Influence of Sex and Age on Irisin Levels in Pediatric Type 1 Diabetes: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patients
2.2. Study Protocol
2.3. Body Composition Assessment
2.4. Urine Protein Analysis
2.5. Definition of Study Variables
2.6. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Waseem, R.; Shamsi, A.; Mohammad, T.; Hassan, M.I.; Kazim, S.N.; Chaudhary, A.A.; Rudayni, H.A.; Al-Zharani, M.; Ahmad, F.; Islam, A. Fndc5/irisin: Physiology and pathophysiology. Molecules 2022, 27, 1118. [Google Scholar] [CrossRef]
- Qi, J.-Y.; Yang, L.-K.; Wang, X.-S.; Wang, M.; Li, X.-B.; Feng, B.; Wu, Y.-M.; Liu, S.-B.; Zhang, K. Mechanism of CNS regulation by irisin, a multifunctional protein. Brain Res. Bull. 2022, 188, 11–20. [Google Scholar] [CrossRef]
- Elizondo-Montemayor, L.; Mendoza-Lara, G.; Gutierrez-DelBosque, G.; Peschard-Franco, M.; Nieblas, B.; Garcia-Rivas, G. Relationship of Circulating Irisin with Body Composition, Physical Activity, and Cardiovascular and Metabolic Disorders in the Pediatric Population. Int. J. Mol. Sci. 2018, 19, 3727. [Google Scholar] [CrossRef] [PubMed]
- Kołodziejski, P.A.; Pruszyńska-Oszmałek, E.; Wojciechowicz, T.; Sassek, M.; Leciejewska, N.; Jasaszwili, M.; Billert, M.; Małek, E.; Szczepankiewicz, D.; Misiewicz-Mielnik, M.; et al. The role of peptide hormones discovered in the 21st century in the regulation of adipose tissue functions. Genes 2021, 12, 756. [Google Scholar] [CrossRef] [PubMed]
- Wahab, F.; Shahab, M.; Behr, R. Hypothesis: Irisin is a metabolic trigger for the activation of the neurohormonal axis governing puberty onset. Med. Hypotheses 2016, 95, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Reinehr, T.; Elfers, C.; Lass, N.; Roth, C.L. Irisin and its relation to insulin resistance and puberty in obese children: A longitudinal analysis. J. Clin. Endocrinol. Metab. 2015, 100, 2123–2130. [Google Scholar] [CrossRef]
- Taş, D.; Akman Öden, A.; Akgül, S.; Metin, Z.E.; Pınar, A.; Kanbur, N. The effect of pubertal stage on the concentrations of the novel adipomyokine, irisin, in male adolescents. J. Clin. Res. Pediatr. Endocrinol. 2020, 12, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.B.; Kim, H.-J.; Kang, J.H.; Park, S.I.; Park, K.H.; Lee, H.-J. Association of circulating irisin levels with metabolic and metabolite profiles of Korean adolescents. Metab. Clin. Exp. 2017, 73, 100–108. [Google Scholar] [CrossRef]
- Nygaard, H.; Slettaløkken, G.; Vegge, G.; Hollan, I.; Whist, J.E.; Strand, T.; Rønnestad, B.R.; Ellefsen, S. Irisin in blood increases transiently after single sessions of intense endurance exercise and heavy strength training. PLoS ONE 2015, 10, e0121367. [Google Scholar] [CrossRef] [PubMed]
- Huh, J.Y.; Panagiotou, G.; Mougios, V.; Brinkoetter, M.; Vamvini, M.T.; Schneider, B.E.; Mantzoros, C.S. FNDC5 and irisin in humans: I. Predictors of circulating concentrations in serum and plasma and, I.I. mRNA expression and circulating concentrations in response to weight loss and exercise. Metab. Clin. Exp. 2012, 61, 1725–1738. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Ma, J.; Bo, S. Short- and long-term effects of concurrent aerobic and resistance training on circulating irisin levels in overweight or obese individuals: A systematic review and meta-analysis of randomized controlled trials. PeerJ 2024, 12, e17958. [Google Scholar] [CrossRef] [PubMed]
