Therapeutic Potential of Experimental Stereotactic Hippocampal Cell Transplant in the Management of Alzheimer’s Disease
Abstract
:1. Introduction
2. Results
2.1. Physiopathology of Alzheimer’s Disease
2.2. Animal Models Used in AD Research
2.3. Neurosurgical Procedures for Alzheimer’s Disease
2.4. Stereotactic Surgery in Other Neurodegenerative Diseases
2.5. Different Cell Types Used for Transplant
2.5.1. Mesenchymal Stem Cells
2.5.2. Bone Marrow Stem Cells
2.5.3. Neural Stem Cells
2.5.4. Induced Pluripotent Stem Cells
2.5.5. Neuron and Neuron-like Cells
2.5.6. Astrocytes
3. Discussion
4. Limitations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gustavsson, A.; Norton, N.; Fast, T.; Frolich, L.; Georges, J.; Holzapfel, D.; Kirabali, T.; Krolak-Salmon, P.; Rossini, P.M.; Ferretti, M.T.; et al. Global estimates on the number of persons across the Alzheimer’s disease continuum. Alzheimer’s Dement. 2023, 19, 658–670. [Google Scholar] [CrossRef] [PubMed]
- Yiannopoulou, K.G.; Papageorgiou, S.G. Current and Future Treatments in Alzheimer Disease: An Update. J. Cent. Nerv. Syst. Dis. 2020, 12, 1179573520907397. [Google Scholar] [CrossRef] [PubMed]
- Abubakar, M.B.; Sanusi, K.O.; Ugusman, A.; Mohamed, W.; Kamal, H.; Ibrahim, N.H.; Khoo, C.S.; Kumar, J. Alzheimer’s Disease: An Update and Insights Into Pathophysiology. Front. Aging Neurosci. 2022, 14, 742408. [Google Scholar] [CrossRef]
- Selkoe, D.J.; Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 2016, 8, 595–608. [Google Scholar] [CrossRef]
- Holtzman, D.M.; Morris, J.C.; Goate, A.M. Alzheimer’s disease: The challenge of the second century. Sci. Transl. Med. 2011, 3, 77sr71. [Google Scholar] [CrossRef]
- Zhang, X.M.; Ouyang, Y.J.; Yu, B.Q.; Li, W.; Yu, M.Y.; Li, J.Y.; Jiao, Z.M.; Yang, D.; Li, N.; Shi, Y.; et al. Therapeutic potential of dental pulp stem cell transplantation in a rat model of Alzheimer’s disease. Neural Regen. Res. 2021, 16, 893–898. [Google Scholar] [CrossRef]
- Zhang, W.; Gu, G.J.; Zhang, Q.; Liu, J.H.; Zhang, B.; Guo, Y.; Wang, M.Y.; Gong, Q.Y.; Xu, J.R. NSCs promote hippocampal neurogenesis, metabolic changes and synaptogenesis in APP/PS1 transgenic mice. Hippocampus 2017, 27, 1250–1263. [Google Scholar] [CrossRef]
- Laitinen, L.V.; Bergenheim, A.T.; Hariz, M.I. Leksell’s posteroventral pallidotomy in the treatment of Parkinson’s disease. J. Neurosurg. 1992, 76, 53–61. [Google Scholar] [CrossRef]
- Lara-Almunia, M.; Hernandez-Vicente, J. Related factors with diagnostic yield and intracranial hemorrhagic complications in frame-based stereotactic biopsy. Review. Neurocirugia (Engl. Ed.) 2021, 32, 285–294. [Google Scholar] [CrossRef]
- Iida, K.; Otsubo, H. Stereoelectroencephalography: Indication and Efficacy. Neurol. Med.-Chir. 2017, 57, 375–385. [Google Scholar] [CrossRef]
- Li, Y.; Qiao, L.; Du, T.; Li, J.; Zhu, H.; Hu, Y.; Yu, T.; Zhuang, P.; Zhang, Y.; Zhang, G.; et al. Movement disorders and their stereotactic surgical treatment: A retrospective study of 5126 patients at a single clinical center over 22 years. Interdiscip. Neurosurg. 2022, 27, 101422. [Google Scholar] [CrossRef]
- Armijo, E.; Edwards, G.; Flores, A.; Vera, J.; Shahnawaz, M.; Moda, F.; Gonzalez, C.; Sanhueza, M.; Soto, C. Induced Pluripotent Stem Cell-Derived Neural Precursors Improve Memory, Synaptic and Pathological Abnormalities in a Mouse Model of Alzheimer’s Disease. Cells 2021, 10, 1802. [Google Scholar] [CrossRef]
- Ager, R.R.; Davis, J.L.; Agazaryan, A.; Benavente, F.; Poon, W.W.; LaFerla, F.M.; Blurton-Jones, M. Human neural stem cells improve cognition and promote synaptic growth in two complementary transgenic models of Alzheimer’s disease and neuronal loss. Hippocampus 2015, 25, 813–826. [Google Scholar] [CrossRef]
- Chen, K.S.; Noureldein, M.H.; McGinley, L.M.; Hayes, J.M.; Rigan, D.M.; Kwentus, J.F.; Mason, S.N.; Mendelson, F.E.; Savelieff, M.G.; Feldman, E.L. Human neural stem cells restore spatial memory in a transgenic Alzheimer’s disease mouse model by an immunomodulating mechanism. Front. Aging Neurosci. 2023, 15, 1306004. [Google Scholar] [CrossRef]
- Zhang, T.; Ke, W.; Zhou, X.; Qian, Y.; Feng, S.; Wang, R.; Cui, G.; Tao, R.; Guo, W.; Duan, Y.; et al. Human Neural Stem Cells Reinforce Hippocampal Synaptic Network and Rescue Cognitive Deficits in a Mouse Model of Alzheimer’s Disease. Stem Cell Rep. 2019, 13, 1022–1037. [Google Scholar] [CrossRef]
- Matchynski-Franks, J.J.; Pappas, C.; Rossignol, J.; Reinke, T.; Fink, K.; Crane, A.; Twite, A.; Lowrance, S.A.; Song, C.; Dunbar, G.L. Mesenchymal Stem Cells as Treatment for Behavioral Deficits and Neuropathology in the 5xFAD Mouse Model of Alzheimer’s Disease. Cell Transplant. 2016, 25, 687–703. [Google Scholar] [CrossRef]
- Lee, J.K.; Jin, H.K.; Bae, J.S. Bone marrow-derived mesenchymal stem cells attenuate amyloid beta-induced memory impairment and apoptosis by inhibiting neuronal cell death. Curr. Alzheimer Res. 2010, 7, 540–548. [Google Scholar] [CrossRef]
