The Current Status of Virtual Autopsy Using Combined Imaging Modalities: A Scoping Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Postmortem Computed Tomography (PMCT)
3.2. Angiography (PMCTA)
3.3. Magnetic Resonance Imaging
3.4. Postmortem Ultrasound (PMUS)
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Das, A.; Chowdhury, R. Searching cause of death through different autopsy methods: A new initiative. J. Family Med. Prim. Care 2017, 6, 191–195. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jalalzadeh, H.; Giannakopoulos, G.F.; Berger, F.H.; Fronczek, J.; van de Goot, F.R.; Reijnders, U.J.; Zuidema, W.P. Post-mortem imaging compared with autopsy in trauma victims—A systematic review. Forensic Sci. Int. 2015, 257, 29–48. [Google Scholar] [CrossRef]
- Haque, M.A. Medical Professionals’ Perspective on Virtual Autopsy: Comprehensive Analysis and Validation Study with Respect to Traditional Autopsy. Med.-Leg. Update 2021, 21, 278–287. [Google Scholar] [CrossRef]
- Finkbeiner, W.E.; Ursell, P.C.; Davis, R.L.; Connolly, A.J. Legal, Social, and Ethical Issues. Autops. Pathol. 2009, 15–24. [Google Scholar] [CrossRef] [PubMed Central]
- Kumar, R. Virtopsy complementing traditional autopsy. IP Int. J. Forensic Med. Toxicol. Sci. 2020, 5, 39–42. [Google Scholar] [CrossRef]
- VIRTOPSY—Wirtschaft.ch—Trademarks—Universität Bern Institut für Rechtsmedizin (IRM) Prof. Dr. R. Dirnhofer, Direktor Bern—Trademark no. P-491277—Application no. 04728/2001. wirtschaft.ch. Retrieved 28 August 2013.
- Badam, R.K.; Sownetha, T.; Babu, D.B.G.; Waghray, S.; Reddy, L.; Garlapati, K.; Chavva, S. Virtopsy: Touch-free autopsy. J. Forensic Dent. Sci. 2017, 9, 42. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Von Stillfried, S.; Isfort, P.; Knüchel-Clarke, R. Postmortale bildgebende Verfahren. Der Pathol. 2017, 38, 412–415. [Google Scholar] [CrossRef]
- Wan, L.; Song, Y.X.; Li, Z.D.; Liu, N.G.; Wang, Y.H.; Wang, M.W.; Zou, D.H.; Huang, P.; Chen, Y.J. The approach of virtual autopsy (VIRTOPSY) by postmortem multi-slice computed tomography (PMCT) in China for forensic pathology. Forensic Imaging 2020, 20, 200361. [Google Scholar] [CrossRef]
- Aghayev, E.; Thali, M.J.; Sonnenschein, M.; Jackowski, C.; Dirnhofer, R.; Vock, P. Post-mortem tissue sampling using computed tomography guidance. Forensic Sci. Int. 2007, 166, 199–203. [Google Scholar] [CrossRef]
- Dong, H.W.; Sun, Y.; Qian, H.; Jian, J.Q.; Shao, Y.; Li, Z.D.; Zou, D.H.; Liu, N.G.; Wan, L.; Wang, M.W.; et al. Research Progress on Postmortem Changes of Computed Tomography Imaging Characteristics on Corpses. Fa Yi Xue Za Zhi 2019, 35, 716–720, (In English, Chinese). [Google Scholar] [CrossRef] [PubMed]
- Aulino, G.; Rega, M.; Rossi, V.; Zedda, M.; Oliva, A. Postmortem CT and autopsy findings in an elevator-related death: A case report. Forensic Sci. Med. Pathol. 2024. ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Chandy, P.E.; Murray, N.; Khasanova, E.; Nasir, M.U.; Nicolaou, S.; Macri, F. Postmortem CT in Trauma: An Overview. Can. Assoc. Radiol. J. 2020, 71, 403–414. [Google Scholar] [CrossRef] [PubMed]
