Renal Function and the Role of the Renin–Angiotensin–Aldosterone System (RAAS) in Normal Pregnancy and Pre-Eclampsia
Abstract
:1. Introduction
2. Pre-Eclampsia
3. Alterations in Renal Function During Normal Pregnancy
4. Alterations in Renal Function During Pre-Eclampsia
5. Alterations of the RAAS During Normal Pregnancy
6. Alterations of the RAAS in Pre-Eclampsia
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Leal, C.R.V.; Costa, L.B.; Ferreira, G.C.; Ferreira, A.d.M.; Reis, F.M.; Simões, E.; Silva, A.C. Renin-angiotensin system in normal pregnancy and in preeclampsia: A comprehensive review. Pregnancy Hypertens. 2022, 28, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Stettner-Kołodziejska, D.; Bujak-Giżycka, B.; Wiśniewska, A.; Łomnicka, M.; Kołodziejski, M.; Wiecheć, M.; Rytlewski, K.; Huras, H.; Olszanecki, R. LC/MS/MS assessment of changes in placental angiotensin I metabolism in preeclampsia. Folia Med. Cracov. 2022, 62, 71–88. [Google Scholar] [PubMed]
- Hegazy, A.; Eid, F.A.; Ennab, F.; Sverrisdóttir, Y.B.; Atiomo, W.; Azar, A.J. Prevalence of pre-eclampsia in women in the Middle East: A scoping review. Front. Public Health 2024, 12, 1384964. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lumbers, E.R.; Arthurs, A.L.; Corbisier de Meaultsart, C.; Mathe, A.; Avery-Kiejda, K.A.; Roberts, C.T.; Pipkin, F.B.; Marques, F.Z.; Morris, B.J.; et al. Regulation of the human placental (pro)renin receptor-prorenin-angiotensin system by microRNAs. Mol. Hum. Reprod. 2018, 24, 453–464. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Green, M.; Myers, J.E. Hypertensive disorders of pregnancy. BMJ 2023, 381, e071653. [Google Scholar] [CrossRef] [PubMed]
- Golovchenko, O.V.; Abramova, M.Y.; Orlova, V.S.; Batlutskaya, I.V.; Sorokina, I.N. Clinical and Genetic Characteristics of Preeclampsia. Arch. Razi Inst. 2022, 77, 293–299. [Google Scholar] [PubMed]
- Correa, P.J.; Palmeiro, Y.; Soto, M.J.; Ugarte, C.; Illanes, S.E. Etiopathogenesis, prediction, and prevention of preeclampsia. Hypertens. Pregnancy 2016, 35, 280–294. [Google Scholar] [CrossRef] [PubMed]
- Scioscia, M.; Siwetz, M.; Robillard, P.Y.; Brizzi, A.; Huppertz, B. Placenta and maternal endothelium during preeclampsia: Disruption of the glycocalyx explains increased inositol phosphoglycans and angiogenic factors in maternal blood. J. Reprod. Immunol. 2023, 160, 104161. [Google Scholar] [CrossRef] [PubMed]
- Motoyama, O.; Iitaka, K. Pregnancy in 4 women with childhood-onset steroid-sensitive nephrotic syndrome. CEN Case Rep. 2014, 3, 63–67. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cheung, K.L.; Lafayette, R.A. Renal physiology of pregnancy. Adv. Chronic Kidney Dis. 2013, 20, 209–214. [Google Scholar] [CrossRef]
- Conrad, K.P.; Davison, J.M. The renal circulation in normal pregnancy and preeclampsia: Is there a place for relaxin? Am. J. Physiol. Renal Physiol. 2014, 306, F1121–F1135. [Google Scholar] [CrossRef] [PubMed]