- Pihlaja, R.; Koistinaho, J.; Kauppinen, R.; Sandholm, J.; Tanila, H.; Koistinaho, M. Multiple cellular and molecular mechanisms are involved in human Abeta clearance by transplanted adult astrocytes. Glia 2011, 59, 1643–1657. [Google Scholar] [CrossRef]
- Pihlaja, R.; Koistinaho, J.; Malm, T.; Sikkila, H.; Vainio, S.; Koistinaho, M. Transplanted astrocytes internalize deposited beta-amyloid peptides in a transgenic mouse model of Alzheimer’s disease. Glia 2008, 56, 154–163. [Google Scholar] [CrossRef]
- Ma, T.; Gong, K.; Ao, Q.; Yan, Y.; Song, B.; Huang, H.; Zhang, X.; Gong, Y. Intracerebral transplantation of adipose-derived mesenchymal stem cells alternatively activates microglia and ameliorates neuropathological deficits in Alzheimer’s disease mice. Cell Transplant. 2013, 22 (Suppl. 1), S113–S126. [Google Scholar] [CrossRef]
- Yan, Y.; Ma, T.; Gong, K.; Ao, Q.; Zhang, X.; Gong, Y. Adipose-derived mesenchymal stem cell transplantation promotes adult neurogenesis in the brains of Alzheimer’s disease mice. Neural Regen. Res. 2014, 9, 798–805. [Google Scholar] [CrossRef] [PubMed]
- Gu, G.; Zhang, W.; Li, M.; Ni, J.; Wang, P. Transplantation of NSC-derived cholinergic neuron-like cells improves cognitive function in APP/PS1 transgenic mice. Neuroscience 2015, 291, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Wen, S.R.; Qi, H.P.; Ren, Y.J.; Liu, G.J.; Gong, F.C.; Zhong, H.; Bi, S. Expression of deltaNp73 in hippocampus of APP/PS1 transgenic mice following GFP-BMSCs transplantation. Neurol. Res. 2011, 33, 1109–1114. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.Y.; Wan, Q.Q.; Zheng, C.Y.; Zhou, H.L.; Dong, X.Y.; Deng, Q.S.; Yao, H.; Fu, Q.; Gao, M.; Yan, Z.J.; et al. Amniotic Mesenchymal Stem Cells Decrease Abeta Deposition and Improve Memory in APP/PS1 Transgenic Mice. Neurochem. Res. 2017, 42, 2191–2207. [Google Scholar] [CrossRef]
- Li, X.; Zhu, H.; Sun, X.; Zuo, F.; Lei, J.; Wang, Z.; Bao, X.; Wang, R. Human Neural Stem Cell Transplantation Rescues Cognitive Defects in APP/PS1 Model of Alzheimer’s Disease by Enhancing Neuronal Connectivity and Metabolic Activity. Front. Aging Neurosci. 2016, 8, 282. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhang, N.; Hu, N.; Jiang, R.; Lu, H.; Xuan, A.; Long, D.; Chen, Y. Neural stem cell transplantation improves learning and memory by protecting cholinergic neurons and restoring synaptic impairment in an amyloid precursor protein/presenilin 1 transgenic mouse model of Alzheimer’s disease. Mol. Med. Rep. 2020, 21, 1172–1180. [Google Scholar] [CrossRef]
- Campos, H.C.; Ribeiro, D.E.; Hashiguchi, D.; Hukuda, D.Y.; Gimenes, C.; Romariz, S.A.A.; Ye, Q.; Tang, Y.; Ulrich, H.; Longo, B.M. Distinct Effects of the Hippocampal Transplantation of Neural and Mesenchymal Stem Cells in a Transgenic Model of Alzheimer’s Disease. Stem Cell Rev. Rep. 2022, 18, 781–791. [Google Scholar] [CrossRef]
- Chen, S.Q.; Cai, Q.; Shen, Y.Y.; Wang, P.Y.; Li, M.H.; Teng, G.Y. Neural stem cell transplantation improves spatial learning and memory via neuronal regeneration in amyloid-beta precursor protein/presenilin 1/tau triple transgenic mice. Am. J. Alzheimer’s Dis. Other Dement. 2014, 29, 142–149. [Google Scholar] [CrossRef]
- Chen, S.Q.; Cai, Q.; Shen, Y.Y.; Wang, P.J.; Teng, G.J.; Li, M.H.; Zhang, W.; Zang, F.C. (1)H-MRS evaluation of therapeutic effect of neural stem cell transplantation on Alzheimer’s disease in AbetaPP/PS1 double transgenic mice. J. Alzheimer’s Dis. 2012, 28, 71–80. [Google Scholar] [CrossRef]
- McGinley, L.M.; Kashlan, O.N.; Bruno, E.S.; Chen, K.S.; Hayes, J.M.; Kashlan, S.R.; Raykin, J.; Johe, K.; Murphy, G.G.; Feldman, E.L. Human neural stem cell transplantation improves cognition in a murine model of Alzheimer’s disease. Sci. Rep. 2018, 8, 14776. [Google Scholar] [CrossRef]
- Hu, W.; Feng, Z.; Xu, J.; Jiang, Z.; Feng, M. Brain-derived neurotrophic factor modified human umbilical cord mesenchymal stem cells-derived cholinergic-like neurons improve spatial learning and memory ability in Alzheimer’s disease rats. Brain Res. 2019, 1710, 61–73. [Google Scholar] [CrossRef] [PubMed]
- Li, L.Y.; Li, J.T.; Wu, Q.Y.; Li, J.; Feng, Z.T.; Liu, S.; Wang, T.H. Transplantation of NGF-gene-modified bone marrow stromal cells into a rat model of Alzheimer’ disease. J. Mol. Neurosci. 2008, 34, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Esmaeilzade, B.; Nobakht, M.; Joghataei, M.T.; Rahbar Roshandel, N.; Rasouli, H.; Samadi Kuchaksaraei, A.; Hosseini, S.M.; Najafzade, N.; Asalgoo, S.; Hejazian, L.B.; et al. Delivery of epidermal neural crest stem cells (EPI-NCSC) to hippocamp in Alzheimer’s disease rat model. Iran. Biomed. J. 2012, 16, 1–9. [Google Scholar] [CrossRef]