- Albano, G.D.; Scalzo, G.; Malta, G.; Puntarello, M.; Alongi, A.; Piscionieri, D.; Lo Re, G.F.; Salerno, S.; Zerbo, S.; Argo, A. Useful Evidence by Post-Mortem CT and Stereomicroscopy in Bone Injury: A Case Series from Forensic Practice. Healthcare 2023, 11, 540. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Di Paolo, M.; Maiese, A.; dell’Aquila, M.; Filomena, C.; Turco, S.; Giaconi, C.; Turillazzi, E. Role of post mortem CT (PMCT) in high energy traumatic deaths. Clin. Ter. 2020, 171, e490–e500. [Google Scholar] [CrossRef] [PubMed]
- Mauf, S.; Held, U.; Gascho, D.; Baumeister, R.; Flach, P.; Nguyen-Kim, T.D.; Thali, M.J.; Jentzsch, T. Flat chest projection in the detection and visualization of rib fractures: A cross-sectional study comparing curved and multiplanar reformation of computed tomography images in different reader groups. Forensic Sci. Int. 2019, 303, 109942. [Google Scholar] [CrossRef] [PubMed]
- Carballeira Álvarez, A.; Mancini, J.; Tuchtan-Torrents, L.; Gach, P.; Bartoli, C.; Desfeux, J.; Piercecchi, M.D.; Gorincour, G. Diagnostic value of unenhanced postmortem computed tomography in the detection of traumatic abdominal injuries. Diagn. Interv. Imaging 2018, 99, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Cascini, F.; Polacco, M.; Cittadini, F.; Paliani, G.B.; Oliva, A.; Rossi, R. Post-mortem computed tomography for forensic applications: A systematic review of gunshot deaths. Med. Sci. Law 2020, 60, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Aquila, I.; Sicilia, F.; Ricci, P.; Antonio Sacco, M.; Manno, M.; Gratteri, S. Role of post-mortem multi-slice computed tomography in the evaluation of single gunshot injuries. Med. Leg. J. 2019, 87, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Del Fante, Z.; De Matteis, A.; Fazio, V.; Di Fazio, N.; Quattrocchi, A.; Romano, S.; Arcangeli, M.; dell’Aquila, M. The importance of Post Mortem Computed Tomography (PMCT) in the reconstruction of the bullet trajectory. Clin. Ter. 2019, 170, e129–e133. [Google Scholar] [CrossRef] [PubMed]
- Chatzaraki, V.; Tappero, C.; Thali, M.J.; Schweitzer, W. Death by hanging: A retrospective case-control investigation of the intervertebral disc vacuum phenomenon on PMCT. Forensic Sci. Med. Pathol. 2018, 14, 484–496. [Google Scholar] [CrossRef] [PubMed]
- Jian, J.Q.; Liu, N.G.; Chen, Y.J. Research Progress in Virtopsy of Drowning. Fa Yi Xue Za Zhi 2019, 35, 328–331. (In English) [Google Scholar] [CrossRef] [PubMed]
- Bilotta, C.; Perrone, G.; Zerbo, S.; Salerno, S.; Adelfio, V.; Viola, I.; Lo Re, G.; Argo, A. The Multidisciplinary Approach for the Diagnosis of Laryngohyoid Lesions: A Systematic Literature Review and Meta-Analysis. Clin. Ter. 2023, 174, 97–108. [Google Scholar] [CrossRef] [PubMed]
- Ampanozi, G.; Franckenberg, S.; Schweitzer, W.; Thali, M.J.; Chatzaraki, V. Prevalence of calcified epiglottis in postmortem computed tomography. Is there a correlation to failed endotracheal intubation? Dentomaxillofac. Radiol. 2021, 50, 20200615. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tschui, J.; Jackowski, C.; Schwendener, N.; Schyma, C.; Zech, W.D. Post-mortem CT and MR brain imaging of putrefied corpses. Int. J. Legal Med. 2016, 130, 1061–1068. [Google Scholar] [CrossRef] [PubMed]
