Antiarrhythmic Effects of SGLT2 Inhibitors on Supraventricular Tachyarrhythmias in Patients with HFrEF
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Medical Heart Failure Treatment
2.3. Follow-Up Visit
2.4. Statistics
3. Results
3.1. Baseline Characteristics
3.2. Medication at the Beginning of Enrollment
3.3. Follow-Up
3.3.1. Follow-Up on VT Events
3.3.2. Follow-Up on SVT Events
3.4. Predictor Models for VT Events
3.5. Predictor Models for SVT Events
4. Discussion
4.1. Antiarrhythmic Mechanisms of SGLT2 Inhibitors and Aim of This Study
4.2. Impact of SGLT2 Inhibitors on VT
4.3. Impact of SGLT2 Inhibitors on SVT
4.4. Multivariate Analyses
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- James, S.L.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.; et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [Google Scholar] [CrossRef] [PubMed]
- Savarese, G.; Becher, P.M.; Lund, L.H.; Seferovic, P.; Rosano, G.M.C.; Coats, A.J.S. Global burden of heart failure: A comprehensive and updated review of epidemiology. Cardiovasc. Res. 2023, 118, 3272–3287. [Google Scholar] [CrossRef] [PubMed]
- Emmons-Bell, S.; Johnson, C.; Roth, G. Prevalence, incidence and survival of heart failure: A systematic review. Heart 2022, 108, 1351–1360. [Google Scholar] [CrossRef] [PubMed]
- Jones, N.R.; Roalfe, A.K.; Adoki, I.; Hobbs, F.D.R.; Taylor, C.J. Survival of patients with chronic heart failure in the community: A systematic review and meta-analysis. Eur. J. Heart Fail. 2019, 21, 1306–1325. [Google Scholar] [CrossRef]
- Zeppenfeld, K.; Tfelt-Hansen, J.; Riva M de Winkel, B.G.; Behr, E.R.; Blom, N.A.; Charron, P.; Corrado, D.; Dagres, N.; de Chillou, C.; Eckardt, L.; et al. 2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur. Heart J. 2022, 43, 3997–4126. [Google Scholar]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Celutkiene, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.F.; Coats, A.J.S.; Falk, V.; Gonzalez-Juanatey, J.R.; Harjola, V.-P.; Jankowska, E.; et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2016, 37, 2129–2200. [Google Scholar]
- Cleland, J.G.F.; Daubert, J.-C.; Erdmann, E.; Freemantle, N.; Gras, D.; Kappenberger, L.; Tavazzi, L. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N. Engl. J. Med. 2005, 352, 1539–1549. [Google Scholar] [CrossRef]
- Bardy, G.H.; Lee, K.L.; Mark, D.B.; Poole, J.E.; Packer, D.L.; Boineau, R.; Domanski, M.; Troutman, C.; Anderson, J.; Johnson, G.; et al. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N. Engl. J. Med. 2005, 352, 225–237. [Google Scholar] [CrossRef]
- Kadish, A.; Dyer, A.; Daubert, J.P.; Quigg, R.; Estes, N.A.M.; Anderson, K.P.; Calkins, M.D.; Hoch, D.; Goldberger, J.; Shalaby, A.; et al. Prophylactic defibrillator implantation in patients with nonischemic dilated cardiomyopathy. N. Engl. J. Med. 2004, 350, 2151–2158. [Google Scholar] [CrossRef]