- Hussein, W.; Lafayette, R.A. Renal function in normal and disordered pregnancy. Curr. Opin. Nephrol. Hypertens. 2014, 23, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez Suarez, M.L.; Kattah, A.; Grande, J.P.; Garovic, V. Renal Disorders in Pregnancy: Core Curriculum 2019. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2019, 73, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Stadt, M.M.; West, C.A.; Layton, A.T. Effect of pregnancy and hypertension on kidney function in female rats: Modeling and functional implications. PLoS ONE. 2023, 18, e0279785. [Google Scholar] [CrossRef]
- Calimag-Loyola, A.P.P.; Lerma, E.V. Renal complications during pregnancy: In the hypertension spectrum. Dis. Mon. 2019, 65, 25–44. [Google Scholar] [CrossRef]
- Beers, K.; Patel, N. Kidney Physiology in Pregnancy. Adv. Chronic Kidney Dis. 2020, 27, 449–454. [Google Scholar] [CrossRef] [PubMed]
- Andronikidi, P.E.; Orovou, E.; Mavrigiannaki, E.; Athanasiadou, V.; Tzitiridou-Chatzopoulou, M.; Iatrakis, G.; Grapsa, E. Placental and Renal Pathways Underlying Pre-Eclampsia. Int. J. Mol. Sci. 2024, 25, 2741. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Hu, M.J.; Zhu, D.D.; Lin, F.J.; Huang, H.D. Clinical characteristics and prognosis of pregnancy-related acute kidney injury: A case series study. Int. Urol. Nephrol. 2023, 55, 2249–2255. [Google Scholar] [CrossRef]
- Jee, S.B.; Sawal, A. Physiological Changes in Pregnant Women Due to Hormonal Changes. Cureus 2024, 16, e55544. [Google Scholar] [CrossRef] [PubMed]
- Morton, A.; Teasdale, S. Physiological changes in pregnancy and their influence on the endocrine investigation. Clin. Endocrinol. 2022, 96, 3–11. [Google Scholar] [CrossRef]
- Maressa, V.; Longhitano, E.; Casuscelli, C.; Di Carlo, S.; Peritore, L.; Santoro, D. Pregnancy in Glomerular Disease: From Risk Identification to Counseling and Management. J. Clin. Med. 2024, 13, 1693. [Google Scholar] [CrossRef] [PubMed]
- Binder, N.K.; Beard, S.; de Alwis, N.; Fato, B.R.; Nguyen, T.V.; Kaitu’u-Lino, T.J.; Hannan, N.J. Investigating the Effects of Atrial Natriuretic Peptide on the Maternal Endothelium to Determine Potential Implications for Preeclampsia. Int. J. Mol. Sci. 2023, 24, 6182. [Google Scholar] [CrossRef] [PubMed]
- Carlin, A.; Alfirevic, Z. Physiological changes of pregnancy and monitoring. Best. Pract. Res. Clin. Obstet. Gynaecol. 2008, 22, 801–823. [Google Scholar] [CrossRef] [PubMed]
- Lumbers, E.R.; Pringle, K.G. Roles of the circulating renin-angiotensin-aldosterone system in human pregnancy. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014, 306, R91–R101. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.A.S.; Sampaio, W.O.; Alzamora, A.C.; Motta-Santos, D.; Alenina, N.; Bader, M.; Campagnole-Santos, M.J. The ACE2/Angiotensin-(1–7)/MAS Axis of the Renin-Angiotensin System: Focus on Angiotensin-(1–7). Physiol. Rev. 2018, 98, 505–553. [Google Scholar] [CrossRef] [PubMed]
- Bisson, C.; Dautel, S.; Patel, E.; Suresh, S.; Dauer, P.; Rana, S. Preeclampsia pathophysiology and adverse outcomes during pregnancy and postpartum. Front. Med. 2023, 10, 1144170. [Google Scholar] [CrossRef] [PubMed]
