferdinand, K.C.; Echols, M.R.; Weintraub, H.; et al. Ten things to know about ten cardiovascular disease risk factors. Am. J. Prev. Cardiol. 2021, 5, 100149. [Google Scholar] [CrossRef]
- Niinisalo, P.; Oksala, N.; Levula, M.; Pelto-Huikko, M.; Järvinen, O.; Salenius, J.P.; Kytömäki, L.; Soini, J.T.; Kähönen, M.; Laaksonen, R.; et al. Activation of indoleamine 2,3-dioxygenase-induced tryptophan degradation in advanced atherosclerotic plaques: Tampere vascular study. Ann. Med. 2010, 42, 55–63. [Google Scholar] [CrossRef]
- Brandacher, G.; Cakar, F.; Winkler, C.; Schneeberger, S.; Obrist, P.; Bösmüller, C.; Werner-Felmayer, G.; Werner, E.R.; Bonatti, H.; Margreiter, R.; et al. Non-invasive monitoring of kidney allograft rejection through IDO metabolism evaluation. Kidney Int. 2007, 71, 60–67. [Google Scholar] [CrossRef]
- Unuvar, S.; Erge, D.; Kilicarslan, B.; Bag, H.G.G.; Catal, F.; Girgin, G.; Baydar, T. Neopterin levels and indoleamine 2,3-dioxygenase activity as biomarkers of immune system activation and childhood allergic diseases. Ann. Lab. Med. 2019, 39, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Sulo, G.; Vollset, S.E.; Nygard, O.; Midttun, O.; Ueland, P.M.; Eussen, S.J.P.M.; Pedersen, E.R.; Tell, G.S. Neopterin and kynurenine-tryptophan ratio as predictors of coronary events in older adults, the Hordaland Health Study. Int. J. Cardiol. 2013, 168, 1435–1440. [Google Scholar] [CrossRef]
- Pertovaara, M.; Raitala, A.; Juonala, M.; Lehtimäki, T.; Huhtala, H.; Oja, S.S.; Jokinen, E.; Viikari, J.S.A.; Raitakari, O.T.; Hurme, M. Indoleamine 2,3-dioxygenase enzyme activity correlates with risk factors for atherosclerosis: The cardiovascular risk in young Finns study. Clin. Exp. Immunol. 2007, 148, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Niinisalo, P.; Raitala, A.; Pertovaara, M.; Oja, S.S.; Lehtimäki, T.; Kähönen, M.; Reunanen, A.; Jula, A.; Moilanen, L.; Kesäniemi, Y.A.; et al. Indoleamine 2,3-dioxygenase activity associates with cardiovascular risk factors: The Health 2000 study. Scand. J. Clin. Lab. Invest. 2008, 68, 767–770. [Google Scholar] [CrossRef] [PubMed]
- Wirleitner, B.; Rudzite, V.; Neurauter, G.; Murr, C.; Kalnins, U.; Erglis, A.; Trusinskis, K.; Fuchs, D. Immune activation and degradation of tryptophan in coronary heart disease. Eur. J. Clin. Investig. 2003, 33, 550–554. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Chen, M.; Qi, F.; Shi, L.; Duan, Z.; Yang, R.; He, J.; Lou, B.; Li, Y.; Yang, Q. The proatherosclerotic function of indoleamine 2, 3-dioxygenase 1 in the developmental stage of atherosclerosis. Signal Transduct. Target. Ther. 2019, 4, 23. [Google Scholar] [CrossRef] [PubMed]
- Zapolski, T.; Kamińska, A.; Kocki, T.; Wysokiński, A.; Urbanska, E.M. Aortic stiffness—Is kynurenic acid a novel marker? Cross-sectional study in patients with persistent atrial fibrillation. PLoS ONE 2020, 15, e0236413. [Google Scholar] [CrossRef] [PubMed]
- Kember, I.; Sanajou, S.; Kilicarslan, B.; Girgin, G.; Baydar, T. Evaluation of neopterin levels and kynurenine pathway in patients with acute coronary syndrome. Acute Crit. Care 2023, 38, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Razquin, C.; Ruiz-Canela, M.; Toledo, E.; Clish, C.B.; Guasch-Ferré, M.; García-Gavilán, J.F.; Wittenbecher, C.; Alonso-Gómez, A.; Fitó, M.; Liang, L.; et al. Circulating Amino Acids and Risk of Peripheral Artery Disease in the PREDIMED Trial. Int. J. Mol. Sci. 2023, 24, 270. [Google Scholar] [CrossRef]