- Moss, A.J.; Zareba, W.; Hall, W.J.; Klein, H.; Wilber, D.J.; Cannom, D.S.; Daubert, J.P.; Higgins, S.L.; Brown, M.W.; Andrews, M.L.; et al. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N. Engl. J. Med. 2002, 346, 877–883. [Google Scholar] [CrossRef] [PubMed]
- Poole, J.E.; Olshansky, B.; Mark, D.B.; Anderson, J.; Johnson, G.; Hellkamp, A.S.; Davidson-Ray, L.; Fishbein, D.P.; Boineau, R.E.; Anstrom, K.J.; et al. Long-Term Outcomes of Implantable Cardioverter-Defibrillator Therapy in the SCD-HeFT. J. Am. Coll. Cardiol. 2020, 76, 405–415. [Google Scholar] [CrossRef] [PubMed]
- Neal, B.; Perkovic, V.; Mahaffey, K.W.; Zeeuw D de Fulcher, G.; Erondu, N.; Shaw, W.; Law, G.; Desai, M.; Matthews, D.R.; CANVAS Program Collaborative Group. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N. Engl. J. Med. 2017, 377, 644–657. [Google Scholar] [CrossRef]
- Perkovic, V.; Jardine, M.J.; Neal, B.; Bompoint, S.; Heerspink, H.J.L.; Charytan, D.M.; Edwards, R.; Agarwal, R.; Bakris, G.; Bull, S.; et al. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N. Engl. J. Med. 2019, 380, 2295–2306. [Google Scholar] [CrossRef]
- Wiviott, S.D.; Raz, I.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; Silverman, M.G.; Zelniker, T.; Kuder, J.; Murphy, S.; et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2019, 380, 347–357. [Google Scholar] [CrossRef]
- Zinman, B.; Wanner, C.; Lachin, J.M.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.E.; Woerle, H.; et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N. Engl. J. Med. 2015, 373, 2117–2128. [Google Scholar] [CrossRef]
- Lopaschuk, G.D.; Verma, S. Mechanisms of Cardiovascular Benefits of Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors: A State-of-the-Art Review. JACC Basic Transl. Sci. 2020, 5, 632–644. [Google Scholar] [CrossRef]
- McMurray, J.J.V.; Solomon, S.D.; Inzucchi, S.E.; Køber, L.; Kosiborod, M.N.; Martinez, F.A.; Ponikowski, P.; Sabatine, M.; Anand, I.; Belohlavek, J.; et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N. Engl. J. Med. 2019, 381, 1995–2008. [Google Scholar] [CrossRef]
- Curtain, J.P.; Docherty, K.F.; Jhund, P.S.; Petrie, M.C.; Inzucchi, S.E.; Køber, L.; Kosiborod, M.; Martinez, F.; Ponikowski, P.; Sabatine, M.; et al. Effect of dapagliflozin on ventricular arrhythmias, resuscitated cardiac arrest, or sudden death in DAPA-HF. Eur. Heart J. 2021, 42, 3727–3738. [Google Scholar] [CrossRef]
- Docherty, K.F.; Jhund, P.S.; Inzucchi, S.E.; Køber, L.; Kosiborod, M.N.; Martinez, F.A.; Ponikowski, P.; DeMets, D.; Sabatine, M.; Bengtsson, O.; et al. Effects of dapagliflozin in DAPA-HF according to background heart failure therapy. Eur. Heart J. 2020, 41, 2379–2392. [Google Scholar] [CrossRef]
- Packer, M.; Anker, S.D.; Butler, J.; Filippatos, G.; Pocock, S.J.; Carson, P.; Januzzi, J.; Verma, S.; Tsutsui, H.; Brueckmann, M.; et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N. Engl. J. Med. 2020, 383, 1413–1424. [Google Scholar] [CrossRef] [PubMed]