- Babaei, H.; Kheirollah, A.; Ranjbaran, M.; Sarkaki, A.; Adelipour, M. Dose-dependent neuroprotective effects of adipose-derived mesenchymal stem cells on amyloid beta-induced Alzheimer’s disease in rats. Biochem. Biophys. Res. Commun. 2023, 678, 62–67. [Google Scholar] [CrossRef]
- Babaei, P.; Soltani Tehrani, B.; Alizadeh, A. Transplanted bone marrow mesenchymal stem cells improve memory in rat models of Alzheimer’s disease. Stem Cells Int. 2012, 2012, 369417. [Google Scholar] [CrossRef]
- Babaei, H.; Kheirollah, A.; Ranjbaran, M.; Cheraghzadeh, M.; Sarkaki, A.; Adelipour, M. Preconditioning adipose-derived mesenchymal stem cells with dimethyl fumarate promotes their therapeutic efficacy in the brain tissues of rats with Alzheimer’s disease. Biochem. Biophys. Res. Commun. 2023, 672, 120–127. [Google Scholar] [CrossRef]
- Cui, G.H.; Shao, S.J.; Yang, J.J.; Liu, J.R.; Guo, H.D. Designer Self-Assemble Peptides Maximize the Therapeutic Benefits of Neural Stem Cell Transplantation for Alzheimer’s Disease via Enhancing Neuron Differentiation and Paracrine Action. Mol. Neurobiol. 2016, 53, 1108–1123. [Google Scholar] [CrossRef]
- Marei, H.E.; Farag, A.; Althani, A.; Afifi, N.; Abd-Elmaksoud, A.; Lashen, S.; Rezk, S.; Pallini, R.; Casalbore, P.; Cenciarelli, C. Human olfactory bulb neural stem cells expressing hNGF restore cognitive deficit in Alzheimer’s disease rat model. J. Cell Physiol. 2015, 230, 116–130. [Google Scholar] [CrossRef]
- Huang, N.; Li, Y.; Zhou, Y.; Zhou, Y.; Feng, F.; Shi, S.; Ba, Z.; Luo, Y. Neuroprotective effect of tanshinone IIA-incubated mesenchymal stem cells on Abeta(25-35)-induced neuroinflammation. Behav. Brain Res. 2019, 365, 48–55. [Google Scholar] [CrossRef]
- Martinez-Losa, M.; Tracy, T.E.; Ma, K.; Verret, L.; Clemente-Perez, A.; Khan, A.S.; Cobos, I.; Ho, K.; Gan, L.; Mucke, L.; et al. Nav1.1-Overexpressing Interneuron Transplants Restore Brain Rhythms and Cognition in a Mouse Model of Alzheimer’s Disease. Neuron 2018, 98, 75–89.e5. [Google Scholar] [CrossRef]
- Fujiwara, N.; Shimizu, J.; Takai, K.; Arimitsu, N.; Ueda, Y.; Wakisaka, S.; Suzuki, T.; Suzuki, N. Cellular and molecular mechanisms of the restoration of human APP transgenic mouse cognitive dysfunction after transplant of human iPS cell-derived neural cells. Exp. Neurol. 2015, 271, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Maciejewska, K.; Czarnecka, K.; Szymanski, P. A review of the mechanisms underlying selected comorbidities in Alzheimer’s disease. Pharmacol. Rep. 2021, 73, 1565–1581. [Google Scholar] [CrossRef] [PubMed]
- Graham, W.V.; Bonito-Oliva, A.; Sakmar, T.P. Update on Alzheimer’s Disease Therapy and Prevention Strategies. Annu. Rev. Med. 2017, 68, 413–430. [Google Scholar] [CrossRef]
- Flores-Martínez, E.; Peña-Ortega, F. Amyloid β Peptide-Induced Changes in Prefrontal Cortex Activity and Its Response to Hippocampal Input. Int. J. Pept. 2017, 2017, 7386809. [Google Scholar] [CrossRef]
- Boutajangout, A.; Wisniewski, T. Tau-based therapeutic approaches for Alzheimer’s disease—A mini-review. Gerontology 2014, 60, 381–385. [Google Scholar] [CrossRef]
- Obulesu, M.; Jhansilakshmi, M. Neuroinflammation in Alzheimer’s disease: An understanding of physiology and pathology. Int. J. Neurosci. 2014, 124, 227–235. [Google Scholar] [CrossRef]
- Salari, S.; Bagheri, M. A Review of Animal Models of Alzheimer’s Disease: A brief insight to Pharmacologic and genetic models. Physiol. Pharmacol. 2016, 20, 5–11. [Google Scholar]
- Akhtar, A.; Gupta, S.M.; Dwivedi, S.; Kumar, D.; Shaikh, M.F.; Negi, A. Preclinical Models for Alzheimer’s Disease: Past, Present, and Future Approaches. ACS Omega 2022, 7, 47504–47517. [Google Scholar] [CrossRef]
- Rapaka, D.; Adiukwu, P.C.; Bitra, V.R. Experimentally induced animal models for cognitive dysfunction and Alzheimer’s disease. MethodsX 2022, 9, 101933. [Google Scholar] [CrossRef]
- Ferreira, A.F.F.; Meira, M.; Lemuchi, L.M.; Bianchetti, M.E.; Kamidai, N.M.; Kilinsky, L.M.; Britto, L.R. Most utilized rodent models for Alzheimer’s and Parkinson’s disease: A critical review of the past 5 years. Adv. Neurol. 2024, 3, 2903. [Google Scholar] [CrossRef]
- Laxton, A.W.; Stone, S.; Lozano, A.M. The neurosurgical treatment of Alzheimer’s disease: A review. Stereotact. Funct. Neurosurg. 2014, 92, 269–281. [Google Scholar] [CrossRef]
- Leplus, A.; Lauritzen, I.; Melon, C.; Kerkerian-Le Goff, L.; Fontaine, D.; Checler, F. Chronic fornix deep brain stimulation in a transgenic Alzheimer’s rat model reduces amyloid burden, inflammation, and neuronal loss. Brain Struct. Funct. 2019, 224, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Gallino, D.; Devenyi, G.A.; Germann, J.; Guma, E.; Anastassiadis, C.; Chakravarty, M.M. Longitudinal assessment of the neuroanatomical consequences of deep brain stimulation: Application of fornical DBS in an Alzheimer’s mouse model. Brain Res. 2019, 1715, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Hu, W.-H.; Wu, D.-L.; Zhang, K.; Zhang, J.-G. Behavioral Effects of Deep Brain Stimulation of the Anterior Nucleus of Thalamus, Entorhinal Cortex and Fornix in a Rat Model of Alzheimer’s Disease. Chin. Med. J. 2015, 128, 1190–1195. [Google Scholar] [CrossRef]
