Hybrid Coronary Revascularisation: Indications, Techniques, and Outcomes
Abstract
:1. Introduction
2. Methods
3. Indications and Patient Selection
- Severe complex lesions of the LAD or left main stem (LMS) which are suitable for CABG with concurrent disease in the circumflex (LCx) or right coronary artery (RCA) territories that are amenable to PCI;
- Low-to-intermediate SYNTAX scores;
- Features predisposing to high risk of wound infection such as peripheral vascular disease and renal failure;
- Characteristics that would make them an otherwise poor surgical candidate such as calcified aorta, history of stroke, significant carotid disease, and lack of suitable conduits;
- Contraindications to multivessel CABG such as intramyocardial non-LAD target vessels.
- Haemodynamic instability or acute shock—due to the time-consuming nature of setting up for MIDCAB and the staged nature of HCR. However, if the haemodynamic instability is due to non-LAD lesions, it may be suitable for PCI-first hybrid HCR with stenting of the culprit lesion followed by MIDCAB.
- Intramyocardial or calcified target sites on the LAD.
- Unsuitability for minimally invasive surgery (e.g., due to previous thoracic surgery, pleural adhesions, or unsuitable anatomy).
- Absence of suitable LIMA for the LAD anastomosis (e.g., due to left subclavian artery stenosis).
4. Techniques and Procedural Aspects
4.1. Minimally Invasive CABG
4.2. Sequence and Timing of Procedures
4.3. Anticoagulation and Antiplatelet Strategies
5. Outcomes and Real-World Results
5.1. Clinical Outcomes
5.2. Financial Implications
5.3. Learning Curve and Training
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACS | Acute Coronary Syndrome |
CABG | Coronary Artery Bypass Grafting |
DAPT | Dual Antiplatelet Therapy |
EACTS | European Association for Cardio-Thoracic Surgery |
ESC | European Society of Cardiology |
HCR | Hybrid Coronary Revascularisation |
LAD | Left Anterior Descending Artery |
LCx | Left Circumflex Artery |
LIMA | Left Internal Mammary Artery |
LMS | Left Main Stem |
MIDCAB | Minimally Invasive Direct Coronary Artery Bypass |
PCI | Percutaneous Coronary Intervention |
RA-CABG | Robot-Assisted Coronary Artery Bypass Grafting |
RA-TECAB | Robot-Assisted Total Endoscopic Coronary Artery Bypass |
RCA | Right Coronary Artery |
SYNTAX | Synergy Between PCI With Taxus and Cardiac Surgery |
TECAB | Total Endoscopic Coronary Artery Bypass |
References
- Calafiore, A.M.; Angelini, G.D. Left Anterior Small Thoracotomy (LAST) for Coronary Artery Revascularisation. Lancet 1996, 347, 263–264. [Google Scholar] [CrossRef] [PubMed]
- Angelini, G.; Wilde, P.; Salerno, T.; Bosco, G.; Calafiore, A. Integrated Left Small Thoracotomy and Angioplasty for Multivessel Coronary Artery Revascularisation. Lancet 1996, 347, 757–758. [Google Scholar] [CrossRef] [PubMed]
- Baron, S.J.; Chinnakondepalli, K.; Magnuson, E.A.; Kandzari, D.E.; Puskas, J.D.; Ben-Yehuda, O.; Van Es, G.-A.; Taggart, D.P.; Morice, M.-C.; Lembo, N.J.; et al. Quality-of-Life After Everolimus-Eluting Stents or Bypass Surgery for Left-Main Disease: Results From the EXCEL Trial. J. Am. Coll. Cardiol. 2017, 70, 3113–3122. [Google Scholar] [CrossRef] [PubMed]