- Strano-Rossi, S.; Mestria, S.; Bolino, G.; Polacco, M.; Grassi, S.; Oliva, A. Scopolamine fatal outcome in an inmate after buscopan® smoking. Int. J. Legal Med. 2021, 135, 1455–1460. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- De-Giorgio, F.; Ciasca, G.; Fecondo, G.; Mazzini, A.; Di Santo, R.; De Spirito, M.; Pascali, V.L. Post mortem computed tomography meets radiomics: A case series on fractal analysis of post mortem changes in the brain. Int. J. Legal Med. 2022, 136, 719–727. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chatzaraki, V.; Ebert, L.C.; Thali, M.J.; Haidich, A.B.; Ampanozi, G. Evaluation of the mediastinal-thoracic volume ratio on postmortem computed tomography. Int. J. Legal Med. 2021, 135, 1903–1912. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Michiue, T.; Ishikawa, T.; Sakoda, S.; Quan, L.; Li, D.R.; Kamikodai, Y.; Okazaki, S.; Zhu, B.L.; Maeda, H. Cardiothoracic ratio in postmortem chest radiography with regard to the cause of death. Leg. Med. 2010, 12, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Michiue, T.; Sogawa, N.; Ishikawa, T.; Maeda, H. Cardiac dilatation index as an indicator of terminal central congestion evaluated using postmortem CT and forensic autopsy data. Forensic Sci. Int. 2016, 263, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Sogawa, N.; Michiue, T.; Ishikawa, T.; Kawamoto, O.; Oritani, S.; Maeda, H. Postmortem volumetric CT data analysis of pulmonary air/gas content with regard to the cause of death for investigating terminal respiratory function in forensic autopsy. Forensic Sci. Int. 2014, 241, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Grassi, S.; Campuzano, O.; Coll, M.; Cazzato, F.; Sarquella-Brugada, G.; Rossi, R.; Arena, V.; Brugada, J.; Brugada, R.; Oliva, A. Update on the Diagnostic Pitfalls of Autopsy and Post-Mortem Genetic Testing in Cardiomyopathies. Int. J. Mol. Sci. 2021, 22, 4124. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kimura, F.; Matsuo, Y.; Nakajima, T.; Nishikawa, T.; Kawamura, S.; Sannohe, S.; Hagiwara, N.; Sakai, F. Myocardial fat at cardiac imaging: How can we differentiate pathologic from physiologic fatty infiltration? Radiographics 2010, 30, 1587–1602. [Google Scholar] [CrossRef] [PubMed]
- Ampanozi, G.; Krinke, E.; Laberke, P.; Schweitzer, W.; Thali, M.J.; Ebert, L.C. Comparing fist size to heart size is not a viable technique to assess cardiomegaly. Cardiovasc. Pathol. 2018, 36, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Chatzaraki, V.; Heimer, J.; Thali, M.J.; Ampanozi, G.; Schweitzer, W. Approaching pulmonary fat embolism on postmortem computed tomography. Int. J. Legal Med. 2019, 133, 1879–1887. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, K.; Shiotani, S.; Ohashi, N.; Doi, M.; Honda, K. Hepatic portal venous gas and hyper-dense aortic wall as postmortem computed tomography finding. Leg. Med. 2003, 5 (Suppl. S1), S338–S341. [Google Scholar] [CrossRef] [PubMed]
- Shiotani, S.; Kohno, M.; Ohashi, N.; Yamazaki, K.; Nakayama, H.; Watanabe, K. Postmortem computed tomographic (PMCT) demonstration of the relation between gastrointestinal (GI) distension and hepatic portal venous gas (HPVG). Radiat. Med. 2004, 22, 25–29. [Google Scholar] [PubMed]