- Bakrania, B.A.; Spradley, F.T.; Drummond, H.A.; LaMarca, B.; Ryan, M.J.; Granger, J.P. Preeclampsia: Linking Placental Ischemia with Maternal Endothelial and Vascular Dysfunction. Compr. Physiol. 2020, 11, 1315–1349. [Google Scholar]
- Sinphitukkul, K.; Manotham, K.; Eiam-Ong, S.; Eiam-Ong, S. Aldosterone nongenomically induces angiotensin II receptor dimerization in rat kidney: Role of mineralocorticoid receptor and NADPH oxidase. Arch. Med. Sci. 2019, 15, 1589–1598. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kaleta, T.; Stock, A.; Panayotopoulos, D.; Vonend, O.; Niederacher, D.; Neumann, M.; Fehm, T.; Kaisers, W.; Fleisch, M. Predictors of Impaired Postpartum Renal Function in Women after Preeclampsia: Results of a Prospective Single Center Study. Dis. Markers. 2016, 2016, 7861919. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xue, Y.; Yang, N.; Gu, X.; Wang, Y.; Zhang, H.; Jia, K. Risk Prediction Model of Early-Onset Preeclampsia Based on Risk Factors and Routine Laboratory Indicators. Life 2023, 13, 1648. [Google Scholar] [CrossRef] [PubMed]
- Denney, J.M.; Bird, C.; Gendron-Fitzpatrick, A.; Sampene, E.; Bird, I.M.; Shah, D.M. Renin-angiotensin system transgenic mouse model recapitulates pathophysiology similar to human preeclampsia with renal injury that may be mediated through VEGF. Am. J. Physiol. Ren. Physiol. 2017, 312, F445–F455. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Shields, C.A.; Ekperikpe, U.; Amaral, L.M.; Williams, J.M.; Cornelius, D.C. Vascular and Renal Mechanisms of Preeclampsia. Curr. Opin. Physiol. 2023, 33, 100655. [Google Scholar] [CrossRef] [PubMed]
- Luizon, M.R.; Pereira, D.A.; Mamede, I.; Ceron, C.S.; Cavalli, R.C.; Palei, A.C.; Sandrim, V.C. Antihypertensive therapy responsiveness and adverse outcomes in preeclampsia: Insights into molecular mechanisms underlying cardiovascular and renal complications. Front. Pharmacol. 2023, 14, 1281382. [Google Scholar] [CrossRef]
- Di Leo, V.; Capaccio, F.; Gesualdo, L. Preeclampsia and Glomerulonephritis: A Bidirectional Association. Curr. Hypertens. Rep. 2020, 22, 36. [Google Scholar] [CrossRef]
- Gathiram, P.; Moodley, J. The Role of the Renin-Angiotensin-Aldosterone System in Preeclampsia: A Review. Curr. Hypertens. Rep. 2020, 22, 89. [Google Scholar] [CrossRef] [PubMed]
- Atlas Steven, A. The renin-angiotensin aldosterone system: Pathophysiological role and pharmacologic inhibition. J. Manag. Care Pharm. 2007, 13 (Suppl. B), 9–20. [Google Scholar] [PubMed]
- Nehme, A.; Zouein, F.A.; Deris Zayeri, Z.; Zibara, K. An Update on the Tissue Renin Angiotensin System and Its Role in Physiology and Pathology. J. Cardiovasc. Dev. Dis. 2019, 6, 14. [Google Scholar] [CrossRef]
- Mogi, M. Renin-angiotensin system in the placenta of women with preeclampsia. Hypertens. Res. Off. J. Jpn. Soc. Hypertens. 2023, 46, 2243–2244. [Google Scholar] [CrossRef] [PubMed]
- Artemieva, K.A.; Nizyaeva, N.V.; Baev, O.R.; Romanov, A.Y.; Khlestova, G.V.; Boltovskaya, M.N.; Shchegolev, A.I.; Kakturskiy, L.V. Regulation of the Placental Renin-Angiotensin-Aldosterone System in Early- and Late-Onset Preeclampsia. Dokl. Biochem. Biophys. 2022, 507, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Kanugula, A.K.; Kaur, J.; Batra, J.; Ankireddypalli, A.R.; Velagapudi, R. Renin-Angiotensin System: Updated Understanding and Role in Physiological and Pathophysiological States. Cureus 2023, 15, e40725. [Google Scholar] [CrossRef] [PubMed]