- Pedersen, E.R.; Midttun, Ø.; Ueland, P.M.; Schartum-Hansen, H.; Seifert, R.; Igland, J.; Nordrehaug, J.E.; Ebbing, M.; Svingen, G.; Bleie, Ø.; et al. Systemic markers of interferon-γ-mediated immune activation and long-term prognosis in patients with stable coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 698–704. [Google Scholar] [CrossRef]
- Eussen, S.J.P.M.; Ueland, P.M.; Vollset, S.E.; Nygård, O.; Midttun, Ø.; Sulo, G.; Ulvik, A.; Meyer, K.; Pedersen, E.R.; Tell, G.S. Kynurenines as predictors of acute coronary events in the Hordaland Health Study. Int. J. Cardiol. 2015, 189, 18–24. [Google Scholar] [CrossRef]
- Kozhevnikova, M.V.; Krivova, A.V.; Korobkova, E.O.; Ageev, A.A.; Shestakova, K.M.; Moskaleva, N.E.; Appolonova, S.A.; Privalova, E.V.; Belenkov, Y.N. Comparative analysis of tryptophan and downstream metabolites of the kynurenine and serotonin pathways in patients with arterial hypertension and coronary artery disease. Kardiologiia 2022, 62, 40–48. [Google Scholar] [CrossRef]
- Zuo, H.; Ueland, P.M.; Ulvik, A.; Eussen, S.J.P.M.; Vollset, S.E.; Nygård, O.; Midttun, Ø.; Theofylaktopoulou, D.; Meyer, K.; Tell, G.S. Plasma biomarkers of inflammation, the kynurenine pathway, and risks of all-cause, cancer, and cardiovascular disease mortality: The Hordaland Health Study. Am. J. Epidemiol. 2016, 183, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Dogheim, G.M.; Amralla, M.T.; Werida, R.H. Role of neopterin as an inflammatory biomarker in congestive heart failure with insights on effect of drug therapies on its level. Inflammopharmacology 2022, 30, 1617–1622. [Google Scholar] [CrossRef] [PubMed]
- Gieseg, S.P.; Baxter-Parker, G.; Lindsay, A. Neopterin, inflammation, and oxidative stress: What could we be missing? Antioxidants 2018, 7, 80. [Google Scholar] [CrossRef] [PubMed]
- Shirai, R.; Sato, K.; Yamashita, T.; Yamaguchi, M.; Okano, T.; Watanabe-Kominato, K.; Watanabe, R.; Matsuyama, T.A.; Ishibashi-Ueda, H.; Koba, S.; et al. Neopterin counters vascular inflammation and atherosclerosis. J. Am. Heart Assoc. 2018, 7, e007359. [Google Scholar] [CrossRef]
- Murr, C.; Widner, B.; Wirleitner, B.; Fuchs, D. Neopterin as a marker for immune system activation. Curr. Drug Metab. 2002, 3, 175–187. [Google Scholar] [CrossRef] [PubMed]
- Oxenkrug, G.; Tucker, K.L.; Requintina, P.; Summergrad, P. Neopterin, a marker of interferon-gamma-inducible inflammation, correlates with pyridoxal-5′-phosphate, waist circumference, HDL-cholesterol, insulin resistance and mortality risk in adult Boston Community Dwellers of Puerto Rican Origin. Am. J. Neuroprot. Neuroregen. 2011, 3, 48–52. [Google Scholar] [CrossRef] [PubMed]
- Mohamad, M.; Ebeid, S.; Shawky Khater, M.; Alsadany, M. Interferon-gamma-inducible guanosine triphosphate cyclohydrolase 1 (GTP-CH1) pathway is associated with frailty in Egyptian Elderly. Rep. Biochem. Mol. Biol. 2018, 7, 52–58. [Google Scholar] [PubMed]
- Weiss, G.; Willeit, J.; Kiechl, S.; Fuchs, D.; Jarosch, E.; Oberhollenzer, F.; Reibnegger, G.; Tilz, G.P.; Gerstenbrand, F.; Wachter, H. Increased concentrations of neopterin in carotid atherosclerosis. Atherosclerosis 1994, 106, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.; Yan, Z.; Wang, H.; Hong, H. Serum neopterin as a novel marker for carotid artery stenosis in community subjects. OALib 2023, 5, 1–13. [Google Scholar] [CrossRef]