- Marosi, M.; Gorincour, G.; Tuchtan-Torrents, L.; Thali, M.J.; Gascho, D. Postmortem CT and MRI for detecting bowel obstruction in cases of pediatric sepsis deaths. Med. Sci. Law. 2024. ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Shelmerdine, S.C.; Gerrard, C.Y.; Rao, P.; Lynch, M.; Kroll, J.; Martin, D.; Miller, E.; Filograna, L.; Martinez, R.M.; Ukpo, O.; et al. Joint European Society of Paediatric Radiology (ESPR) and International Society for Forensic Radiology and Imaging (ISFRI) guidelines: Paediatric postmortem computed tomography imaging protocol. Pediatr. Radiol. 2019, 49, 694–701. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Baier, W.; Mangham, C.; Warnett, J.M.; Payne, M.; Painter, M.; Williams, M.A. Using histology to evaluate micro-CT findings of trauma in three post-mortem samples—First steps towards method validation. Forensic Sci. Int. 2019, 297, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Rüegger, C.M.; Gascho, D.; Bode, P.K.; Bruder, E.; Haslinger, C.; Ross, S.; Schmid, K.; Knöpfli, C.; Hofer, L.J.; Held, L.; et al. Post-mortem magnetic resonance imaging with computed tomography-guided biopsy for foetuses and infants: A prospective, multicentre, cross-sectional study. BMC Pediatr. 2022, 22, 464. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Laura, F.; Luca, P.; Massimo, M.; Doriana, T.; Giuseppe, G.; Michael, J.; Roberto, F. A Practical Guide to Virtual Autopsy: Why, When and How. Semin. Ultrasound CT MRI 2019, 40, 56–66. [Google Scholar] [CrossRef]
- Péporté, A.R.J.; Gascho, D.; Stamou, S.; Bensler, S.; Thali, M.J.; Leschka, S.; Flach, P.M. Evaluation of an acetated Ringer-based contrast material mixture for postmortem computed tomography angiography. Diagn. Interv. Imaging 2020, 101, 489–497. [Google Scholar] [CrossRef] [PubMed]
- Bruch, G.M.; Feldmann, N.H.C.; Fischer, F.T.; Fracasso, T.; Grabherr, S.; Genet, P. Changes in tissues and organs through PMCTA carrier substances. Int. J. Legal Med. 2024. ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Wolosker, M.B.; Diamante Leiderman, D.B.; Estevan, F.A.; Wolosker, N.; Zerati, A.E.; Amaro, E., Jr. Comparative Analysis of Artery Anatomy Evaluated by Postmortem Tomography, CT Angiography, and Postmortem and Predeath CT Scans. Ann. Vasc. Surg. 2021, 72, 124–137. [Google Scholar] [CrossRef] [PubMed]
- Azmitia, L.; Grassi, S.; Signorelli, F.; Filograna, L.; Pascali, V.; Olivi, A.; Visocchi, M.; Oliva, A. Post-mortem Imaging of Brain/Spine Injuries: The Importance of a Comprehensive Forensic Approach. Acta Neurochir. Suppl. 2023, 135, 27–31. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, S.; Heinsen, H.; Grinberg, L.T.; Chimelli, L.; Amaro, E., Jr.; do Nascimento Saldiva, P.H.; Jeanquartier, F.; Jean-Quartier, C.; da Graça Morais Martin, M.; Sajid, M.I.; et al. The role of artificial intelligence and machine learning in harmonization of high-resolution post-mortem MRI (virtopsy) with respect to brain microstructure. Brain Inform. 2019, 6, 3. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zoelch, N.; Hock, A.; Steuer, A.E.; Heimer, J.; Kraemer, T.; Thali, M.J.; Gascho, D. In situ postmortem ethanol quantification in the cerebrospinal fluid by non-water-suppressed proton MRS. NMR Biomed. 2019, 32, e4081. [Google Scholar] [CrossRef] [PubMed]