- Zannad, F.; Ferreira, J.P.; Pocock, S.J.; Anker, S.D.; Butler, J.; Filippatos, G.; Brueckmann, M.; Ofstad, A.P.; Pfarr, E.; Jamal, W.; et al. SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: A meta-analysis of the EMPEROR-Reduced and DAPA-HF trials. Lancet 2020, 396, 819–829. [Google Scholar] [CrossRef] [PubMed]
- Spertus, J.A.; Birmingham, M.C.; Nassif, M.; Damaraju, C.V.; Abbate, A.; Butler, J.; Lanfear, D.; Lingvay, I.; Kosiborod, M.; Januzzi, J.; et al. The SGLT2 inhibitor canagliflozin in heart failure: The CHIEF-HF remote, patient-centered randomized trial. Nat. Med. 2022, 28, 809–813. [Google Scholar] [CrossRef] [PubMed]
- Von Lewinski, D.; Tripolt, N.J.; Sourij, H.; Pferschy, P.N.; Oulhaj, A.; Alber, H.; Gwechenberger, M.; Martinek, M.; Seidl, S.; Moertl, D.; et al. Ertugliflozin to reduce arrhythmic burden in ICD/CRT patients (ERASe-trial)—A phase III study. Am. Heart J. 2022, 246, 152–160. [Google Scholar] [CrossRef]
- Fukuda, K.; Kanazawa, H.; Aizawa, Y.; Ardell, J.L.; Shivkumar, K. Cardiac innervation and sudden cardiac death. Circ. Res. 2015, 116, 2005–2019. [Google Scholar] [CrossRef]
- Kumar, A.; Avishay, D.M.; Jones, C.R.; Shaikh, J.D.; Kaur, R.; Aljadah, M.; Kichloo, A.; Shiwalkar, N.; Keshavamurthy, S. Sudden cardiac death: Epidemiology, pathogenesis and management. Rev. Cardiovasc. Med. 2021, 22, 147–158. [Google Scholar] [CrossRef]
- Lee, M.M.Y.; Brooksbank, K.J.M.; Wetherall, K.; Mangion, K.; Roditi, G.; Campbell, R.T.; Berry, C.; Chong, V.; Coyle, L.; Docherty, K.; et al. Effect of Empagliflozin on Left Ventricular Volumes in Patients with Type 2 Diabetes, or Prediabetes, and Heart Failure with Reduced Ejection Fraction (SUGAR-DM-HF). Circulation 2021, 143, 516–525. [Google Scholar] [CrossRef]
- Requena-Ibáñez, J.A.; Santos-Gallego, C.G.; Rodriguez-Cordero, A.; Vargas-Delgado, A.P.; Mancini, D.; Sartori, S.; Atallah-Lajam, F.; Giannarelli, C.; Macaluso, F.; Lala, A.; et al. Mechanistic Insights of Empagliflozin in Nondiabetic Patients with HFrEF: From the EMPA-TROPISM Study. JACC Heart Fail. 2021, 9, 578–589. [Google Scholar] [CrossRef]
- Santos-Gallego, C.G.; Requena-Ibanez, J.A.; San Antonio, R.; Garcia-Ropero, A.; Ishikawa, K.; Watanabe, S.; Picatoste, B.; Vargas-Delgado, A.; Flores-Umanzor, E.; Sanz, J.; et al. Empagliflozin Ameliorates Diastolic Dysfunction and Left Ventricular Fibrosis/Stiffness in Nondiabetic Heart Failure: A Multimodality Study. JACC Cardiovasc. Imaging 2021, 14, 393–407. [Google Scholar] [CrossRef]
- Shimizu, W.; Kubota, Y.; Hoshika, Y.; Mozawa, K.; Tara, S.; Tokita, Y.; Yodogawa, K.; Iwasaki, Y.; Yamamoto, T.; Takano, H.; et al. Effects of Empagliflozin Versus Placebo on Cardiac Sympathetic Activity in Acute Myocardial Infarction Patients with Type 2 Diabetes Mellitus: The EMBODY Trial. Res. Sq. 2020, 9, 148. [Google Scholar] [CrossRef]