- Hamani, C.; McAndrews, M.P.; Cohn, M.; Oh, M.; Zumsteg, D.; Shapiro, C.M.; Wennberg, R.A.; Lozano, A.M. Memory enhancement induced by hypothalamic/fornix deep brain stimulation. Ann. Neurol. Off. J. Am. Neurol. Assoc. Child Neurol. Soc. 2008, 63, 119–123. [Google Scholar] [CrossRef]
- Laxton, A.W.; Tang-Wai, D.F.; McAndrews, M.P.; Zumsteg, D.; Wennberg, R.; Keren, R.; Wherrett, J.; Naglie, G.; Hamani, C.; Smith, G.S. A phase I trial of deep brain stimulation of memory circuits in Alzheimer’s disease. Ann. Neurol. 2010, 68, 521–534. [Google Scholar] [CrossRef]
- Lozano, A.M.; Fosdick, L.; Chakravarty, M.M.; Leoutsakos, J.-M.; Munro, C.; Oh, E.; Drake, K.E.; Lyman, C.H.; Rosenberg, P.B.; Anderson, W.S. A phase II study of fornix deep brain stimulation in mild Alzheimer’s disease. J. Alzheimer’s Dis. 2016, 54, 777–787. [Google Scholar] [CrossRef]
- Leoutsakos, J.-M.S.; Yan, H.; Anderson, W.S.; Asaad, W.F.; Baltuch, G.; Burke, A.; Chakravarty, M.M.; Drake, K.E.; Foote, K.D.; Fosdick, L. Deep brain stimulation targeting the fornix for mild Alzheimer dementia (the ADvance trial): A two year follow-up including results of delayed activation. J. Alzheimer’s Dis. 2018, 64, 597–606. [Google Scholar] [CrossRef]
- Ponce, F.A.; Asaad, W.F.; Foote, K.D.; Anderson, W.S.; Cosgrove, G.R.; Baltuch, G.H.; Beasley, K.; Reymers, D.E.; Oh, E.S.; Targum, S.D. Bilateral deep brain stimulation of the fornix for Alzheimer’s disease: Surgical safety in the ADvance trial. J. Neurosurg. 2016, 125, 75–84. [Google Scholar] [CrossRef]
- Kathiresan, N.; Selvaraj, C.; Subbaraj, G.K.; Langeswaran, K. Exploring neurosurgical interventions in Alzheimer’s disease: Current perspectives and future directions. Neurol. Sci. 2024. [Google Scholar] [CrossRef]
- Cardinale, F.; Cossu, M.; Castana, L.; Casaceli, G.; Schiariti, M.P.; Miserocchi, A.; Fuschillo, D.; Moscato, A.; Caborni, C.; Arnulfo, G.; et al. Stereoelectroencephalography: Surgical Methodology, Safety, and Stereotactic Application Accuracy in 500 Procedures. Neurosurgery 2013, 72, 353–366. [Google Scholar] [CrossRef] [PubMed]
- Mullin, J.P.; Shriver, M.; Alomar, S.; Najm, I.; Bulacio, J.; Chauvel, P.; Gonzalez-Martinez, J. Is SEEG safe? A systematic review and meta-analysis of stereo-electroencephalography-related complications. Epilepsia 2016, 57, 386–401. [Google Scholar] [CrossRef]
- Bex, A.; Mathon, B. Advances, technological innovations, and future prospects in stereotactic brain biopsies. Neurosurg. Rev. 2022, 46, 5. [Google Scholar] [CrossRef] [PubMed]
- Porto Junior, S.; Meira, D.A.; da Cunha, B.L.B.; Fontes, J.H.M.; Pustilnik, H.N.; Medrado Nunes, G.S.; Cerqueira, G.A.; Vassoler, M.E.M.; Monteiro, P.Q.; da Silva da Paz, M.G.; et al. Robot-assisted stereotactic brain biopsy: A systematic review and meta-analysis. Neurosurg. Rev. 2024, 47, 886. [Google Scholar] [CrossRef]
- Hemm, S.; Wårdell, K. Stereotactic implantation of deep brain stimulation electrodes: A review of technical systems, methods and emerging tools. Med. Biol. Eng. Comput. 2010, 48, 611–624. [Google Scholar] [CrossRef]
- Schulder, M.; Mishra, A.; Mammis, A.; Horn, A.; Boutet, A.; Blomstedt, P.; Chabardes, S.; Flouty, O.; Lozano, A.M.; Neimat, J.S.; et al. Advances in Technical Aspects of Deep Brain Stimulation Surgery. Stereotact. Funct. Neurosurg. 2023, 101, 112–134. [Google Scholar] [CrossRef]
- Kopen, G.C.; Prockop, D.J.; Phinney, D.G. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc. Natl. Acad. Sci. USA 1999, 96, 10711–10716. [Google Scholar] [CrossRef]
- Pittenger, M.F.; Mackay, A.M.; Beck, S.C.; Jaiswal, R.K.; Douglas, R.; Mosca, J.D.; Moorman, M.A.; Simonetti, D.W.; Craig, S.; Marshak, D.R. Multilineage potential of adult human mesenchymal stem cells. Science 1999, 284, 143–147. [Google Scholar] [CrossRef]
- Zhang, W.X.; Xiao, X.Y.; Peng, C.G.; Chen, W.L.; Xie, S.; Wang, D.W. Sodium tanshinone IIA sulfate protects myocardium against paraquat-induced toxicity through activating the Nrf2 signaling pathway in rats. Hum. Exp. Toxicol. 2019, 38, 247–254. [Google Scholar] [CrossRef]
- Kang, S.K.; Jun, E.S.; Bae, Y.C.; Jung, J.S. Interactions between human adipose stromal cells and mouse neural stem cells in vitro. Brain Res. Dev. Brain Res. 2003, 145, 141–149. [Google Scholar] [CrossRef]