- Gascho, D.; Deininger-Czermak, E.; Zoelch, N.; Tappero, C.; Sommer, S.; Hinterholzer, N.; Thali, M.J. Noninvasive 7 tesla MRI of fatal craniocerebral gunshots—A glance into the future of radiologic wound ballistics. Forensic Sci. Med. Pathol. 2020, 16, 595–604. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Deininger-Czermak, E.; Heimer, J.; Tappero, C.; Thali, M.J.; Gascho, D. The added value of postmortem magnetic resonance imaging in cases of hanging compared to postmortem computed tomography and autopsy. Forensic Sci. Med. Pathol. 2020, 16, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Coolen, T.; Lolli, V.; Sadeghi, N.; Rovai, A.; Trotta, N.; Taccone, F.S.; Creteur, J.; Henrard, S.; Goffard, J.C.; Dewitte, O.; et al. Early postmortem brain MRI findings in COVID-19 non-survivors. Neurology 2020, 95, e2016–e2027. [Google Scholar] [CrossRef] [PubMed]
- Gascho, D.; Marosi, M.; Thali, M.J.; Deininger-Czermak, E. Postmortem Computed Tomography and Magnetic Resonance Imaging of Gunshot Wounds to the Neck. J. Forensic Sci. 2020, 65, 1360–1364. [Google Scholar] [CrossRef] [PubMed]
- Gascho, D.; Tappero, C.; Zoelch, N.; Deininger-Czermak, E.; Richter, H.; Thali, M.J.; Schaerli, S. Synergy of CT and MRI in detecting trajectories of lodged bullets in decedents and potential hazards concerning the heating and movement of bullets during MRI. Forensic Sci. Med. Pathol. 2020, 16, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Berger, F.; Niemann, T.; Kubik-Huch, R.A.; Richter, H.; Thali, M.J.; Gascho, D. Retained bullets in the head on computed tomography—Get the most out of iterative metal artifact reduction. Eur. J. Radiol. 2018, 103, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Gascho, D.; Richter, H.; Karampinos, D.C.; Heimer, J.; Schaerli, S.; Thali, M.J.; Zoelch, N. Noninvasive in situ proton MRS in muscle tissue and bone marrow as a novel approach to identify previous freezing in a completely thawed cadaver. NMR Biomed. 2020, 33, e4220. [Google Scholar] [CrossRef] [PubMed]
- Borza, D.; Bondor, C.; Kovacs, T.; Caracostea, G.; Rotar, I.C.; Turcu, R.V.F.; Simon, S.; Muresan, D.; Stamatian, F. Potential clinical benefits and limitations of fetal virtopsy using high-field MRI at 7 Tesla versus stereomicroscopic autopsy to assess first trimester fetuses. Prenat. Diagn. 2019, 39, 505–518. [Google Scholar] [CrossRef] [PubMed]
- Thayyil, S.; O Cleary, J.; Sebire, N.J.; Scott, R.J.; Chong, K.; Gunny, R.; Owens, C.M.; E Olsen, O.; Offiah, A.C.; Parks, H.G.; et al. Post-mortem examination of human fetuses: A comparison of whole-body high-field MRI at 9.4 T with conventional MRI and invasive autopsy. Lancet 2009, 374, 467–475. [Google Scholar] [CrossRef]
- Arthurs, O.J.; Thayyil, S.; Pauliah, S.S.; Jacques, T.S.; Chong, W.K.; Gunny, R.; Saunders, D.; Addison, S.; Lally, P.; Cady, E.; et al. Diagnostic accuracy and limitations of post-mortem MRI for neurological abnormalities in fetuses and children. Clin. Radiol. 2015, 70, 872–880. [Google Scholar] [CrossRef]
- Charlier, P.; Chaillot, P.-F.; Watier, L.; Ménétrier, M.; Carlier, R.; Cavard, S.; Hervé, C.; de la Grandmaison, G.L.; Huynh-Charlier, I. Is post-mortem ultrasonography a useful tool for forensic purposes? Med. Sci. Law. 2013, 53, 227–234. [Google Scholar] [CrossRef]