- Herat, L.Y.; Magno, A.L.; Rudnicka, C.; Hricova, J.; Carnagarin, R.; Ward, N.C.; Arcambal, A.; Kiuchi, M.; Head, G.; Schlaich, M.; et al. SGLT2 Inhibitor-Induced Sympathoinhibition: A Novel Mechanism for Cardiorenal Protection. JACC Basic Transl. Sci. 2020, 5, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Nakase, M.; Yahagi, K.; Horiuchi, Y.; Asami, M.; Yuzawa, H.; Komiyama, K.; Tanaka, J.; Aoki, J.; Tanabe, K. Effect of dapagliflozin on ventricular repolarization in patients with heart failure with reduced ejection fraction. Heart Vessel. 2023, 38, 1414–1421. [Google Scholar] [CrossRef] [PubMed]
- Coronel, R.; Wilders, R.; Verkerk, A.O.; Wiegerinck, R.F.; Benoist, D.; Bernus, O. Electrophysiological changes in heart failure and their implications for arrhythmogenesis. Biochim. Biophys. Acta 2013, 1832, 2432–2441. [Google Scholar] [CrossRef] [PubMed]
- Al-Gobari, M.; Al-Aqeel, S.; Gueyffier, F.; Burnand, B. Effectiveness of drug interventions to prevent sudden cardiac death in patients with heart failure and reduced ejection fraction: An overview of systematic reviews. BMJ Open 2018, 8, e021108. [Google Scholar] [CrossRef] [PubMed]
- Mariani, M.V.; Manzi, G.; Pierucci, N.; Laviola, D.; Piro, A.; D’Amato, A.; Filomena, D.; Matteucci, A.; Severino, P.; Miraldi, F.; et al. SGLT2i effect on atrial fibrillation: A network meta-analysis of randomized controlled trials. J. Cardiovasc. Electrophysiol. 2024, 35, 1754–1765. [Google Scholar] [CrossRef]
- Li, H.-L.; Lip, G.Y.H.; Feng, Q.; Fei, Y.; Tse, Y.-K.; Wu, M.-Z.; Ren, Q.-W.; Tse, H.-F.; Cheung, B.-M.; Yiu, K.-H. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) and cardiac arrhythmias: A systematic review and meta-analysis. Cardiovasc. Diabetol. 2021, 20, 100. [Google Scholar] [CrossRef]
- Fernandes, G.C.; Fernandes, A.; Cardoso, R.; Penalver, J.; Knijnik, L.; Mitrani, R.D.; Myerburg, R.; Goldberger, J. Association of SGLT2 inhibitors with arrhythmias and sudden cardiac death in patients with type 2 diabetes or heart failure: A meta-analysis of 34 randomized controlled trials. Heart Rhythm 2021, 18, 1098–1105. [Google Scholar] [CrossRef]
- Sfairopoulos, D.; Zhang, N.; Wang, Y.; Chen, Z.; Letsas, K.P.; Tse, G.; Li, G.; Lip, G.; Liu, T.; Korantzopoulos, P. Association between sodium-glucose cotransporter-2 inhibitors and risk of sudden cardiac death or ventricular arrhythmias: A meta-analysis of randomized controlled trials. Europace 2022, 24, 20–30. [Google Scholar] [CrossRef]
- Oates, C.P.; Santos-Gallego, C.G.; Smith, A.; Basyal, B.; Moss, N.; Kawamura, I.; Musikantow, D.; Turagam, M.; Miller, M.; Whang, W.; et al. SGLT2 inhibitors reduce sudden cardiac death risk in heart failure: Meta-analysis of randomized clinical trials. J. Cardiovasc. Electrophysiol. 2023, 34, 1277–1285. [Google Scholar] [CrossRef]
- Fujiki, S.; Iijima, K.; Okabe, M.; Niwano, S.; Tsujita, K.; Naito, S.; Ando, K.; Kusano, K.F.; Kato, R.; Nitta, J.; et al. Placebo-Controlled, Double-Blind Study of Empagliflozin (EMPA) and Implantable Cardioverter-Defibrillator (EMPA-ICD) in Patients with Type 2 Diabetes (T2DM): Rationale and Design. Diabetes Ther. 2020, 11, 2739–2755. [Google Scholar] [CrossRef]