- Parasca, C.A.; Head, S.J.; Milojevic, M.; Mack, M.J.; Serruys, P.W.; Morice, M.-C.; Mohr, F.W.; Feldman, T.E.; Colombo, A.; Dawkins, K.D.; et al. Incidence, Characteristics, Predictors, and Outcomes of Repeat Revascularization After Percutaneous Coronary Intervention and Coronary Artery Bypass Grafting: The SYNTAX Trial at 5 Years. JACC Cardiovasc. Interv. 2016, 9, 2493–2507. [Google Scholar] [CrossRef] [PubMed]
- Halkos, M.E.; Ford, L.; Peterson, D.; Bluestein, S.M.; Liberman, H.A.; Kilgo, P.; Puskas, J.D.; Guyton, R.A.; Chowdhury, R. The Impact of Hybrid Coronary Revascularization on Hospital Costs and Reimbursements. Ann. Thorac. Surg. 2014, 97, 1610–1616. [Google Scholar] [CrossRef]
- Bonaros, N.; Schachner, T.; Wiedemann, D.; Oehlinger, A.; Ruetzler, E.; Feuchtner, G.; Kolbitsch, C.; Velik-Salchner, C.; Friedrich, G.; Pachinger, O.; et al. Quality of Life Improvement after Robotically Assisted Coronary Artery Bypass Grafting. Cardiology 2009, 114, 59–66. [Google Scholar] [CrossRef]
- Neumann, F.-J.; Sousa-Uva, M.; Ahlsson, A.; Alfonso, F.; Banning, A.P.; Benedetto, U.; Byrne, R.A.; Collet, J.-P.; Falk, V.; Head, S.J.; et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur. Heart J. 2018, 40, 87–165. [Google Scholar] [CrossRef]
- Thielmann, M.; Bonaros, N.; Barbato, E.; Barili, F.; Folliguet, T.; Friedrich, G.; Gottardi, R.; Legutko, J.; Parolari, A.; Punjabi, P.; et al. Hybrid Coronary Revascularization: Position Paper of the European Society of Cardiology Working Group on Cardiovascular Surgery and European Association of Percutaneous Cardiovascular Interventions. Eur. J. Cardio-Thoracic Surg. 2024, 66, ezae271. [Google Scholar] [CrossRef]
- Willard, R.; Scheinerman, J.; Pupovac, S.; Patel, N.C. The Current State of Hybrid Coronary Revascularization. Ann. Thorac. Surg. 2024, 118, 318–328. [Google Scholar] [CrossRef]
- Purmessur, R.; Wijesena, T.; Ali, J. Minimal-Access Coronary Revascularization: Past, Present, and Future. J. Cardiovasc. Dev. Dis. 2023, 10, 326. [Google Scholar] [CrossRef]
- Benetti, F. Uso de La Toracoscopeia En Cirugia Coronaria Para Diseccion de La Arteria Mamaria Interna. Prensa Med. Argent. 1994, 81, 877–879. [Google Scholar]
- Stanbridge, R.; Symons, G.V.; Banwell, P.E. Minimal-Access Surgery for Coronary Artery Revascularisation. Lancet 1995, 346, 837. [Google Scholar] [CrossRef] [PubMed]
- Bonatti, J.; Wallner, S.; Crailsheim, I.; Grabenwöger, M.; Winkler, B. Minimally invasive and robotic coronary artery bypass graftinga 25-year review. J. Thorac. Dis. 2021, 13, 1922–1944. [Google Scholar] [CrossRef]
- Vassiliades, T.A. Endoscopic-Assisted Atraumatic Coronary Artery Bypass. Asian Cardiovasc. Thorac. Ann. 2003, 11, 359–361. [Google Scholar] [CrossRef]
- Farid, S.; Ali, J.M.; Stohlner, V.; Alam, R.; Schofield, P.; Nashef, S.; De Silva, R. Long-Term Outcome of Patients Undergoing Minimally Invasive Direct Coronary Artery Bypass Surgery: A Single-Center Experience. Innov. Technol. Tech. Cardiothorac. Vasc. Surg. 2018, 13, 23–28. [Google Scholar] [CrossRef]
- Sanetra, K.; Buszman, P.P.; Jankowska-Sanetra, J.; Konopko, M.; Slabon-Turska, M.; Białek, K.; Milewski, K.; Gerber, W.; Bochenek, A.; Kachel, M.; et al. Safety and Feasibility of Minimally Invasive Coronary Artery Bypass Surgery Early after Drug-Eluting Stent Implantation Due to Acute Coronary Syndrome. Polish Heart J. Kardiol. Polska 2023, 81, 482–490. [Google Scholar] [CrossRef]