- El Khoury, J.; Luster, A.D. Mechanisms of microglia accumulation in Alzheimer’s disease: Therapeutic implications. Trends Pharmacol. Sci. 2008, 29, 626–632. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.J.; Yen, M.L.; Chen, Y.C.; Chien, C.C.; Huang, H.I.; Bai, C.H.; Yen, B.L. Placenta-derived multipotent cells exhibit immunosuppressive properties that are enhanced in the presence of interferon-gamma. Stem Cells 2006, 24, 2466–2477. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Zhang, H.Z.; Guo, L.; Kim, J.M.; Kim, M.H. Amniotic mesenchymal stem cells enhance wound healing in diabetic NOD/SCID mice through high angiogenic and engraftment capabilities. PLoS ONE 2012, 7, e41105. [Google Scholar] [CrossRef]
- Portmann-Lanz, C.B.; Schoeberlein, A.; Huber, A.; Sager, R.; Malek, A.; Holzgreve, W.; Surbek, D.V. Placental mesenchymal stem cells as potential autologous graft for pre- and perinatal neuroregeneration. Am. J. Obstet. Gynecol. 2006, 194, 664–673. [Google Scholar] [CrossRef]
- Khan, K.; Emad, N.A.; Sultana, Y. Inducing Agents for Alzheimer’s Disease in Animal Models. J. Explor. Res. Pharmacol. 2024, 9, 169–179. [Google Scholar] [CrossRef]
- Klonarakis, M.; De Vos, M.; Woo, E.K.; Ralph, L.T.; Thacker, J.S.; Gil-Mohapel, J. The three sisters of fate: Genetics, pathophysiology and outcomes of animal models of neurodegenerative diseases. Neurosci. Biobehav. Rev. 2022, 135, 104541. [Google Scholar] [CrossRef]
- Brazelton, T.R.; Rossi, F.M.; Keshet, G.I.; Blau, H.M. From marrow to brain: Expression of neuronal phenotypes in adult mice. Science 2000, 290, 1775–1779. [Google Scholar] [CrossRef]
- Mezey, E.; Chandross, K.J.; Harta, G.; Maki, R.A.; McKercher, S.R. Turning blood into brain: Cells bearing neuronal antigens generated in vivo from bone marrow. Science 2000, 290, 1779–1782. [Google Scholar] [CrossRef]
- Woodbury, D.; Reynolds, K.; Black, I.B. Adult bone marrow stromal stem cells express germline, ectodermal, endodermal, and mesodermal genes prior to neurogenesis. J. Neurosci. Res. 2002, 69, 908–917. [Google Scholar] [CrossRef]
- Baskin, D.S.; Browning, J.L.; Pirozzolo, F.J.; Korporaal, S.; Baskin, J.A.; Appel, S.H. Brain choline acetyltransferase and mental function in Alzheimer disease. Arch. Neurol. 1999, 56, 1121–1123. [Google Scholar] [CrossRef]
- Arsenijevic, Y.; Villemure, J.G.; Brunet, J.F.; Bloch, J.J.; Déglon, N.; Kostic, C.; Zurn, A.; Aebischer, P. Isolation of multipotent neural precursors residing in the cortex of the adult human brain. Exp. Neurol. 2001, 170, 48–62. [Google Scholar] [CrossRef] [PubMed]
- Griffith, H.R.; den Hollander, J.A.; Okonkwo, O.C.; O’Brien, T.; Watts, R.L.; Marson, D.C. Brain metabolism differs in Alzheimer’s disease and Parkinson’s disease dementia. Alzheimer’s Dement. 2008, 4, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Edwards Iii, G.; Gamez, N.; Armijo, E.; Kramm, C.; Morales, R.; Taylor-Presse, K.; Schulz, P.E.; Soto, C.; Moreno-Gonzalez, I. Peripheral Delivery of Neural Precursor Cells Ameliorates Parkinson’s Disease-Associated Pathology. Cells 2019, 8, 1359. [Google Scholar] [CrossRef]
- Effenberg, A.; Stanslowsky, N.; Klein, A.; Wesemann, M.; Haase, A.; Martin, U.; Dengler, R.; Grothe, C.; Ratzka, A.; Wegner, F. Striatal Transplantation of Human Dopaminergic Neurons Differentiated From Induced Pluripotent Stem Cells Derived From Umbilical Cord Blood Using Lentiviral Reprogramming. Cell Transplant. 2015, 24, 2099–2112. [Google Scholar] [CrossRef]
- Hallett, P.J.; Deleidi, M.; Astradsson, A.; Smith, G.A.; Cooper, O.; Osborn, T.M.; Sundberg, M.; Moore, M.A.; Perez-Torres, E.; Brownell, A.L.; et al. Successful function of autologous iPSC-derived dopamine neurons following transplantation in a non-human primate model of Parkinson’s disease. Cell Stem Cell 2015, 16, 269–274. [Google Scholar] [CrossRef]
- Wernig, M.; Zhao, J.P.; Pruszak, J.; Hedlund, E.; Fu, D.; Soldner, F.; Broccoli, V.; Constantine-Paton, M.; Isacson, O.; Jaenisch, R. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc. Natl. Acad. Sci. USA 2008, 105, 5856–5861. [Google Scholar] [CrossRef]
- Fink, K.D.; Crane, A.T.; Lévêque, X.; Dues, D.J.; Huffman, L.D.; Moore, A.C.; Story, D.T.; Dejonge, R.E.; Antcliff, A.; Starski, P.A.; et al. Intrastriatal transplantation of adenovirus-generated induced pluripotent stem cells for treating neuropathological and functional deficits in a rodent model of Huntington’s disease. Stem Cells Transl. Med. 2014, 3, 620–631. [Google Scholar] [CrossRef]
- Nagashima, F.; Suzuki, I.K.; Shitamukai, A.; Sakaguchi, H.; Iwashita, M.; Kobayashi, T.; Tone, S.; Toida, K.; Vanderhaeghen, P.; Kosodo, Y. Novel and robust transplantation reveals the acquisition of polarized processes by cortical cells derived from mouse and human pluripotent stem cells. Stem Cells Dev. 2014, 23, 2129–2142. [Google Scholar] [CrossRef]
- Douvaras, P.; Wang, J.; Zimmer, M.; Hanchuk, S.; O’Bara, M.A.; Sadiq, S.; Sim, F.J.; Goldman, J.; Fossati, V. Efficient generation of myelinating oligodendrocytes from primary progressive multiple sclerosis patients by induced pluripotent stem cells. Stem Cell Rep. 2014, 3, 250–259. [Google Scholar] [CrossRef]