- Butt, J.H.; Docherty, K.F.; Jhund, P.S.; de Boer, R.; Böhm, M.; Desai, A.S.; Howlett, J.; Inzucchi, S.; Kosiborod, M.; Martinez, F.; et al. Dapagliflozin and atrial fibrillation in heart failure with reduced ejection fraction: Insights from DAPA-HF. Eur. J. Heart Fail. 2022, 24, 513–525. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-Y.; Huang, J.-Y.; Siao, W.-Z.; Jong, G.-P. The association between SGLT2 inhibitors and new-onset arrhythmias: A nationwide population-based longitudinal cohort study. Cardiovasc. Diabetol. 2020, 19, 73. [Google Scholar] [CrossRef] [PubMed]
- Zelniker, T.A.; Bonaca, M.P.; Furtado, R.H.M.; Mosenzon, O.; Kuder, J.F.; Murphy, S.A.; Bhatt, D.; Leiter, L.; McGuire, D.; Wilding, D.; et al. Effect of Dapagliflozin on Atrial Fibrillation in Patients With Type 2 Diabetes Mellitus: Insights From the DECLARE-TIMI 58 Trial. Circulation 2020, 141, 1227–1234. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhang, Y.; Wang, Z.; Liu, D.; Mao, S.; Liang, B. The effectiveness of SGLT2 inhibitor in the incidence of atrial fibrillation/atrial flutter in patients with type 2 diabetes mellitus/heart failure: A systematic review and meta-analysis. J. Thorac. Dis. 2022, 14, 1620–1637. [Google Scholar] [CrossRef]
Baseline Characteristics | All Patients (n = 78) | Patients with SGLT2 Inhibitor (n = 39) | Patients Without SGLT2 Inhibitor (n = 39) | p-Value |
---|---|---|---|---|
Age [years], mean ± SD | 66.6 ± 12.9 | 65.9 ± 12.3 | 67.3 ± 13.7 | 0.63 |
Male, n (%) | 67.0 (85.9) | 34.0 (87.2) | 33.0 (84.6) | 0.74 |
BMI [kg/m2], mean ± SD | 28.3 ± 5.6 | 28.5 ± 6.6 | 28.3 ± 4.6 | 0.81 |
Arterial hypertension, n (%) | 54.0 (69.2) | 26.0 (66.7) | 28.0 (71.8) | 0.62 |
Type II diabetes mellitus, n (%) | 20.0 (25.6) | 15.0 (38.5) | 5.0 (12.8) | 0.01 |
Nicotine abuse, n (%) | 39.0 (50.0) | 14.0 (35.6) | 25.0 (64.1) | 0.01 |
Hyperlipoproteinemia, n (%) | 59.0 (75.6) | 29.0 (74.4) | 30.0 (76.9) | 0.79 |
Coronary artery disease, n(%) | 62.0 (79.5) | 33.0 (84.6) | 29.0 (74.4) | 0.26 |
Atrial fibrillation, n (%) | 27.0 (34.6) | 11.0 (28.2) | 16.0 (41.0) | 0.23 |
Prior PVI, n (%) | 8.0 (10.3) | 7.0 (17.9) | 1.0 (2.6) | 0.02 |
Prior AV node ablation, n (%) | 3.0 (3.9) | 2.0 (5.1) | 1.0 (2.6) | 0.57 |
Prior CTI ablation, n (%) | 2.0 (2.6) | 2.0 (5.1) | 0 | 0.15 |
Medication at the Beginning of Enrollment | All Patients (n = 78) | Patients with SGLT2 Inhibitor (n = 39) | Patients Without SGLT2 Inhibitor (n = 39) | p-Value |
---|---|---|---|---|
Beta-blocker, n (%) | 75.0 (96.2) | 38.0 (97.4) | 37.0 (94.9) | 0.56 |
RAAS-blocker, n (%) | 77.0 (98.7) | 39.0 (100) | 38.0 (97.4) | 0.31 |
MRA, n (%) | 59.0 (75.6) | 31.0 (79.5) | 28.0 (71.8) | 0.42 |
Loop diuretics, n (%) | 46.0 (59.0) | 20.0 (51.3) | 26.0 (66.7) | 0.17 |
Amiodarone, n (%) | 2.0 (2.6) | 1.0 (2.6) | 1.0 (2.6) | 0.56 |