- Kiaii, B.; Teefy, P. Hybrid Coronary Artery Revascularization: A Review and Current Evidence. Innov. Technol. Tech. Cardiothorac. Vasc. Surg. 2019, 14, 394–404. [Google Scholar] [CrossRef]
- Hemli, J.M.; Darla, L.S.; Panetta, C.R.; Jennings, J.; Subramanian, V.A.; Patel, N.C. Does Dual Antiplatelet Therapy Affect Blood Loss and Transfusion Requirements in Robotic-Assisted Coronary Artery Surgery? Innovations(Phila). Innov. Technol. Tech. Cardiothorac. Vasc. Surg. 2012, 7, 399–402. [Google Scholar] [CrossRef]
- Daniel, W.T.; Liberman, H.A.; Kilgo, P.; Puskas, J.D.; Vassiliades, T.A.; Devireddy, C.; Jaber, W.; Guyton, R.A.; Halkos, M.E. The Impact of Clopidogrel Therapy on Postoperative Bleeding after Robotic-Assisted Coronary Artery Bypass Surgery. Eur. J. Cardio-Thoracic Surg. 2014, 46, e8–e13. [Google Scholar] [CrossRef]
- Sanetra, K.; Buszman, P.P.; Jankowska-Sanetra, J.; Cisowski, M.; Fil, W.; Gorycki, B.; Bochenek, A.; Slabon-Turska, M.; Konopko, M.; Kaźmierczak, P.; et al. One-Stage Hybrid Coronary Revascularization for the Treatment of Multivessel Coronary Artery Disease—Periprocedural and Long-Term Results from the “HYBRID-COR” Feasibility Study. Front. Cardiovasc. Med. 2022, 9, 1016255. [Google Scholar] [CrossRef]
- Amabile, N.; Chiarito, M.; Lee, V.T.; Angiolillo, D.J.; Capodanno, D.; Bhatt, D.L.; Mack, M.J.; Storey, R.F.; Schmoeckel, M.; Gibson, C.M.; et al. Reversal and Removal of Oral Antithrombotic Drugs in Patients with Active or Perceived Imminent Bleeding. Eur. Heart J. 2023, 44, 1780–1794. [Google Scholar] [CrossRef]
- Tripathi, R.; Morales, J.; Lee, V.; Gibson, C.M.; Mack, M.J.; Schneider, D.J.; Douketis, J.; Sellke, F.W.; Ohman, M.E.; Thourani, V.H.; et al. Antithrombotic Drug Removal from Whole Blood Using Haemoadsorption with a Porous Polymer Bead Sorbent. Eur. Heart J. Cardiovasc. Pharmacother. 2022, 8, 847–856. [Google Scholar] [CrossRef]
- Dokollari, A.; Sicouri, S.; Erten, O.; Gray, W.A.; Shapiro, T.A.; McGeehin, F.; Badri, M.; Coady, P.; Gnall, E.; Caroline, M.; et al. Long-Term Clinical Outcomes of Robotic-Assisted Surgical Coronary Artery Revascularisation. EuroIntervention 2024, 20, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Harskamp, R.E.; Bagai, A.; Halkos, M.E.; Rao, S.V.; Bachinsky, W.B.; Patel, M.R.; De Winter, R.J.; Peterson, E.D.; Alexander, J.H.; Lopes, R.D. Clinical Outcomes after Hybrid Coronary Revascularization versus Coronary Artery Bypass Surgery: A Meta-Analysis of 1,190 Patients. Am. Heart J. 2014, 167, 585–592. [Google Scholar] [CrossRef]
- Tajstra, M.; Hrapkowicz, T.; Hawranek, M.; Filipiak, K.; Gierlotka, M.; Zembala, M.; Gąsior, M.; Zembala, M.O. POL-MIDES Study Investigators Hybrid Coronary Revascularization in Selected Patients With Multivessel Disease: 5-Year Clinical Outcomes of the Prospective Randomized Pilot Study. JACC Cardiovasc. Interv. 2018, 11, 847–852. [Google Scholar] [CrossRef]
- Esteves, V.; Oliveira, M.A.P.; Feitosa, F.S.; Mariani, J.; Campos, C.M.; Hajjar, L.A.; Lisboa, L.A.; Jatene, F.B.; Filho, R.K.; Neto, P.A.L. Late Clinical Outcomes of Myocardial Hybrid Revascularization versus Coronary Artery Bypass Grafting for Complex Triple-Vessel Disease: Long-Term Follow-up of the Randomized MERGING Clinical Trial. Catheter. Cardiovasc. Interv. 2020, 97, 259–264. [Google Scholar] [CrossRef]