- Popescu, I.R.; Nicaise, C.; Liu, S.; Bisch, G.; Knippenberg, S.; Daubie, V.; Bohl, D.; Pochet, R. Neural progenitors derived from human induced pluripotent stem cells survive and differentiate upon transplantation into a rat model of amyotrophic lateral sclerosis. Stem Cells Transl. Med. 2013, 2, 167–174. [Google Scholar] [CrossRef]
- Toma, J.S.; Shettar, B.C.; Chipman, P.H.; Pinto, D.M.; Borowska, J.P.; Ichida, J.K.; Fawcett, J.P.; Zhang, Y.; Eggan, K.; Rafuse, V.F. Motoneurons derived from induced pluripotent stem cells develop mature phenotypes typical of endogenous spinal motoneurons. J. Neurosci. 2015, 35, 1291–1306. [Google Scholar] [CrossRef] [PubMed]
- Hill, D.P.; Robertson, K.A. Characterization of the cholinergic neuronal differentiation of the human neuroblastoma cell line LA-N-5 after treatment with retinoic acid. Brain Res. Dev. Brain Res. 1997, 102, 53–67. [Google Scholar] [CrossRef] [PubMed]
- Colpo, G.D.; Ascoli, B.M.; Wollenhaupt-Aguiar, B.; Pfaffenseller, B.; Silva, E.G.; Cirne-Lima, E.O.; Quevedo, J.; Kapczinski, F.; Rosa, A.R. Mesenchymal stem cells for the treatment of neurodegenerative and psychiatric disorders. An. Acad. Bras. Cienc. 2015, 87, 1435–1449. [Google Scholar] [CrossRef]
- Obtulowicz, P.; Lech, W.; Strojek, L.; Sarnowska, A.; Domanska-Janik, K. Induction of Endothelial Phenotype from Wharton’s Jelly-Derived MSCs and Comparison of Their Vasoprotective and Neuroprotective Potential with Primary WJ-MSCs in CA1 Hippocampal Region Ex Vivo. Cell Transplant. 2016, 25, 715–727. [Google Scholar] [CrossRef]
- Teixeira, F.G.; Carvalho, M.M.; Neves-Carvalho, A.; Panchalingam, K.M.; Behie, L.A.; Pinto, L.; Sousa, N.; Salgado, A.J. Secretome of Mesenchymal Progenitors from the Umbilical Cord Acts as Modulator of Neural/Glial Proliferation and Differentiation. Stem Cell Rev. Rep. 2015, 11, 288–297. [Google Scholar] [CrossRef]
- Venkataramana, N.K.; Kumar, S.K.V.; Balaraju, S.; Radhakrishnan, R.C.; Bansal, A.; Dixit, A.; Rao, D.K.; Das, M.; Jan, M.; Gupta, P.K.; et al. Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson’s disease. Transl. Res. 2010, 155, 62–70. [Google Scholar] [CrossRef]
- Verret, L.; Mann, E.O.; Hang, G.B.; Barth, A.M.; Cobos, I.; Ho, K.; Devidze, N.; Masliah, E.; Kreitzer, A.C.; Mody, I.; et al. Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell 2012, 149, 708–721. [Google Scholar] [CrossRef]
- Vorhees, C.V.; Williams, M.T. Morris water maze: Procedures for assessing spatial and related forms of learning and memory. Nat. Protoc. 2006, 1, 848–858. [Google Scholar] [CrossRef]
- Zhang, N.; Song, X.; Bartha, R.; Beyea, S.; D’Arcy, R.; Zhang, Y.; Rockwood, K. Advances in high-field magnetic resonance spectroscopy in Alzheimer’s disease. Curr. Alzheimer Res. 2014, 11, 367–388. [Google Scholar] [CrossRef]
- Shah, A.J.; Dar, M.Y.; Jan, B.; Qadir, I.; Mir, R.H.; Uppal, J.; Ahmad, N.Z.; Masoodi, M.H. Neural Stem Cell Therapy for Alzheimer’s Disease: A-State-of-the-Art Review. J. Dement. Alzheimer’s Dis. 2024, 1, 109–125. [Google Scholar] [CrossRef]
- Hong, S.G.; Dunbar, C.E.; Winkler, T. Assessing the Risks of Genotoxicity in the Therapeutic Development of Induced Pluripotent Stem Cells. Mol. Ther. 2013, 21, 272–281. [Google Scholar] [CrossRef]
- Parr, A.M.; Tator, C.H.; Keating, A. Bone marrow-derived mesenchymal stromal cells for the repair of central nervous system injury. Bone Marrow Transplant. 2007, 40, 609–619. [Google Scholar] [CrossRef]
First Author (Year) [Ref] | Animal Model | Experimental Groups | Type of Transplanted Cells | Cell Count | Outcomes | Duration of Cell Survival | Test/Duration | Test Results |
---|---|---|---|---|---|---|---|---|
Armijo E et al. (2021) [12] | 3xTG-AD transgenic mice | 4 groups: 7 × WT + PBS; 7 × WT + iPSC-NPCs; 7 × 3xTg; 7 × 3xTg + iPSC-NPCs | iPSC-NPCs | 5 × 105 cells/mL | decreased amyloid plaque deposits, improved synaptic activity | 2 months | (1) OLT; (2) Barnes maze | (1) significant improvement in performance, (2) ability to learn the task quicker |
Ager RR et al. (2015) [13] | 3xTG-AD; CaM/Tet-Dta mice | 2 groups: 6 × HuCNS-SC; 6 × WT | HuCNS-SC | 1 × 105 cells/mL | increased the levels of synaptic and growth-associated proteins | 6 weeks | (1) MWM (2) NOR/10 min | (1) stronger memory formed, (2) significantly more time with the object placed into a new context |
Chen KS et al. (2023) [14] | 5xFAD transgenic mice | 4 groups: 10 × WT; 10 × 5xFAD; 9 × 5xFAD − vehicle-injected; 10 × hNSC | hNSC | 3 × 105 cells/mL | improved synaptic activity | 35 weeks | MWM/9 days | restored learning and memory and recapitulated the learning curve of WT animals, which did not differ significantly in the latency to the platform |