- Shah, D.M. Role of the renin-angiotensin system in the pathogenesis of preeclampsia. Am. J. Physiol. Ren. Physiol. 2005, 288, F614–F625. [Google Scholar] [CrossRef]
- Dechend, R.; Homuth, V.; Wallukat, G.; Müller, D.N.; Krause, M.; Dudenhausen, J.; Haller, H.; Luft, F.C. Agonistic antibodies directed at the angiotensin II, AT1 receptor in preeclampsia. J. Soc. Gynecol. Investig. 2006, 13, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, Y.X.; Peng, W.J.; Li, Z.W.; Zhang, C.H.; Di, H.H.; Shen, X.-P.; Zhu, J.-F.; Yan, W.-R. The Gene Variants of Maternal/Fetal Renin-Angiotensin System in Preeclampsia: A Hybrid Case-Parent/Mother-Control Study. Sci. Rep. 2017, 7, 5087. [Google Scholar] [CrossRef] [PubMed]
- Ksiazek, S.H.; Hu, L.; Andò, S.; Pirklbauer, M.; Säemann, M.D.; Ruotolo, C.; Zara, G.; Manna, G.L.; Nicola, L.D.; Mayer, G.; et al. Renin–Angiotensin–Aldosterone System: From History to Practice of a Secular Topic. Int. J. Mol. Sci. 2024, 25, 4035. [Google Scholar] [CrossRef]
- Mistry, H.D.; Kurlak, L.O.; Gardner, D.S.; Torffvit, O.; Hansen, A.; Broughton Pipkin, F.; Strevens, H. Evidence of Augmented Intrarenal Angiotensinogen Associated With Glomerular Swelling in Gestational Hypertension and Preeclampsia: Clinical Implications. J. Am. Heart Assoc. 2019, 8, e012611. [Google Scholar] [CrossRef]
- Shoemaker, R.; Poglitsch, M.; Davis, D.; Huang, H.; Schadler, A.; Patel, N.; Vignes, K.; Srinivasan, A.; Cockerham, C.; Bauer, J.A.; et al. Association of Elevated Serum Aldosterone Concentrations in Pregnancy with Hypertension. Biomedicines 2023, 11, 2954. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Zhou, C.; Xu, G.; Tang, L.; Ruan, Y.; Yu, Y.; Lin, X.; Wu, D.; Chen, H.; Yu, P.; et al. An alternative splicing variant of mineralocorticoid receptor discovered in preeclampsia tissues and its effect on endothelial dysfunction. Sci. China Life Sci. 2020, 63, 388–400. [Google Scholar] [CrossRef] [PubMed]
- Maamor, N.H.; Ismail, J.; Malek, K.A.; Yusoff, K.; Boon-Peng, H. AGT, CYP11B2 & ADRB2 gene polymorphism & essential hypertension (HT): A meta-analysis. Indian J. Med. Res. 2024, 159, 619–626. [Google Scholar] [PubMed]
- Lumbers, E.R.; Delforce, S.J.; Arthurs, A.L.; Pringle, K.G. Causes and Consequences of the Dysregulated Maternal Renin-Angiotensin System in Preeclampsia. Front. Endocrinol. 2019, 10, 563. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, Z.; Yildirim, T.; Yilmaz, R.; Aybal-Kutlugun, A.; Altun, B.; Kucukozkan, T.; Erdem, Y. Association between urinary angiotensinogen, hypertension and proteinuria in pregnant women with preeclampsia. J. Renin-Angiotensin-Aldosterone Syst. JRAAS 2015, 16, 514–520. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhou, Y.; Wu, Q.; Fan, W.; Ye, J.; Chen, Y.; Wu, Y.; Niu, J.; Gu, Y. Effective prediction of preeclampsia by measuring serum angiotensin II, urinary angiotensinogen and urinary transforming growth factor β1. Exp. Ther. Med. 2017, 14, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Zitouni, H.; Raguema, N.; Gannoun, M.B.A.; Hebert-Stutter, M.; Zouari, I.; Maleh, W.; Faleh, R.; Ben Letaifa, D.; Almawi, W.Y.; Fournier, T.; et al. Impact of obesity on the association of active renin and plasma aldosterone concentrations, and aldosterone-to-renin ratio with preeclampsia. Pregnancy Hypertens. 2018, 14, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Escher, G.; Cristiano, M.; Causevic, M.; Baumann, M.; Frey, F.J.; Surbek, D.; Mohaupt, M.G. High aldosterone-to-renin variants of CYP11B2 and pregnancy outcome. Nephrol. Dial. Transplant. 2009, 24, 1870–1875. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Kong, Y.; Chen, X.; Weng, Z.; Li, B. Pertinence between risk of preeclampsia and the renin-angiotensin-aldosterone system (RAAS) gene polymorphisms: An updated meta-analysis based on 73 studies. J. Obstet. Gynaecol. 2023, 43, 2171782. [Google Scholar] [CrossRef] [PubMed]
- Procopciuc, L.M.; Nemeti, G.; Buzdugan, E.; Iancu, M.; Stamatian, F.; Caracostea, G. Renin-angiotensin system gene variants and risk of early- and late-onset preeclampsia: A single center case-control study. Pregnancy Hypertens. 2019, 18, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.D.; Li, J.Y.; Yao, B.B.; Cai, X.B.; Shen, Q.J.; Xu, J. Are genetic polymorphisms in the renin-angiotensin-aldosterone system associated with essential hypertension? Evidence from genome-wide association studies. J. Hum. Hypertens. 2017, 31, 695–698. [Google Scholar] [CrossRef]
- Yang, J.; Shang, J.; Zhang, S.; Li, H.; Liu, H. The role of the renin-angiotensin-aldosterone system in preeclampsia: Genetic polymorphisms and microRNA. J. Mol. Endocrinol. 2013, 50, R53–R66. [Google Scholar] [CrossRef] [PubMed]
- Satra, M.; Samara, M.; Alatsathianos, G.; Vamvakopoulou, D.; Baka, A.; Tsalazidou-Founta, T.M.; Sidiropoulos, A.; Vamvakopoulos, K.-O.; Garas, A.; Daponte, A.; et al. Association of maternal angiotensin II type 1 and type 2 receptor combination genotypes with susceptibility to early-onset preeclampsia. J. Hum. Hypertens. 2022, 36, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Kokori, E.; Aderinto, N.; Olatunji, G.; Komolafe, R.; Abraham, I.C.; Babalola, A.E.; Aboje, J.E.; Ukoaka, B.M.; Samuel, O.; Ayodeji, A.; et al. Maternal and fetal neurocognitive outcomes in preeclampsia and eclampsia; a narrative review of current evidence. Eur. J. Med. Res. 2024, 29, 470. [Google Scholar] [CrossRef] [PubMed]
- Laresgoiti-Servitje, E.; Gomez-Lopez, N. The pathophysiology of preeclampsia involves altered levels of angiogenic factors promoted by hypoxia and autoantibody-mediated mechanisms. Biol. Reprod. 2012, 87, 36. [Google Scholar] [CrossRef]
- Seki, H. The role of the renin-angiotensin system in the pathogenesis of preeclampsia—New insights into the renin-angiotensin system in preeclampsia. Med. Hypotheses 2014, 82, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Biwer, L.A.; Lu, Q.; Ibarrola, J.; Stepanian, A.; Man, J.J.; Carvajal, B.V.; Camarda, N.D.; Zsengeller, Z.; Skurnik, G.; Seely, E.W.; et al. Smooth Muscle Mineralocorticoid Receptor Promotes Hypertension After Preeclampsia. Circ. Res. 2023, 132, 674–689. [Google Scholar] [CrossRef]
