Integrated Multivariate Predictive Model of Body Composition and Lipid Profile for Cardiovascular Risk Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Ethical Approval
2.3. Body Composition and Anthopometric Assessment
2.4. Biochemical Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BMI | Body Mass Index |
SBP | Systolic Blood Pressure |
DBP | Diastolic Blood Pressure |
PPM | Pulse Pressure |
FM% | Fat Mass Percentage |
VF | Visceral Fat |
WHR | Waist-to-Hip Ratio |
CHOL | Cholesterol |
TG | Triglycerides |
GLU | Glucose |
RES_50 | Resistance at 50 kHz |
REA_50 | Reactance at 50 kHz |
SMM | Skeletal Muscle Mass |
CVD | Cardiovascular Diseases |
NCD | Non-Communicable Diseases |
LDL | Low-Density Lipoprotein |
HDL | High-Density Lipoprotein |
AHA | American Heart Association |
Z50 | Impedance at 50 kHz |
References
- Virani, S.S.; Alonso, A.; Aparicio, H.J.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Cheng, S.; Delling, F.N.; et al. Heart Disease and Stroke Statistics–2021 Update: A Report From the American Heart Association. Circulation 2021, 143, e254–e743. [Google Scholar] [CrossRef] [PubMed]
- Mensah, G.A.; Roth, G.A.; Fuster, V. The Global Burden of Cardiovascular Diseases and Risk Factors: 2020 and Beyond. J. Am. Coll. Cardiol. 2019, 74, 2529–2532. [Google Scholar] [CrossRef]
- Roth, G.A.; Johnson, C.; Abajobir, A.; Abd-Allah, F.; Abera, S.F.; Abyu, G.; Ahmed, M.; Aksut, B.; Alam, T.; Alam, K.; et al. Global, Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015. J. Am. Coll. Cardiol. 2017, 70, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Neeland, I.J.; Ross, R.; Després, J.-P.; Matsuzawa, Y.; Yamashita, S.; Shai, I.; Seidell, J.; Magni, P.; Santos, R.D.; Arsenault, B.; et al. Visceral and Ectopic Fat, Atherosclerosis, and Cardiometabolic Disease: A Position Statement. Lancet Diabetes Endocrinol. 2019, 7, 715–725. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, E.J.; Virani, S.S.; Callaway, C.W.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Chiuve, S.E.; Cushman, M.; Delling, F.N.; Deo, R.; et al. Heart Disease and Stroke Statistics—2018 Update: A Report From the American Heart Association. Circulation 2018, 137, e67–e492. [Google Scholar] [CrossRef] [PubMed]
- Carlsson, A.C.; Ärnlöv, J.; Sundström, J.; Michaëlsson, K.; Byberg, L.; Lind, L. Physical Activity, Obesity and Risk of Cardiovascular Disease in Middle-Aged Men during a Median of 30 Years of Follow-Up. Eur. J. Prev. Cardiol. 2016, 23, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Ross, R.; Neeland, I.J.; Yamashita, S.; Shai, I.; Seidell, J.; Magni, P.; Santos, R.D.; Arsenault, B.; Cuevas, A.; Hu, F.B.; et al. Waist Circumference as a Vital Sign in Clinical Practice: A Consensus Statement from the IAS and ICCR Working Group on Visceral Obesity. Nat. Rev. Endocrinol. 2020, 16, 177–189. [Google Scholar] [CrossRef] [PubMed]