- Kanchan, T.; Shrestha, R.; Krishan, K. Post-mortem ultrasonography: A safer alternative to autopsies in COVID-19 deaths. J. Ultrasound 2021, 24, 577–578. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Uchigasaki, S. Postmortem ultrasound imaging in forensic pathology. In Forensic Pathology Reviews—Book Series. 4; Tsokos, M., Ed.; Humana Press: Totowa, NJ, USA, 2006. [Google Scholar]
- Uchigasaki, S.; Oesterhelweg, L.; Gehl, A.; Sperhake, J.P.; Püschel, K.; Oshida, S.; Nemoto, N. Application of compact ultrasound imaging device to postmortem diagnosis. Forensic Sci. Int. 2004, 140, 33–41. [Google Scholar] [CrossRef]
- Jackson, K.; Butler, R.; Aujayeb, A. Lung ultrasound in the COVID-19 pandemic. Postgrad. Med. J. 2021, 97, 34–39. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fariña, J.; Millana, C.; Fdez-Aceñero, M.J.; Furió, V.; Aragoncillo, P.; Martín, V.G.; Buencuerpo, J. Ultrasonographic autopsy (echopsy): A new autopsy technique. Virchows Arch. 2002, 440, 635–639. [Google Scholar] [CrossRef] [PubMed]
- Santino, S.F.; Salles, D.; Theodoro Filho, J.; Saldiva, P.H.N.; Iwamura, E.S.M.; Malinverni, A.C.M. A scoping review on virtual autopsy: Main concepts, qualified professionals and future prospects. Pathol. Res. Pract. 2024, 261, 155464. [Google Scholar] [CrossRef] [PubMed]
- Luyet, C.; Herrmann, G.; Ross, S.; Vogt, A.; Greif, R.; Moriggl, B.; Eichenberger, U. Ultrasound-guided thoracic paravertebral puncture and placement of catheters in human cadavers: Where do catheters go? Bern, Switzerland. Br. J. Anaesth. 2011, 106, 246–254. [Google Scholar] [CrossRef] [PubMed]
- Sonnemans, L.J.P.; Vester, M.E.M.; Kolsteren, E.E.M.; Erwich, J.J.H.M.; Nikkels, P.G.J.; Kint, P.A.M.; van Rijn, R.R.; Klein, W.M. Dutch guideline for clinical foetal-neonatal and paediatric post-mortem radiology, including a review of literature. Eur. J. Pediatr. 2018, 177, 791–803. [Google Scholar] [CrossRef]
- Merriam, T.; Kaufmann, R.; Ebert, L.; Figi, R.; Erni, R.; Pauer, R.; Sieberth, T. Differentiation of dental restorative materials combining energy-dispersive X-ray fluorescence spectroscopy and post-mortem CT. Forensic Sci. Med. Pathol. 2018, 14, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Femia, G.; Semsarian, C.; Langlois, N.; McGuire, M.; Raleigh, J.; Taylor, A.; Puranik, R. Post-Mortem Imaging Adjudicated Sudden Death: Causes and Controversies. Heart Lung Circ. 2019, 28, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Gascho, D. Photon-counting CT for forensic death investigations-a glance into the future of virtual autopsy. Front. Radiol. 2024, 4, 1463236. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Taciuc, I.A.; Dumitru, M.; Vrinceanu, D.; Gherghe, M.; Manole, F.; Marinescu, A.; Serboiu, C.; Neagos, A.; Costache, A. Applications and challenges of neural networks in otolaryngology (Review). Biomed. Rep. 2024, 20, 92. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sacco, M.A.; Tarzia, P.; Tarda, L.; La Russa, R.; Cordasco, F.; Aquila, I. The artificial intelligence in autopsy and crime scene analysis. Clin. Ter. 2024, 175 (Suppl. S2), 192–195. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.T.; Lan, Q.; Xie, T.; Liu, Y.F.; Mei, S.Y.; Zhu, B.F. New Opportunities and Challenges for Forensic Medicine in the Era of Artificial Intelligence Technology. Fa Yi Xue Za Zhi 2020, 36, 77–85. (In English) [Google Scholar] [CrossRef] [PubMed]