Zhang T et al. (2019) [15] | 5xFAD transgenic mice | 3 groups: 6 × hiNPCs; 6 × 5xFAD; WT | hiNPCs | 2 × 105 cells/mL | increased synaptic transmissions | 12 months | (1) Y-maze task; (2) Barnes maze. | (1) significantly decreased alternation frequency and exhibited a markedly improved performance, reaching the level of WT mice, (2) exhibited gradually and significantly shorter latencies |
Matchynski-Franks JJ et al. (2016) [16] | 5xFAD transgenic mice | 7 groups: 8 × lateral ventricle, 8 × hippocampus, 8 × hippocampus + lateral ventricle, 8 × sham operation control, 8 × WT, 8 × AD sham operation, 8 × 5xFAD | MSC | 2 × 105 cells/mL | decreased amyloid plaque deposits | 10 weeks | T-radial-maze | lateral ventricle and hippocampal groups significantly improved on trial block |
Lee JK et al. (2010) [17] | AD mice with amyloid injection | 2 groups: BM-MSC; control group | BM-MSC | 1 × 105 cells/mL | increased neuron numbers, reduced oxidative stress | 11 days | MWM/3 days | capable of improving memory impairment |
Pihlaja R et al. (2011) [18] | APdE9 transgenic mice | 2 groups: 47 × astrocytes, 25 × WT with sham operation | astrocytes | 4 × 104 cells/mL | adult and neonatal astrocytes decreased amyloid plaque load and did not migrate from the injection site | 7 days | - | - |
Pihlaja R et al. (2008) [19] | APdE9 transgenic mice | 2 groups: 14 × astrocytes, 7 × WT | astrocytes | 1.25 × 105 cells/mL | decreased the amyloid burden more in younger transplanted mice, compared to older animals | 2 months | - | - |
Ma T et al. (2013) [20] | APP/PS1 transgenic mice | 3 groups: 10 × HBBS; 10 × ADSC + HBBS; 5 × WT | ADSC | 1 × 105 cells/mL | decreased amyloid plaque load by activating microglia | 5 days | (1) MWM/5 days; (2) NOR/10 min | (1) similar results to the WT group, (2) showed more curiosity about the novel object |
Yan Y et al. (2014) [21] | APP/PS1 transgenic mice | 2 groups: 5 × HBBS; 5 × ADSC | ADSC | 1 × 105 cells/mL | improved neurogenesis and neuronal differentiation and reduced oxidative stress | not mentioned | NOR/10 min | interacted more with the novel object than with the familiar one |
Gu G et al. (2015) [22] | APP/PS1 transgenic mice | 3 groups: 25 × CNL; 25 × PBS; 50 × WT | CNL—cholinergic neuron-like cells | 1 × 105 cells/mL | improved synaptic activity | 3 months | MWM/4 days | decreased latency in identifying the hidden platform compared with the control group |
Wen SR et al. (2013) [23] | APP/PS1 transgenic mice | 2 groups: 6 × GFP-BMSC; 6 × sham operation | GFP-BMSC | 2 × 10⁷ cells/mL | decreased amyloid plaque load | 3 weeks | MWM/5 days | significantly better on the water maze than the sham operation group |
Zheng XY et al. (2017) [24] | APP/PS1 transgenic mice | 3 groups: 10 × APP/PS1, 10 × hAM-MSC, 10 × WT | hAM-MSC | 1 × 106 cells/mL | decreased amyloid plaque load, microglia activation, reduced pro-inflammatory markers, increased neurogenesis | 2 months | (1) MWM/5 days (2) NOR/10 min | (1) significantly shorter latencies, (2) transplanted mice significantly improved the behavioral deficits |
Li X et al. (2016) [25] | APP/PS1 transgenic mice | 3 groups: 12 × hNSC, 12 × PBS, 12 × WT | hNSC | 1 × 105 cells/mL | increased synaptic activity, decreased amyloid deposits | 6 weeks | - | - |
Zhu Q et al. (2020) [26] | APP/PS1 transgenic mice | 3 groups: 12 × PBS, 12 × NSC, 12 × WT | NSC | 1 × 105 cells/mL | cell differentiation into astrocytes, neurons | 2 weeks | MWM/4 days | shorter latencies |
Campos HC et al. (2022) [27] | APP/PS1 transgenic mice | 4 groups: 15 × WT, 15 × APP/PS1, 15 × MSC, 15 × NSC | NSC—neural stem cell; MSC—mesenchymal stem cell | 4 × 105 cells/mL | decreased amyloid plaque deposits, only NSC increased microglia activity | not mentioned | OF test | NSC grafting was able to restore locomotion to control levels |
Chen SQ et al. (2014) [28] | APP/PS1 transgenic mice | 3 groups: 10 × NSC; 10 × PBS; 10 × WT | NSC | 1 × 106 cells/mL | increased neuron numbers | 8 weeks | MWM/6 days | significant overall effect on escape latency |
Chen SQ et al. (2012) [29] | APP/PS1 transgenic mice | 3 groups: 15 × NSC, 15 × PBS, 15 × WT | NSC | 1 × 106 cells/mL | increased neuron numbers | 8 weeks | - | - |
Zhang W et al. (2017) [7] | APP/PS1 transgenic mice | 2 groups: 12 × NSC; 10 × WT | NSC | 1 × 106 cells/mL | increased neuron numbers | 10 weeks | MWM/6 days | improvements in spatial acquisition |
McGinley LM et al. (2018) [30] | APP/PS1 transgenic mice | 3 groups: 10 × NSCs, 10 × sham operation, 14 × WT in 2 cohorts | NSC | 1.8 × 105 cells/mL | decreased amyloid plaque deposits, increased microglia activity | 17 weeks | (1) MWM/5 days; (2) NOR/2 days | (1) improvements in spatial acquisition, (2) improved short-term non-associative memory |
Hu W et al. (2019) [31] | chemical-induced rat model | 4 groups: 6 × saline, 6 × no treatment, 6 × AD-CLN sham, 6 × AD-CLN-BDNF | BDNF-mhUC-MSCs-derived cholinergic-like neurons | 2 × 105 cells/mL | increased synaptic activity, decreased amyloid deposits | 9 weeks | MWM/5 days | significantly reduced the escape latency |