Medication at the End of the Follow-Up Period | All Patients (n = 78) | Patients with SGLT2 Inhibitor (n = 39) | Patients Without SGLT2 Inhibitor (n = 39) | p-Value |
---|---|---|---|---|
Beta-blocker, n (%) | 77.0 (98.7) | 39.0 (100) | 38.0 (97.4) | 0.56 |
RAAS-blocker, n (%) | 75.0 (96.2) | 36.0 (92.3) | 39.0 (100) | 0.15 |
MRA, n (%) | 60.0 (76.9) | 31.0 (79.5) | 29.0 (74.4) | 0.59 |
Loop diuretics, n (%) | 43.0 (55.1) | 18.0 (46.2) | 25.0 (64.1) | 0.11 |
Amiodarone, n (%) | 3 (4.0) | 2.0 (5.1) | 1.0 (2.6) | 0.56 |
Event | All Patients (n = 78) | Patients with SGLT2 Inhibitor (n = 39) | Patients Without SGLT2 Inhibitor (n = 39) | p-Value |
---|---|---|---|---|
Sustained ventricular tachycardias, n (%) | 10.0 (12.8) | 5.0 (12.8) | 5.0 (12.8) | 1.00 |
Non-sustained ventricular tachycardias, n (%) | 47.0 (60.3) | 27.0 (69.2) | 20.0 (51.3) | 0.10 |
Supraventricular tachycardias, n (%) | 34.0 (43.6) | 14.0 (35.9) | 20.0 (51.3) | 0.17 |
Coefficient B | SE | z-Value | p-Value | Odds Ratio | 95% CI | |
---|---|---|---|---|---|---|
Sustained VT | ||||||
Age | 0.03 | 0.03 | 1.08 | 0.28 | 1.03 | 0.97–1.1 |
Arterial hypertension | 0.65 | 0.83 | 0.78 | 0.44 | 1.91 | 0.37–9.77 |
Nicotine abuse | 0.46 | 0.69 | 0.67 | 0.50 | 1.59 | 0.41–6.15 |
Hyperlipoproteinemia | 19.99 | 6764.51 | 0 | 0.99 | Not applicable * | Not applicable * |
Type II diabetes mellitus | 0.25 | 0.74 | 0.34 | 0.74 | 1.29 | 0.30–5.53 |
FH for CV diseases | 0.25 | 0.74 | 0.34 | 0.74 | 1.29 | 0.30–5.53 |
Atrial fibrillation | 1.21 | 0.70 | 1.74 | 0.08 | 3.36 | 0.86–13.16 |
No prior PVI | −0.95 | 0.90 | 1.06 | 0.29 | 0.39 | 0.07–2.25 |
Coronary artery disease | 19.93 | 7371.46 | 0 | 0.99 | Not applicable * | Not applicable * |
CABG | 0.23 | 0.22 | 1.05 | 0.29 | 1.26 | 0.82–1.95 |
SGLT2 inhibitors | 0 | 0.68 | 0 | 1.00 | 1 | 0.27–3.77 |
Non-sustained VT | ||||||
Age | 0.01 | 0.02 | 0.56 | 0.58 | 1.01 | 0.98–1.05 |
Arterial hypertension | −0.66 | 0.53 | 1.26 | 0.21 | 0.51 | 0.18–1.44 |
Nicotine abuse | −0.32 | 0.46 | 0.69 | 0.49 | 0.72 | 0.29–1.80 |
Hyperlipoproteinemia | −0.16 | 0.54 | 0.30 | 0.77 | 0.85 | 0.29–2.47 |
Type II diabetes mellitus | 0.89 | 0.58 | 1.54 | 0.12 | 2.44 | 0.78–7,60 |
FH for CV diseases | 0.89 | 0.58 | 1.54 | 0.12 | 2.44 | 0.78–7.60 |
Atrial fibrillation | −0.77 | 0.49 | 1.58 | 0.11 | 0.46 | 0.18–1.20 |
No prior PVI | −0.75 | 0.85 | 0.88 | 0.38 | 0.47 | 0.09–2.50 |
Coronary artery disease | 1.18 | 0.58 | 2.03 | 0.04 | 3.25 | 1.04–10.18 |
CABG | 0.10 | 0.20 | 0.51 | 0.61 | 1.11 | 0.75–1.65 |
SGLT2 inhibitors | 0.76 | 0.47 | 1.61 | 0.11 | 2.14 | 0.85–5.39 |
Coefficient B | SE | z-Value | p-Value | Odds Ratio | 95% CI | |
---|---|---|---|---|---|---|
Sustained VT | ||||||
Age | 0.01 | 0.03 | 0.26 | 0.79 | 1.01 | 0.95–1.07 |
CABG | 0.29 | 0.25 | 1.16 | 0.24 | 1.34 | 0.82–2.20 |
Atrial fibrillation | 1.20 | 0.88 | 1.36 | 0.17 | 3.33 | 0.59–18.86 |
No prior PVI | −0.32 | 1.14 | 0.28 | 0.78 | 0.73 | 0.08–6.73 |