- Després, J.-P. Body Fat Distribution and Risk of Cardiovascular Disease: An Update. Circulation 2012, 126, 1301–1313. [Google Scholar] [CrossRef] [PubMed]
- National Institute for Clinical Excellence. Cardiovascular Disease: Risk Assessment and Reduction, Including Lipid Modification; NICE Guideline NG238; NICE: London, UK, 2023. [Google Scholar]
- Byambasukh, O.; Eisenga, M.F.; Gansevoort, R.T.; Bakker, S.J.; Corpeleijn, E. Body Fat Estimates from Bioelectrical Impedance Equations in Cardiovascular Risk Assessment: The PREVEND Cohort Study. Eur. J. Prev. Cardiol. 2019, 26, 905–916. [Google Scholar] [CrossRef] [PubMed]
- Norman, K.; Stobäus, N.; Pirlich, M.; Bosy-Westphal, A. Bioelectrical Phase Angle and Impedance Vector Analysis—Clinical Relevance and Applicability of Impedance Parameters. Clin. Nutr. 2012, 31, 854–861. [Google Scholar] [CrossRef] [PubMed]
- Qiao, T.; Luo, T.; Pei, H.; Yimingniyazi, B.; Aili, D.; Aimudula, A.; Zhao, H.; Zhang, H.; Dai, J.; Wang, D. Association between Abdominal Obesity Indices and Risk of Cardiovascular Events in Chinese Populations with Type 2 Diabetes: A Prospective Cohort Study. Cardiovasc. Diabetol. 2022, 21, 225. [Google Scholar] [CrossRef] [PubMed]
- Ueno, K.; Kaneko, H.; Kamiya, K.; Itoh, H.; Okada, A.; Suzuki, Y.; Matsuoka, S.; Fujiu, K.; Michihata, N.; Jo, T.; et al. Relationship of Normal-Weight Central Obesity with the Risk for Heart Failure and Atrial Fibrillation: Analysis of a Nationwide Health Check-up and Claims Database. Eur. Hear. J. Open 2022, 2, oeac026. [Google Scholar] [CrossRef]
- Silverman, M.G.; Ference, B.A.; Im, K.; Wiviott, S.D.; Giugliano, R.P.; Grundy, S.M.; Braunwald, E.; Sabatine, M.S. Association Between Lowering LDL-C and Cardiovascular Risk Reduction Among Different Therapeutic Interventions: A Systematic Review and Meta-Analysis. JAMA 2016, 316, 1289–1297. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, M.J.; Lepor, N.E.; Michos, E.D. Evolving Management of Low-Density Lipoprotein Cholesterol: A Personalized Approach to Preventing Atherosclerotic Cardiovascular Disease Across the Risk Continuum. J. Am. Heart Assoc. 2023, 12, e028892. [Google Scholar] [CrossRef] [PubMed]
- Ference, B.A.; Ginsberg, H.N.; Graham, I.; Ray, K.K.; Packard, C.J.; Bruckert, E.; Hegele, R.A.; Krauss, R.M.; Raal, F.J.; Schunkert, H.; et al. Low-Density Lipoproteins Cause Atherosclerotic Cardiovascular Disease. 1. Evidence from Genetic, Epidemiologic, and Clinical Studies. A Consensus Statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 2017, 38, 2459–2472. [Google Scholar] [CrossRef]
- Whelton, P.K.; Carey, R.M.; Aronow, W.S.; Casey, D.E.J.; Collins, K.J.; Dennison Himmelfarb, C.; DePalma, S.M.; Gidding, S.; Jamerson, K.A.; Jones, D.W.; et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task. Circulation 2018, 138, e426–e483. [Google Scholar] [CrossRef]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the Management of Arterial Hypertension. Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef]