Li LY et al. (2008) [32] | chemical-induced rat model | 5 groups: 5 × WT, 5 × AD, 5 × AD + PBS, 5 × AD + BMSC, 5 × AD + BMSC-NFG | BMSC-NGF | 1 × 106 cells/mL | prevented cell death, promoted neurogenesis, and was able to differentiate into cholinergic-like neurons | 5 days | MWM/5 days | significant improvement in cognition in the BMSC or BMSC-NGF-treated groups |
Zhang XM et al. (2020) [6] | chemical-induced rat model | 4 groups: 25 × control, 25 × AD + PBS, 25 × AD + DPSC, 25 × PBS + PBS | DPSC | 5 × 106 cells/mL | increased neuron numbers | 29 days | radial arm maze | decreased the total time required to accomplish the maze and the number of errors |
Esmaeilzade B et al. (2012) [33] | chemical-induced rat model | 4 groups: 10 × WT, 10 × AD, 10 × sham operation, 10 × EPI-NCSC | EPI-NCSC | 2 × 105 cells/mL | increased cell number and cell differentiation in glial cells: cholinergic neurons | 4 weeks | Y-maze | no significant modification between the tested groups |
Babaei H et al. (2023) [34] | chemical-induced rat model | 5 groups: 8 × WT, 8 × sham operation, 8 × amyloid induced rats, 8 × AD with low dose, 8 × AD with high dose | MSC | 50 × 104 and 25 × 104 cells/mL | improved oxidative stress, lowered neuroinflammation | 58 days | MWM/5 days | the high-dose group, in comparison with the AD group, exhibited insignificant variation in the spatial learning function |
Babaei P et al. (2012) [35] | chemical-induced rat model | 2 groups: 10 × Ibo + MSC, 10 × Ibo + PBS | MSC | 500 × 103 cells/mL | increased cholinergic neurons | 2 months | MWM/4 days | improvement in latency to the target quadrant; they did not reach the young group score |
Babaei H et al. (2023) [36] | chemical-induced rat model | 5 groups: 8 × WT; 8 × sham operation; 8 × amyloid induced rats; 8 × MSCs; 8 × MSCs + DMF | MSC with DMF promoter | 25 × 104 cells/mL | improved oxidative stress | 58 days | MWM/5 days | reduction in escape latency time, also with DMF that boosted the efficacy |
Cui GH et al. (2016) [37] | chemical-induced rat model | 7 groups: 15 × WT, 15 × AD, 15 × NSC, 15 × SP, 15 × NSC + SP, 15 × DSP, 15 × NSC + DSP | NSC with SP or DSP | 5 × 105 cells/mL | increased neuron numbers | 4 weeks | MWM/5 days | NSC + SP could decrease latency significantly; NSC + DSP had the shortest latency among the treated groups |
Marei HE et al. (2014) [38] | chemical-induced rat model | 4 groups: 16 × WT, 16 × lesioned group, 16 × lesioned with injection of vehicle, 16 × hNGF and OBNSC transplant | OBNSC | 2.5 × 104 cells/mL | increased cholinergic neurons prevented loss of neurons, induced new regenerative response in neurons | 8 weeks | MWM | attenuated learning and memory impairment |
Huang N et al. (2019) [39] | chemical-induced rat model | 4 groups: 6 × PBS, 6 × AD, 6 × MSCs,6 × TIIA-MSCs | TIIA-MSCs | 5 × 106 cells/mL | increased neuron numbers | 29 days | MWM/5 days | improved spatial learning and memory impairments in rats and are superior to MSC |
Martinez-Losa M et al. (2018) [40] | hAPP-J20 transgenic mice | 2 groups: 10–20 × MGE with NAV1.1.; sham operation | MGE (medial ganglionic eminence) with NAV 1.1. increased or decreased expression | 0.5 − 1 × 106 cells/mL | improved cognition and behavior | not mentioned | MWM/5–6 days | NAV 1.1. overexpression improved learning in the hidden platform |
Fujiwara N et al. (2015) [41] | PDAPP transgenic mice | 2 groups: 21 × hiPS; 19 × PBS | hiPS cell | 2 × 105 cells/mL | improved synaptic activity | 41 days | MWM/6 days | mean platform escape latency of the transplanted mice was significantly shorter |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agavriloaei, L.M.; Iliescu, B.F.; Pintilie, R.M.; Turliuc, D.M. Therapeutic Potential of Experimental Stereotactic Hippocampal Cell Transplant in the Management of Alzheimer’s Disease. J. Clin. Med. 2025, 14, 891. https://doi.org/10.3390/jcm14030891
Agavriloaei LM, Iliescu BF, Pintilie RM, Turliuc DM. Therapeutic Potential of Experimental Stereotactic Hippocampal Cell Transplant in the Management of Alzheimer’s Disease. Journal of Clinical Medicine. 2025; 14(3):891. https://doi.org/10.3390/jcm14030891
Chicago/Turabian StyleAgavriloaei, Loredana Mariana, Bogdan Florin Iliescu, Robert Mihai Pintilie, and Dana Mihaela Turliuc. 2025. "Therapeutic Potential of Experimental Stereotactic Hippocampal Cell Transplant in the Management of Alzheimer’s Disease" Journal of Clinical Medicine 14, no. 3: 891. https://doi.org/10.3390/jcm14030891
APA StyleAgavriloaei, L. M., Iliescu, B. F., Pintilie, R. M., & Turliuc, D. M. (2025). Therapeutic Potential of Experimental Stereotactic Hippocampal Cell Transplant in the Management of Alzheimer’s Disease. Journal of Clinical Medicine, 14(3), 891. https://doi.org/10.3390/jcm14030891