SGLT2 inhibitors | 0.13 | 0.79 | 0.16 | 0.87 | 1.14 | 0.24–5.39 |
Non-sustained VT | ||||||
Arterial hypertension | −1.43 | 0.72 | 1.97 | 0.05 | 0.24 | 0.06–0.99 |
FH for CV diseases | 0.65 | 0.64 | 1.02 | 0.31 | 1.92 | 0.55–6.74 |
Type II diabetes mellitus | 0.82 | 0.66 | 1.24 | 0.21 | 2.27 | 0.62–8.31 |
Coronary artery disease | 1.61 | 0.77 | 2.09 | 0.04 | 4.99 | 1.11–22.46 |
Atrial fibrillation | −0.34 | 0.54 | 0.63 | 0.53 | 0.71 | 0.25–2.05 |
SGLT2 inhibitors | 0.34 | 0.53 | 0.63 | 0.53 | 1.40 | 0.49–3.97 |
Coefficient B | SE | z-Value | p-Value | Odds Ratio | 95% CI | |
---|---|---|---|---|---|---|
Age | −0.03 | 0.02 | 1.77 | 0.08 | 0.97 | 0.93–1.00 |
Arterial hypertension | −0.37 | 0.49 | 0.76 | 0.45 | 0.69 | 0.26–1.81 |
Nicotine abuse | −0.21 | 0.46 | 0.46 | 0.65 | 0.81 | 0.33–1.99 |
Hyperlipoproteinemia | 0.08 | 0.53 | 0.15 | 0.88 | 1.08 | 0.38–3.08 |
Type II diabetes mellitus | 0.78 | 0.55 | 1.40 | 0.16 | 0.46 | 0.15–1.36 |
FH for CV diseases | 0.08 | 0.52 | 0.15 | 0.88 | 1.08 | 0.39–3.00 |
Atrial fibrillation | 0.28 | 0.48 | 0.59 | 0.55 | 1.33 | 0.52–3.39 |
No prior PVI | 0.29 | 0.75 | 0.39 | 0.70 | 1.33 | 0.31–5.77 |
Coronary artery disease | −0.64 | 0.57 | 1.14 | 0.26 | 0.53 | 0.17–1.60 |
CABG | −0.19 | 0.21 | 0.91 | 0.36 | 0.83 | 0.55–1.25 |
SGLT2 inhibitors | −0.63 | 0.46 | 1.36 | 0.17 | 0.53 | 0.21–1.32 |
Coefficient B | SE | z-Value | p-Value | Odds Ratio | 95% CI | |
---|---|---|---|---|---|---|
Age | −0.03 | 0.02 | 1.57 | 0.12 | 0.97 | 0.93–1.01 |
Type II diabetes mellitus | −0.47 | 0.59 | 0.79 | 0.43 | 0.63 | 0.20–1.99 |
Coronary artery disease | −0.17 | 0.63 | 0.27 | 0.79 | 0.85 | 0.25–2.90 |
SGLT2 inhibitors | −0.58 | 0.5 | 1.14 | 0.25 | 0.56 | 0.21–1.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katov, L.; Rostan, J.; Teumer, Y.; Diofano, F.; Bothner, C.; Rottbauer, W.; Weinmann-Emhardt, K. Antiarrhythmic Effects of SGLT2 Inhibitors on Supraventricular Tachyarrhythmias in Patients with HFrEF. J. Clin. Med. 2025, 14, 786. https://doi.org/10.3390/jcm14030786
Katov L, Rostan J, Teumer Y, Diofano F, Bothner C, Rottbauer W, Weinmann-Emhardt K. Antiarrhythmic Effects of SGLT2 Inhibitors on Supraventricular Tachyarrhythmias in Patients with HFrEF. Journal of Clinical Medicine. 2025; 14(3):786. https://doi.org/10.3390/jcm14030786
Chicago/Turabian StyleKatov, Lyuboslav, Jonas Rostan, Yannick Teumer, Federica Diofano, Carlo Bothner, Wolfgang Rottbauer, and Karolina Weinmann-Emhardt. 2025. "Antiarrhythmic Effects of SGLT2 Inhibitors on Supraventricular Tachyarrhythmias in Patients with HFrEF" Journal of Clinical Medicine 14, no. 3: 786. https://doi.org/10.3390/jcm14030786
APA StyleKatov, L., Rostan, J., Teumer, Y., Diofano, F., Bothner, C., Rottbauer, W., & Weinmann-Emhardt, K. (2025). Antiarrhythmic Effects of SGLT2 Inhibitors on Supraventricular Tachyarrhythmias in Patients with HFrEF. Journal of Clinical Medicine, 14(3), 786. https://doi.org/10.3390/jcm14030786