- Pekkala, S.; Wiklund, P.K.; Hulmi, J.J.; Ahtiainen, J.P.; Horttanainen, M.; Pöllänen, E.; Makela, K.A.; Kainulainen, H.; Hakkinen, K.; Nyman, K.; et al. Are skeletal muscle FNDC5 gene expression and irisin release regulated by exercise and related to health? J. Physiol. 2013, 591, 5393–5400. [Google Scholar] [CrossRef] [PubMed]
- Shim, Y.S.; Kang, M.J.; Yang, S.; Hwang, I.T. Irisin is a biomarker for metabolic syndrome in prepubertal children. Endocr. J. 2018, 65, 23–31. [Google Scholar] [CrossRef]
- Nigro, E.; Scudiero, O.; Monaco, M.L.; Polito, R.; Schettino, P.; Grandone, A.; Perrone, L.; Del Giudice, E.M.; Daniele, A. Adiponectin profile and Irisin expression in Italian obese children: Association with insulin-resistance. Cytokine 2017, 94, 8–13. [Google Scholar] [CrossRef]
- Binay, Ç.; Paketçi, C.; Güzel, S.; Samancı, N. Serum irisin and oxytocin levels as predictors of metabolic parameters in obese children. J. Clin. Res. Pediatr. Endocrinol. 2017, 9, 124–131. [Google Scholar] [CrossRef]
- Faienza, M.F.; Brunetti, G.; Sanesi, L.; Colaianni, G.; Celi, M.; Piacente, L.; D’Amato, G.; Schipani, E.; Colucci, S.; Grano, M. High irisin levels are associated with better glycemic control and bone health in children with Type 1 diabetes. Diabetes Res. Clin. Pract. 2018, 141, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Nagl, K.; Hermann, J.M.; Plamper, M.; Schröder, C.; Dost, A.; Kordonouri, O.; Rami-Merhar, B.; Holl, R.W. Factors contributing to partial remission in type 1 diabetes: Analysis based on the insulin dose-adjusted HbA1c in 3657 children and adolescents from Germany and Austria. Pediatr. Diabetes 2017, 18, 428–434. [Google Scholar] [CrossRef]
- Passanisi, S.; Salzano, G.; Gasbarro, A.; Urzì Brancati, V.; Mondio, M.; Pajno, G.B.; Alibrandi, A.; Lombardo, F. Influence of Age on Partial Clinical Remission among Children with Newly Diagnosed Type 1 Diabetes. Int. J. Environ. Res. Public. Health 2020, 17, 4801. [Google Scholar] [CrossRef]
- Grönberg, A.; Espes, D.; Carlsson, P.-O. Better HbA1c during the first years after diagnosis of type 1 diabetes is associated with residual C peptide 10 years later. BMJ Open Diabetes Res. Care. 2020, 8, e000819. [Google Scholar] [CrossRef] [PubMed]
- Fonolleda, M.; Murillo, M.; Vázquez, F.; Bel, J.; Vives-Pi, M. Remission phase in paediatric type 1 diabetes: New understanding and emerging biomarkers. Horm. Res. Paediatr. 2017, 88, 307–315. [Google Scholar] [CrossRef]
- Nwosu, B.U.; Rupendu, S.; Zitek-Morrison, E.; Patel, D.; Villalobos-Ortiz, T.R.; Jasmin, G.; Barton, B.A. Pubertal lipid levels are significantly lower in youth with type 1 diabetes who experienced partial clinical remission. J. Endocr. Soc. 2019, 3, 737–747. [Google Scholar] [CrossRef]
- Nwosu, B.U. Partial Clinical Remission of Type 1 Diabetes Mellitus in Children: Clinical Applications and Challenges with its Definitions. Eur. Med. J. Diabetes 2019, 4, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Brener, A.; Hamama, S.; Interator, H.; Ben Simon, A.; Laurian, I.; Dorfman, A.; Chorna, E.; Yackobovitch-Gavan, M.; Oren, A.; Eyal, O.; et al. Sex differences in body composition in youth with type 1 diabetes and its predictive value in cardiovascular disease risk assessment. Diabetes Metab. Res. Rev. 2023, 39, e3584. [Google Scholar] [CrossRef] [PubMed]