- Gaudino, M.; Sandner, S. Hybrid Coronary Revascularisation: The Best or the Worst of Both Worlds? EuroIntervention 2024, 20, 17–18. [Google Scholar] [CrossRef]
- Puskas, J.D.; Halkos, M.E.; DeRose, J.J.; Bagiella, E.; Miller, M.A.; Overbey, J.; Bonatti, J.; Srinivas, V.S.; Vesely, M.; Sutter, F.; et al. Hybrid Coronary Revascularization for the Treatment of Multivessel Coronary Artery Disease: A Multicenter Observational Study. J. Am. Coll. Cardiol. 2016, 68, 356–365. [Google Scholar] [CrossRef]
- Bachinsky, W.B.; Abdelsalam, M.; Boga, G.; Kiljanek, L.; Mumtaz, M.; Mccarty, C. Comparative Study of Same Sitting Hybrid Coronary Artery Revascularization versus Off-Pump Coronary Artery Bypass in Multivessel Coronary Artery Disease. J. Interv. Cardiol. 2012, 25, 460–468. [Google Scholar] [CrossRef]
- Holzhey, D.M.; Jacobs, S.; Walther, T.; Mochalski, M.; Mohr, F.W.; Falk, V. Cumulative Sum Failure Analysis for Eight Surgeons Performing Minimally Invasive Direct Coronary Artery Bypass. J. Thorac. Cardiovasc. Surg. 2007, 134, 663–669.e1. [Google Scholar] [CrossRef]
- Kanber, E.M.; Köseoğlu, M.; Şahin, M. Assessing the Learning Curve of the Minimally Invasive Direct Coronary Artery By-Pass Technique. Eur. Arch. Med Res. 2023, 39, 141–145. [Google Scholar] [CrossRef]
- Akca, F.; Woorst, J.T. Learning Curve of Thoracoscopic Nonrobotic Harvest of the Left Internal Mammary Artery in Minimally Invasive Coronary Artery Bypass Grafting. Innov. Technol. Tech. Cardiothorac. Vasc. Surg. 2023, 18, 262–265. [Google Scholar] [CrossRef] [PubMed]
- Birkmeyer, J.D.; Siewers, A.E.; Finlayson, E.V.A. Hospital Volume and Surgical Mortality in the United States. N. Engl. J. Med. 2002, 346, 1128–1137. [Google Scholar] [CrossRef] [PubMed]
- Birkmeyer, J.D.; Stukel, T.A.; Siewers, A.E.; Goodney, P.P.; Wennberg, D.E.; Lucas, F.L. Surgeon Volume and Operative Mortality in the United States. N. Engl. J. Med. 2003, 349, 2117–2127. [Google Scholar] [CrossRef]
- Rad, A.A.; Hajzamani, D.; Nia, P.S. Simulation-Based Training in Cardiac Surgery: A Systematic Review. Interdiscip. Cardiovasc. Thorac. Surg. 2023, 37, ivad079. [Google Scholar] [CrossRef]
Aspect | HCR | Standalone CABG | PCI |
---|---|---|---|
Invasiveness |
|
|
|
Recovery time |
|
|
|
Advantages |
|
|
|
Limitations |
|
|
|
Surgical Approach | Description and Application in HCR |
---|---|
MIDCAB |
|
EACAB (EACAB) |
|
RA-MIDCAB |
|
TECAB |
|
Simultaneous HCR | Staged HCR | |
---|---|---|
Advantages |
|
|
Disadvantages |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fazmin, I.T.; Ali, J.M. Hybrid Coronary Revascularisation: Indications, Techniques, and Outcomes. J. Clin. Med. 2025, 14, 880. https://doi.org/10.3390/jcm14030880
Fazmin IT, Ali JM. Hybrid Coronary Revascularisation: Indications, Techniques, and Outcomes. Journal of Clinical Medicine. 2025; 14(3):880. https://doi.org/10.3390/jcm14030880
Chicago/Turabian StyleFazmin, Ibrahim T., and Jason M. Ali. 2025. "Hybrid Coronary Revascularisation: Indications, Techniques, and Outcomes" Journal of Clinical Medicine 14, no. 3: 880. https://doi.org/10.3390/jcm14030880
APA StyleFazmin, I. T., & Ali, J. M. (2025). Hybrid Coronary Revascularisation: Indications, Techniques, and Outcomes. Journal of Clinical Medicine, 14(3), 880. https://doi.org/10.3390/jcm14030880