- Ebert, L.C.; Seckiner, D.; Sieberth, T.; Thali, M.J.; Franckenberg, S. An algorithm for automatically generating gas, bone and foreign body visualizations from postmortem computed tomography data. Forensic Sci. Med. Pathol. 2021, 17, 254–261. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tawfiq Zyoud, T.Y.; Abdul Rashid, S.N.; Suppiah, S.; Abdul Rahim, E.; Mahmud, R. Decoding death by unknown causes using post mortem image-guided virtopsy: A review of recent literature and the Malaysian experience. Med. J. Malaysia. 2020, 75, 411–418. [Google Scholar] [PubMed]
- Alibegović, A.; Umek, N.; Pušnik, L.; Zubiavrre Martinez, I. Comparison of the Visual Scoring Method and Semi-Automatic Image Analysis for Evaluating Staining Intensity of Human Cartilage Sections. Image Anal. Stereol. 2024, 43, 131–137. [Google Scholar] [CrossRef]
Use of PMCT | Reference |
---|---|
Complex spinal fractures | [11] |
Severe polytrauma | [12] |
3D reconstruction of facial injuries | [13] |
Trace bullet trajectory | [18] |
Hanging deaths | [21] |
Cases of drowning | [22] |
Intracranial gas accumulation | [25] |
Cardiothoracic ratio measurement | [31] |
Arrhythmogenic cardiomyopathy | [33] |
Pulmonary fat embolism | [35] |
Guided biopsy | [42] |
Advantages | Disadvantages |
---|---|
Body preservation | Needs to differentiate pathology from decomposition. |
Solves cultural beliefs | Cannot differentiate between the entry and exit points of the projectile. |
Limits the contamination of the environment with radiation, toxins, or infectious agents | Skin changes are not visible. |
Mobile imaging units | Can imply supplementary equipment costs. |
Records available for the examination of the judiciary system | Imaging specialists need to be trained in the analysis of body decomposition. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cergan, R.; Taciuc, I.A.; Dumitru, M.; Vrinceanu, D.; Manole, F.; Sanda, N.; Marinescu, A.N. The Current Status of Virtual Autopsy Using Combined Imaging Modalities: A Scoping Review. J. Clin. Med. 2025, 14, 782. https://doi.org/10.3390/jcm14030782
Cergan R, Taciuc IA, Dumitru M, Vrinceanu D, Manole F, Sanda N, Marinescu AN. The Current Status of Virtual Autopsy Using Combined Imaging Modalities: A Scoping Review. Journal of Clinical Medicine. 2025; 14(3):782. https://doi.org/10.3390/jcm14030782
Chicago/Turabian StyleCergan, Romica, Iulian Alexandru Taciuc, Mihai Dumitru, Daniela Vrinceanu, Felicia Manole, Nicoleta Sanda, and Andreea Nicoleta Marinescu. 2025. "The Current Status of Virtual Autopsy Using Combined Imaging Modalities: A Scoping Review" Journal of Clinical Medicine 14, no. 3: 782. https://doi.org/10.3390/jcm14030782
APA StyleCergan, R., Taciuc, I. A., Dumitru, M., Vrinceanu, D., Manole, F., Sanda, N., & Marinescu, A. N. (2025). The Current Status of Virtual Autopsy Using Combined Imaging Modalities: A Scoping Review. Journal of Clinical Medicine, 14(3), 782. https://doi.org/10.3390/jcm14030782