- Ismail, A.M.M.; Mohamad Hosam, M.M.; Shawky, K.M. Neopterin in carotid artery atherosclerosis and cerebrovascular ischaemic events. Egypt. J. Neurol. Psychiat. Neurosurg. 2009, 46, 185–192. [Google Scholar]
- Tatzber, F.; Rabl, H.; Koriska, K.; Erhart, U.; Puhl, H.; Waeg, G.; Krebs, A.; Esterbauer, H. Elevated serum neopterin levels in atherosclerosis. Atherosclerosis 1991, 89, 203–208. [Google Scholar] [CrossRef]
- Hermus, L.; Schuitemaker, J.H.N.; Tio, R.A.; Breek, J.C.; Slart, R.H.J.A.; de Boef, E.; Zeebregts, C.J. Novel serum biomarkers in carotid artery stenosis: Useful to identify the vulnerable plaque? Clin. Biochem. 2011, 44, 1292–1298. [Google Scholar] [CrossRef]
- Chen, Y.L.; Tsai, T.H.; Sung, P.H.; Wang, H.T.; Lin, H.S.; Chang, W.N.; Lu, C.H.; Chen, S.F.; Huang, C.R.; Tsai, N.W.; et al. Levels of circulating neopterin in patients with severe carotid artery stenosis undergoing carotid stenting. J. Atheroscler. Thromb. 2014, 21, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Poznyak, A.V.; Grechko, A.V.; Orekhova, V.A.; Chegodaev, Y.S.; Wu, W.K.; Orekhov, A.N. Oxidative stress and antioxidants in atherosclerosis development and treatment. Biology 2020, 9, 60. [Google Scholar] [CrossRef]
- Polidori, M.C.; Praticó, D.; Parente, B.; Mariani, E.; Cecchetti, R.; Yao, Y.; Sies, H.; Cao, P.; Mecocci, P.; Stahl, W. Elevated lipid peroxidation biomarkers and low antioxidant status in atherosclerotic patients with increased carotid or iliofemoral intima media thickness. J. Investig. Med. 2007, 55, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Alghazeer, R.; Aboulmeedah, E.; Elgahmasi, S.; Alghazir, N.; Almukthar, Z.; Enaami, M.; Rhuma, A. Comparative evaluation of antioxidant enzymes and serum selenium levels in Libyan Atherosclerotic Patients. J. Biosci. Med. 2019, 7, 51–69. [Google Scholar] [CrossRef]
- Yang, R.L.; Shi, Y.H.; Hao, G.; Li, W.; Le, G.W. Increasing oxidative stress with progressive hyperlipidemia in human: Relation between malondialdehyde and atherogenic index. J. Clin. Biochem. Nutr. 2008, 43, 154–158. [Google Scholar] [CrossRef] [PubMed]
- Viigimaa, M.; Abina, J.; Zemtsovskaya, G.; Tikhaze, A.; Konovalova, G.; Kumskova, E.; Lankin, V. Malondialdehyde-modified low-density lipoproteins as biomarker for atherosclerosis. Blood Press. 2010, 19, 164–168. [Google Scholar] [CrossRef] [PubMed]
- Ray, P.D.; Huang, B.W.; Tsuji, Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012, 24, 981–990. [Google Scholar] [CrossRef] [PubMed]
- Lubrano, V.; Balzan, S. Enzymatic antioxidant system in vascular inflammation and coronary artery disease. World J. Exp. Med. 2015, 5, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Shramko, V.S.; Striukova, E.V.; Polonskaya, Y.V.; Stakhneva, E.M.; Volkova, M.V.; Kurguzov, A.V.; Kashtanova, E.V.; Ragino, Y.I. Associations of antioxidant enzymes with the concentration of fatty acids in the blood of men with coronary artery atherosclerosis. J. Pers. Med. 2021, 11, 1281. [Google Scholar] [CrossRef] [PubMed]
Precursor Ion | Daughter Ion | Dwell Time ms | Q1 Pre-Bias (V) | CE | Q3 Pre-Bias (V) | |
---|---|---|---|---|---|---|
L-Tryptophan | 205.10 | 188.05 | 100.0 | −15.0 | −12.0 | −19.0 |
205.10 | 146.05 | 100.0 | −15.0 | −22.0 | −27.0 | |
205.10 | 117.90 | 100.0 | −10.0 | −27.0 | −25.0 | |
L-Kynurenine | 209.10 | 192.15 | 100.0 | −10.0 | −8.0 | −12.0 |