- Averbuch, S.; Yackobovitch-Gavan, M.; Ben Simon, A.; Interator, H.; Lopez, A.; Borger, O.; Laurian, I.; Dorfman, A.; Chorna, E.; Oren, A.; et al. Muscle-to-fat ratio in children and adolescents with type 1 diabetes in predicting glycaemic control and partial clinical remission. Diabetes Metab. Res. Rev. 2024, 40, e3767. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, T.; Brener, A.; Levy, S.; Interator, H.; Laurian, I.; Dorfman, A.; Chorna, E.; Oren, A.; Eyal, O.; Lebenthal, Y. Association between age at type 1 diabetes diagnosis and metabolic outcome at young adulthood: A real-life observational study. Diabetes Metab. Res. Rev. 2021, 37, e3356. [Google Scholar] [CrossRef] [PubMed]
- Brener, A.; Peleg, I.; Rosenfeld, T.; Kern, S.; Uretzky, A.; Elkon-Tamir, E.; Rosen, G.; Levinson, H.; Israeli, G.; Interator, H.; et al. Beyond Body Mass Index—Body Composition Assessment by Bioimpedance in Routine Endocrine Practice. Endocr. Pract. 2021, 27, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Ceniccola, G.D.; Castro, M.G.; Piovacari, S.M.F.; Horie, L.M.; Corrêa, F.G.; Barrere, A.P.N.; Toledo Oliveira, D. Current technologies in body composition assessment: Advantages and disadvantages. Nutrition 2019, 62, 25–31. [Google Scholar] [CrossRef]
- Chwałczyńska, A.; Jędrzejewski, G.; Lewandowski, Z.; Jonak, W.; Sobiech, K.A. Physical fitness of secondary school adolescents in relation to the body weight and the body composition: Classification according to Bioelectrical Impedance Analysis. Part II. J. Sports Med. Phys. Fitness 2017, 57, 252–259. [Google Scholar] [CrossRef]
- McCarthy, H.D.; Samani-Radia, D.; Jebb, S.A.; Prentice, A.M. Skeletal muscle mass reference curves for children and adolescents. Pediatr. Obes. 2014, 9, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Marshall, W.A.; Tanner, J.M. Variations in pattern of pubertal changes in girls. Arch. Dis. Child. 1969, 44, 291–303. [Google Scholar] [CrossRef] [PubMed]
- Marshall, W.A.; Tanner, J.M. Variations in the pattern of pubertal changes in boys. Arch. Dis. Child. 1970, 45, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Shypailo, R.J. Age-Based Pediatric Blood Pressure Reference Charts. Retrieved 3/28/2022 from the Baylor College of Medicine, Children’s Nutrition Research Center, BodyComposition Laboratory. 2018. Available online: https://www.bcm.edu/bodycomplab/BPappZjs/BPvAgeAPPz.html (accessed on 4 November 2024).
- Wahab, F.; Khan, I.U.; Polo, I.R.; Zubair, H.; Drummer, C.; Shahab, M.; Behr, R. Irisin in the primate hypothalamus and its effect on GnRH in vitro. J. Endocrinol. 2019, 241, 175–187. [Google Scholar] [CrossRef]
- Decourt, C.; Evans, M.C.; Inglis, M.A.; Anderson, G.M. Central irisin signaling is required for normal timing of puberty in female mice. Endocrinology 2022, 164, bqac208. [Google Scholar] [CrossRef]
- Ulker, N.; Yardimci, A.; Kaya Tektemur, N.; Bulmus, O.; Ozer Kaya, S.; Gulcu Bulmus, F.; Turk, G.; Ozcan, M.; Canpolat, S. Irisin may have a role in pubertal development and regulation of reproductive function in rats. Reproduction 2020, 160, 281–292. [Google Scholar] [CrossRef]