- Britton, K.A.; Fox, C.S. Ectopic Fat Depots and Cardiovascular Disease. Circulation 2011, 124, e837–e841. [Google Scholar] [CrossRef]
- Mazurek, T.; Zhang, L.; Zalewski, A.; Mannion, J.D.; Diehl, J.T.; Arafat, H.; Sarov-Blat, L.; O’Brien, S.; Keiper, E.A.; Johnson, A.G.; et al. Human Epicardial Adipose Tissue Is a Source of Inflammatory Mediators. Circulation 2003, 108, 2460–2466. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.S.; Ning, H.; Wilkins, J.T.; Allen, N.; Carnethon, M.; Berry, J.D.; Sweis, R.N.; Lloyd-Jones, D.M. Association of Body Mass Index With Lifetime Risk of Cardiovascular Disease and Compression of Morbidity. JAMA Cardiol. 2018, 3, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Guh, D.P.; Zhang, W.; Bansback, N.; Amarsi, Z.; Birmingham, C.L.; Anis, A.H. The Incidence of Co-Morbidities Related to Obesity and Overweight: A Systematic Review and Meta-Analysis. BMC Public Health 2009, 9, 88. [Google Scholar] [CrossRef] [PubMed]
- Thais, C.; Kashish, G.; Daniel, C.d.S.; Charlotte, K.; Kanaya, A.M.; Marianne, Z.; Jong-Seon, P.; Lars, K.; Christian, T.-P.; Yves, C.; et al. Central Obesity and Survival in Subjects With Coronary Artery Disease. J. Am. Coll. Cardiol. 2011, 57, 1877–1886. [Google Scholar] [CrossRef]
- Snijder, M.B.; Dekker, J.M.; Visser, M.; Bouter, L.M.; Stehouwer, C.D.A.; Kostense, P.J.; Yudkin, J.S.; Heine, R.J.; Nijpels, G.; Seidell, J.C. Associations of Hip and Thigh Circumferences Independent of Waist Circumference with the Incidence of Type 2 Diabetes: The Hoorn Study. Am. J. Clin. Nutr. 2003, 77, 1192–1197. [Google Scholar] [CrossRef]
- Dote-Montero, M.; Acosta, F.M.; Sanchez-Delgado, G.; Merchan-Ramirez, E.; Amaro-Gahete, F.J.; Labayen, I.; Ruiz, J.R. Association of Meal Timing with Body Composition and Cardiometabolic Risk Factors in Young Adults. Eur. J. Nutr. 2023, 62, 2303–2315. [Google Scholar] [CrossRef] [PubMed]
- Drozdová, D.; Danková, Z.; Čerňanová, V.; Siváková, D. Body Composition of Slovak Midlife Women with Cardiovascular Complications. Anthropol. Rev. 2016, 79, 169–180. [Google Scholar] [CrossRef]
- Carter, J.L.; Abdullah, N.; Bragg, F.; Murad, N.A.A.; Taylor, H.; Fong, C.S.; Lacey, B.; Sherliker, P.; Karpe, F.; Mustafa, N.; et al. Body Composition and Risk Factors for Cardiovascular Disease in Global Multi-Ethnic Populations. Int. J. Obes. 2023, 47, 855–864. [Google Scholar] [CrossRef]
- Koenen, M.; Hill, M.A.; Cohen, P.; Sowers, J.R. Obesity, Adipose Tissue and Vascular Dysfunction. Circ. Res. 2021, 128, 951–968. [Google Scholar] [CrossRef]
- Kistan, J.; Wing, J.; Tshabalala, K.; Van Hougenhouck-Tulleken, W.; Basu, D. Body Composition Estimates from Bioelectrical Impedance and Its Association with Cardiovascular Risk. Afr. J. Prim. Health Care Fam. Med. 2024, 16, e1–e4. [Google Scholar] [CrossRef] [PubMed]
- Agarwala, A.; Liu, J.; Ballantyne, C.M.; Virani, S.S. The Use of Risk Enhancing Factors to Personalize ASCVD Risk Assessment: Evidence and Recommendations from the 2018 AHA/ACC Multi-Society Cholesterol Guidelines. Curr. Cardiovasc. Risk Rep. 2019, 13, 18. [Google Scholar] [CrossRef] [PubMed]