209.10 | 146.05 | 100.0 | −23.0 | −22.0 | −27.0 | |
209.10 | 94.05 | 100.0 | −14.0 | −17.0 | −18.0 |
Gender (n) | Age (Mean ± SD) | Smoking (n) | Comorbidly (n) | |||||
---|---|---|---|---|---|---|---|---|
Female | Male | Yes | No | Hypertensin | Diabetes | Obesity | ||
H | 18 | 10 | 60 ± 10 | 5 | 23 | 15 | 4 | 9 |
ACAS | 21 | 36 | 67 ± 8 (*) | 18 | 39 | 32 | 19 | 10 |
Group 1 | 12 | 15 | 66 ± 8 (*) | 10 | 17 | 18 | 6 | 8 |
Group 2 | 6 | 12 | 65 ± 8 (*) | 6 | 12 | 7 | 7 | 2 |
Group 3 | 3 | 9 | 74 ± 8 (*) | 2 | 10 | 7 | 6 | 0 |
Total Cholesterol (mg dL−) | Triglyceride (mg dL−) | LDL (mg dL−) | HDL (mg dL−) | |
---|---|---|---|---|
H | 222.35 ± 39.51 | 168.24 ± 76 | 146.53 ± 36.41 | 44.00 ± 6.98 |
ACAS | 174.30 ± 43.51 (***) | 135.30 ± 54.27 | 118.58 ± 40.01 (*) | 44.12 ± 10.73 |
Group 1 | 183.48 ± 42.98 (*) | 126.62 ± 41.59 | 119.05 ± 35.86 | 46.43 ± 9.03 |
Group 2 | 173.11 ± 50.54 (*) | 141.11 ± 58.16 | 114.58 ± 44.17 | 41.33 ± 12.26 |
Group 3 | 153.22 ± 18.40 (*) | 142.36 ± 70.33 | 124.58 ± 45.38 | 43.80 ± 11.27 |
CRP (mg L−) | Neopterin (nmol L−) | Kynurenine (μmol L−) | Tryptophane (μmol L−) | IDO Activity | |
---|---|---|---|---|---|
H | 1.98 ± 0.89 | 3.18 ± 0.99 | 2.01 ± 0.22 | 45.38 ± 7.82 | 45.66 ± 4.68 |
ACAS | 2.51 ± 1.49 | 3.33 ± 1.08 | 2.17 ± 0.43 | 35.58 ± 6.98 (***) | 54.53 ± 9.99 (***) |
Group 1 | 2.37 ± 0.96 | 3.23 ± 0.68 | 2.04 ± 0.22 | 37.17 ± 6.44 (*) | 47.36 ± 5.48 |
Group 2 | 2.24 ± 1.38 | 2.85 ± 0.97 | 2.08 ± 0.44 | 36.40 ± 6.61 (*) | 52.37 ± 5.27 (*) |
Group 3 | 3.13 ± 2.28 | 4.28 ± 1.41 (*, +, !) | 2.51 ± 0.59 (*, +, !) | 30.07 ± 6.82 (*) | 66.73 ± 7.76 (*, +, !) |
CAT (U mL−) | T-SOD (U mL−) | GSH-Px (U mL−) | MDA (ng mL−) | |
---|---|---|---|---|
H | 36.66 ± 5.37 | 52.03 ± 10.45 | 1008.78 ± 188.38 | 80.75 ± 23.41 |
ACAS | 244,052 ± 43.01 (***) | 61.64 ± 10.68 (***) | 634.91 ± 180.5 (***) | 84.47 ± 33.93 |
Group 1 | 193.46 ± 74.88 (*) | 61.49 ± 9.46 (*) | 630.56 ± 230.18 (*) | 82.40 ± 29.98 |
Group 2 | 177.28 ± 50.71 (*) | 60.47 ± 13.40 | 584.94 ± 185.73 (*) | 85.69 ± 39.30 |
Group 3 | 284.13 ± 74.7 (*, +, !) | 63.78 ± 9.16 (*) | 731.14 ± 202.83 | 90.66 ± 27.22 (*) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karaduman, A.B.; Ilgın, S.; Aykaç, Ö.; Yeşilkaya, M.; Levent, S.; Özdemir, A.Ö.; Girgin, G. Assessment of Inflammatory and Oxidative Stress Biomarkers for Predicting of Patients with Asymptomatic Carotid Artery Stenosis. J. Clin. Med. 2025, 14, 755. https://doi.org/10.3390/jcm14030755
Karaduman AB, Ilgın S, Aykaç Ö, Yeşilkaya M, Levent S, Özdemir AÖ, Girgin G. Assessment of Inflammatory and Oxidative Stress Biomarkers for Predicting of Patients with Asymptomatic Carotid Artery Stenosis. Journal of Clinical Medicine. 2025; 14(3):755. https://doi.org/10.3390/jcm14030755
Chicago/Turabian StyleKaraduman, Abdullah Burak, Sinem Ilgın, Özlem Aykaç, Mehmetcan Yeşilkaya, Serkan Levent, Atilla Özcan Özdemir, and Gozde Girgin. 2025. "Assessment of Inflammatory and Oxidative Stress Biomarkers for Predicting of Patients with Asymptomatic Carotid Artery Stenosis" Journal of Clinical Medicine 14, no. 3: 755. https://doi.org/10.3390/jcm14030755
APA StyleKaraduman, A. B., Ilgın, S., Aykaç, Ö., Yeşilkaya, M., Levent, S., Özdemir, A. Ö., & Girgin, G. (2025). Assessment of Inflammatory and Oxidative Stress Biomarkers for Predicting of Patients with Asymptomatic Carotid Artery Stenosis. Journal of Clinical Medicine, 14(3), 755. https://doi.org/10.3390/jcm14030755