- Bao, J.-F.; She, Q.-Y.; Hu, P.-P.; Jia, N.; Li, A. Irisin, a fascinating field in our times. Trends Endocrinol. Metab. 2022, 33, 601–613. [Google Scholar] [CrossRef]
- Skog, O.; Korsgren, O. Aetiology of type 1 diabetes: Physiological growth in children affects disease progression. Diabetes Obes. Metab. 2018, 20, 775–785. [Google Scholar] [CrossRef] [PubMed]
- Jeffery, A.N.; Metcalf, B.S.; Hosking, J.; Streeter, A.J.; Voss, L.D.; Wilkin, T.J. Age before stage: Insulin resistance rises before the onset of puberty: A 9-year longitudinal study (EarlyBird 26). Diabetes Care 2012, 35, 536–541. [Google Scholar] [CrossRef]
- Gonzalez-Gil, A.M.; Peschard-Franco, M.; Castillo, E.C.; Gutierrez-DelBosque, G.; Treviño, V.; Silva-Platas, C.; Perex-Villarreal, L.; Garcia-Rivas, G.; Elizondo-Montemayor, L. Myokine-adipokine cross-talk: Potential mechanisms for the association between plasma irisin and adipokines and cardiometabolic risk factors in Mexican children with obesity and the metabolic syndrome. Diabetol. Metab. Syndr. 2019, 11, 63. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-H.; Kim, S.E.; Kim, S.; Ahn, M.B.; Cho, W.K.; Cho, K.S.; Jung, M.H. The association of serum irisin with anthropometric, metabolic, and bone parameters in obese children and adolescents. Front. Endocrinol. 2023, 14, 1326851. [Google Scholar] [CrossRef] [PubMed]
- Esin, K.; Batirel, S.; Ülfer, G.; Yigit, P.; Sanlier, N. Association of Serum Irisin Levels with Body Composition, Metabolic Profile, Leptin, and Adiponectin Levels in Lean and Obese Children. Medicina 2023, 59, 1954. [Google Scholar] [CrossRef]
- Moore, J.M.; Snell-Bergeon, J.K. Trajectories of hemoglobin A1c and body mass index z-score over four decades among 2 to 18 year olds with type 1 diabetes. Pediatr. Diabetes 2019, 20, 594–603. [Google Scholar] [CrossRef]
- Cherubini, V.; Bonfanti, R.; Casertano, A.; De Nitto, E.; Iannilli, A.; Lombardo, F.; Maltoni, G.; Marigliano, M.; Bassi, M.; Minuto, N.; et al. Time In Range in Children with Type 1 Diabetes Using Treatment Strategies Based on Nonautomated Insulin Delivery Systems in the Real World. Diabetes Technol. Ther. 2020, 22, 509–515. [Google Scholar] [CrossRef] [PubMed]
Boys, n = 48 | Girls, n = 28 | p Value | |
---|---|---|---|
Age, years | 12.1 ± 3.8 | 11.1 ± 3.6 | 0.283 |
Systolic blood pressure (%) | 61.0 [41.8, 82.0] | 73.2 [53.0, 83.8] | 0.365 |
Diastolic blood pressure (%) | 58.6 [46.2, 70.7] | 67.6 [56.4, 79.5] | 0.118 |
Adequate physical activity, n (%) | 25 (52.1) | 17 (60.7) | 0.470 |
Fat, % | 17.3 [15.4, 24.0] | 25.5 [22.7, 28.5] | <0.001 |
Truncal fat, % | 14.2 [11.2, 19.3] | 18.7 [16.6, 23.5] | 0.001 |
ASMM | 14.9 [8.5, 19.4] | 11.9 [7.4, 14.6] | 0.027 |
ASMM z-score | 0.03 [−0.53, 0.50] | −0.25 [−0.76, 0.66] | 0.474 |
Skeletal muscle mass index | 5.8 [4.6, 6.6] | 4.8 [4.4, 5.6] | 0.038 |
MFR | 1.62 [1.19, 2.28] | 1.10 [0.90, 1.23] | <0.001 |
MFR z-score | −0.30 [−1.24, 0.24] | −0.59 [−0.98, −0.28] | 0.296 |
HbA1c, % | 7.4 [6.7, 8.2] | 7.1 [6.8, 7.8] | 0.850 |
IDAA1c | 10.3 [9.3, 11.7] | 10.6 [9.2, 11.7] | 0.817 |
Urine irisin, pg/mL | 50.0 [35.3, 64.2] | 61.3 [37.7, 88.9] | 0.275 |
Serum creatinine, mg/dL | 0.50 [0.43, 0.64] | 0.45 [0.40, 0.61] | 0.274 |