- Sniderman, A.D.; Couture, P.; Martin, S.S.; DeGraaf, J.; Lawler, P.R.; Cromwell, W.C.; Wilkins, J.T.; Thanassoulis, G. Hypertriglyceridemia and Cardiovascular Risk: A Cautionary Note about Metabolic Confounding. J. Lipid Res. 2018, 59, 1266–1275. [Google Scholar] [CrossRef]
- Ling, C.H.Y.; de Craen, A.J.M.; Slagboom, P.E.; Gunn, D.A.; Stokkel, M.P.M.; Westendorp, R.G.J.; Maier, A.B. Accuracy of Direct Segmental Multi-Frequency Bioimpedance Analysis in the Assessment of Total Body and Segmental Body Composition in Middle-Aged Adult Population. Clin. Nutr. 2011, 30, 610–615. [Google Scholar] [CrossRef]
Variable | Low Risk (n = 34) | Medium Risk (n = 32) | High Risk (n = 14) |
---|---|---|---|
BMI (kg/m2) | 28.22 ± 2.18 | 29.92 ± 4.05 | 30.73 ± 3.54 |
Fat Mass (%) | 31.87 ± 9.05 | 31.41 ± 9.78 | 32.21 ± 11.12 |
Visceral Fat (units) | 7.88 ± 2.78 | 9.09 ± 4.14 | 11.36 ± 4.78 |
Waist-to-Hip Ratio | 0.918 ± 0.187 | 1.075 ± 0.223 | 1.089 ± 0.135 |
Cholesterol (mg/dL) | 185.59 ± 21.23 | 189.34 ± 21.45 | 183.29 ± 10.34 |
Triglycerides (mg/dL) | 187.44 ± 75.05 | 180.63 ± 52.73 | 168.50 ± 19.21 |
Skeletal Muscle Mass (kg) | 27.81 ± 5.42 | 30.93 ± 7.35 | 29.82 ± 6.53 |
SBP (mmHg) | 109.82 ± 6.60 | 127.22 ± 5.63 | 149.36 ± 5.56 |
DBP (mmHg) | 70.59 ± 8.96 | 81.03 ± 8.33 | 85.79 ± 11.58 |
Pulse Pressure (mmHg) | 71.24 ± 10.83 | 70.61 ± 12.41 | 72.21 ± 8.03 |
Resistance (Ohm, 50 kHz) | 544.56 ± 76.61 | 516.10 ± 82.70 | 509.25 ± 79.95 |
Reactance (Ohm, 50 kHz) | 59.06 ± 12.19 | 57.27 ± 9.04 | 54.86 ± 10.22 |
BMI | SBP | DBP | PPM | FM% | VF | WHR | CHOL | TG | GLU | RES_50 | REA_50 | SMM | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BMI | — | 0.294 ** | 0.381 *** | 0.131 | 0.579 *** | 0.691 *** | 0.333 ** | −0.047 | 0.021 | 0.078 | −0.189 | −0.124 | 0.184 |
SBP | 0.294 ** | — | 0.643 *** | −0.025 | 0.040 | 0.345 ** | 0.406 *** | −0.046 | −0.096 | 0.359 ** | −0.198 | −0.226 * | 0.136 |
DBP | 0.381 *** | 0.643 *** | — | 0.125 | 0.124 | 0.414 *** | 0.423 *** | 0.126 | −0.014 | 0.254 * | −0.106 | −0.217 | 0.137 |
PPM | 0.131 | −0.025 | 0.125 | — | 0.277 * | 0.036 | 0.071 | 0.015 | −0.015 | 0.085 | 0.288 * | 0.094 | −0.279 * |
FM% | 0.579 *** | 0.040 | 0.124 | 0.277 * | — | 0.237 * | 0.351 ** | 0.053 | 0.081 | −0.041 | 0.617 *** | 0.366 *** | −0.579 *** |
VF | 0.691 *** | 0.345 ** | 0.414 *** | 0.036 | 0.237 * | — | 0.113 | 0.094 | 0.014 | 0.102 | −0.297 ** | −0.264 * | 0.360 *** |
WHR | 0.333 ** | 0.406 *** | 0.423 *** | 0.071 | 0.351 ** | 0.113 | — | 0.029 | −0.019 | 0.111 | 0.213 | 0.173 | −0.069 |
CHOL | −0.047 | −0.046 | 0.126 | 0.015 | 0.053 | 0.094 | 0.029 | — | 0.145 | 0.230 * | 0.120 | 0.002 | 0.032 |
TG | 0.021 | −0.096 | −0.014 | −0.015 | 0.081 | 0.014 | −0.019 | 0.145 | — | −0.193 | 0.008 | −0.021 | 0.001 |