Boys, n = 48 | Girls, n = 28 | |||||
---|---|---|---|---|---|---|
Prepubertal, n = 24 | Pubertal, n = 24 | p Value | Prepubertal, n = 12 | Pubertal, n = 16 | p Value | |
Age, years | 9.0 ± 2.0 | 15.2 ± 2.6 | <0.001 | 7.5 ± 1.4 | 13.9 ± 1.9 | <0.001 |
Systolic blood pressure (%) | 64.0 [50.0, 86.1] | 56.5 [25.4, 80.5] | 0.183 | 73.9 [56.5, 84.7] | 70.3 [48.8, 81.9] | 0.329 |
Diastolic blood pressure (%) | 62.2 [44.6, 77.8] | 56.8 [46.6, 66.0] | 0.695 | 70.8 [57.3, 79.5] | 66.0 [53.6, 79.5] | 0.010 |
Adequate physical activity, n (%) | 9 (37.5) | 16 (66.7) | 0.045 | 5 (41.7) | 12 (75) | 0.079 |
Fat, % | 20.0 [17.2, 25.4] | 15.9 [12.4, 17.8] | 0.002 | 25.3 ± 3.9 | 26.6 ± 5.6 | 0.516 |
Truncal fat, % | 14.9 [12.6, 20.5] | 11.7 [9.0, 17.0] | 0.076 | 19.6 ± 4.4 | 20.5 ± 6.1 | 0.692 |
ASMM | 8.5 [6.8, 10.1] | 19.6 [16.9, 25.3] | <0.001 | 7.2 ± 1.9 | 14.2 ± 2.0 | <0.001 |
ASMM z-score | 0.21 ± 0.85 | 0.31 ± 0.74 | 0.029 | −0.18 ± 0.78 | −0.11 ± 1.03 | 0.842 |
Skeletal muscle mass index | 4.7 ± 1.2 | 6.8 ± 1.1 | <0.001 | 4.4 ± 0.4 | 5.5 ± 0.7 | <0.001 |
MFR | 1.3 [1.1, 1.6] | 2.3 [2.0, 2.9] | <0.001 | 1.1 ± 0.2 | 1.1 ± 0.3 | 0.629 |
MFR z-score | −0.8 ± 0.7 | 0.2 ± 1.4 | 0.004 | −0.82 ± 0.50 | −0.36 ± 0.76 | 0.076 |
HbA1c, % | 7.1 [6.7, 8.0] | 7.6 [6.3, 8.2] | 0.718 | 7.0 [6.8, 8.4] | 7.2 [6.8, 7.6] | 0.944 |
IDAA1c | 9.8 [9.3, 11.2] | 10.8 [8.9, 11.9] | 0.398 | 10.3 [9.1, 11.8] | 10.6 [9.2, 11.6] | 0.944 |
Urine irisin, pg/mL | 47.1 [28.7, 64.0] | 52.3 [40.9, 64.7] | 0.255 | 61.2 [35.1, 70.8] | 86.9 [49.0, 113.3] | 0.180 |
Serum creatinine, mg/dL | 0.47 [0.39, 0.50] | 0.65 [0.47, 0.75] | 0.001 | 0.41 ± 0.12 | 0.44 ± 0.12 | 0.007 |
β | Std. Error | t | Sig. | 95% Confidence Interval | Partial Eta Squared | ||
---|---|---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||||
Intercept | 127.5 | 38.8 | 3.29 | 0.002 | 49.4 | 205.7 | 0.197 |
Puberty | 132.5 | 49.4 | 2.68 | 0.010 | 33.0 | 232.0 | 0.141 |
Age | −4.4 | 2.5 | −1.75 | 0.088 | −9.49 | 0.681 | 0.065 |
Puberty × Age | −11.0 | 4.2 | −2.6 | 0.011 | −19.4 | −2.61 | 0.137 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Averbuch, S.; Gaiduk, O.; Yackobovitch-Gavan, M.; Laurian, I.; Dorfman, A.; Shefer, G.; Brener, A.; Lebenthal, Y. Influence of Sex and Age on Irisin Levels in Pediatric Type 1 Diabetes: A Pilot Study. J. Clin. Med. 2025, 14, 793. https://doi.org/10.3390/jcm14030793
Averbuch S, Gaiduk O, Yackobovitch-Gavan M, Laurian I, Dorfman A, Shefer G, Brener A, Lebenthal Y. Influence of Sex and Age on Irisin Levels in Pediatric Type 1 Diabetes: A Pilot Study. Journal of Clinical Medicine. 2025; 14(3):793. https://doi.org/10.3390/jcm14030793
Chicago/Turabian StyleAverbuch, Shay, Oxana Gaiduk, Michal Yackobovitch-Gavan, Irina Laurian, Anna Dorfman, Gabi Shefer, Avivit Brener, and Yael Lebenthal. 2025. "Influence of Sex and Age on Irisin Levels in Pediatric Type 1 Diabetes: A Pilot Study" Journal of Clinical Medicine 14, no. 3: 793. https://doi.org/10.3390/jcm14030793
APA StyleAverbuch, S., Gaiduk, O., Yackobovitch-Gavan, M., Laurian, I., Dorfman, A., Shefer, G., Brener, A., & Lebenthal, Y. (2025). Influence of Sex and Age on Irisin Levels in Pediatric Type 1 Diabetes: A Pilot Study. Journal of Clinical Medicine, 14(3), 793. https://doi.org/10.3390/jcm14030793