GLU | 0.078 | 0.359 ** | 0.254 * | 0.085 | −0.041 | 0.102 | 0.111 | 0.230 * | −0.193 | — | −0.033 | −0.068 | 0.074 |
RES_50 | −0.189 | −0.198 | −0.106 | 0.288 * | 0.617 *** | −0.297 ** | 0.213 | 0.120 | 0.008 | −0.033 | — | 0.560 *** | −0.848 *** |
REA_50 | −0.124 | −0.226 * | −0.217 | 0.094 | 0.366 *** | −0.264 * | 0.173 | 0.002 | −0.021 | −0.068 | 0.560 *** | — | 0.297 ** |
SMM | 0.184 | 0.136 | 0.137 | −0.279 * | −0.579 *** | 0.360 *** | −0.069 | 0.032 | 0.001 | 0.074 | −0.848 *** | 0.297 ** | — |
Predictor | Medium vs. Low Risk (OR [95% CI]) | p-Value | High vs. Low Risk (OR [95% CI]) | p-Value | Interpretation |
---|---|---|---|---|---|
BMI | 1.18 [0.72, 1.94] | 0.499 | 1.14 [0.61, 2.13] | 0.692 | Not significant |
DBP | 1.13 [1.03, 1.23] | 0.007 | 1.16 [1.04, 1.30] | 0.008 | Significant predictor for both risks |
PPM | 0.99 [0.92, 1.06] | 0.760 | 1.00 [0.91, 1.09] | 0.966 | Not significant |
FM% | 0.97 [0.79, 1.20] | 0.777 | 0.91 [0.68, 1.22] | 0.536 | Not significant |
VF | 0.91 [0.68, 1.21] | 0.521 | 1.20 [0.84, 1.73] | 0.311 | Not significant |
CHOL | 0.99 [0.96, 1.04] | 0.926 | 0.97 [0.91, 1.04] | 0.392 | Not significant |
TG | 1.00 [0.99, 1.01] | 0.681 | 1.00 [0.98, 1.02] | 0.993 | Not significant |
GLU | 1.17 [1.04, 1.32] | 0.012 | 1.20 [1.04, 1.38] | 0.013 | Significant predictor for both risks |
RES_50 | 1.00 [0.97, 1.03] | 0.931 | 0.95 [0.92, 0.99] | 0.011 | Protective for high risk |
REA_50 | 0.97 [0.72, 1.31] | 0.850 | 1.46 [0.94, 2.27] | 0.096 | Not significant |
SMM | 0.97 [0.75, 1.25] | 0.797 | 0.81 [0.59, 1.11] | 0.184 | Not significant |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leyva-Vela, B.; Martínez-Olcina, M.; Asencio-Mas, N.; Vicente-Martínez, M.; Cuestas-Calero, B.J.; Matłosz, P.; Martínez-Rodríguez, A. Integrated Multivariate Predictive Model of Body Composition and Lipid Profile for Cardiovascular Risk Assessment. J. Clin. Med. 2025, 14, 781. https://doi.org/10.3390/jcm14030781
Leyva-Vela B, Martínez-Olcina M, Asencio-Mas N, Vicente-Martínez M, Cuestas-Calero BJ, Matłosz P, Martínez-Rodríguez A. Integrated Multivariate Predictive Model of Body Composition and Lipid Profile for Cardiovascular Risk Assessment. Journal of Clinical Medicine. 2025; 14(3):781. https://doi.org/10.3390/jcm14030781
Chicago/Turabian StyleLeyva-Vela, Belén, Maria Martínez-Olcina, Nuria Asencio-Mas, Manuel Vicente-Martínez, Bernardo José Cuestas-Calero, Piotr Matłosz, and Alejandro Martínez-Rodríguez. 2025. "Integrated Multivariate Predictive Model of Body Composition and Lipid Profile for Cardiovascular Risk Assessment" Journal of Clinical Medicine 14, no. 3: 781. https://doi.org/10.3390/jcm14030781
APA StyleLeyva-Vela, B., Martínez-Olcina, M., Asencio-Mas, N., Vicente-Martínez, M., Cuestas-Calero, B. J., Matłosz, P., & Martínez-Rodríguez, A. (2025). Integrated Multivariate Predictive Model of Body Composition and Lipid Profile for Cardiovascular Risk Assessment. Journal of Clinical Medicine, 14(3), 781. https://doi.org/10.3390/jcm14030781