- Herse, F.; Dechend, R.; Harsem, N.K.; Wallukat, G.; Janke, J.; Qadri, F.; Hering, L.; Muller, D.N.; Luft, F.C.; Staff, A.C. Dysregulation of the circulating and tissue-based renin-angiotensin system in preeclampsia. Hypertension 2007, 49, 604–611. [Google Scholar] [CrossRef] [PubMed]
- Shah, D.M. The role of RAS in the pathogenesis of preeclampsia. Curr. Hypertens. Rep. 2006, 8, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Gintoni, I.; Adamopoulou, M.; Yapijakis, C. The Angiotensin-converting Enzyme Insertion/Deletion Polymorphism as a Common Risk Factor for Major Pregnancy Complications. In Vivo 2021, 35, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Shahvaisizadeh, F.; Movafagh, A.; Omrani, M.D.; Vaisi-Raygani, A.; Rahimi, Z.; Rahimi, Z. Synergistic effects of angiotensinogen -217 G→A and T704C (M235T) variants on the risk of severe preeclampsia. J. Renin-Angiotensin-Aldosterone Syst. JRAAS 2014, 15, 156–161. [Google Scholar] [CrossRef] [PubMed]
- Tewksbury, D.A.; Kaiser, S.J.; Burrill, R.E. A study of the temporal relationship between plasma high molecular weight angiotensinogen and the development of pregnancy-induced hypertension*. Am. J. Hypertens. 2001, 14, 794–797. [Google Scholar] [CrossRef] [PubMed]
- Bauer, C.; Piani, F.; Banks, M.; Ordoñez, F.A.; de Lucas-Collantes, C.; Oshima, K.; Schmidt, E.P.; Zakharevich, I.; Segarra, A.; Martinez, C.; et al. Minimal Change Disease Is Associated With Endothelial Glycocalyx Degradation and Endothelial Activation. Kidney Int. Rep. 2021, 7, 797–809. [Google Scholar] [CrossRef] [PubMed]
- Booz, G.W.; Kennedy, D.; Bowling, M.; Robinson, T.; Azubuike, D.; Fisher, B.; Brooks, K.; Chinthakuntla, P.; Hoang, N.H.; Hosler, J.P.; et al. Angiotensin II type 1 receptor agonistic autoantibody blockade improves postpartum hypertension and cardiac mitochondrial function in rat model of preeclampsia. Biol. Sex. Differ. 2021, 12, 58. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, M.W., Jr.; Castillo, J.; Ibrahim, T.; Cornelius, D.C.; Campbell, N.; Amaral, L.; Vaka, V.R.; Usry, N.; Williams, J.M.; LaMarca, B. AT1-AA (Angiotensin II Type 1 Receptor Agonistic Autoantibody) Blockade Prevents Preeclamptic Symptoms in Placental Ischemic Rats. Hypertension 2018, 71, 886–893. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Zhu, Y.; Wu, L.; Wang, C.; Yang, N.; Xu, Y.; Sun, L. Comparative peptidomics analysis of preeclamptic placenta and the identification of a novel bioactive SERPINA1 C-terminal peptide. Reprod. Biol. 2024, 24, 100858. [Google Scholar] [CrossRef] [PubMed]
- Erviti, J.; Saiz, L.C.; Leache, L.; Pijoan, J.I.; Menéndez Orenga, M.; Salzwedel, D.M.; Méndez-López, I. Blood pressure targets for hypetension in people with chronic renal disease. Cochrane Database Syst. Rev. 2024, 10, CD008564. [Google Scholar] [CrossRef] [PubMed]
Reduced Levels of Renin |
---|
Reduced levels of aldosterone |
Reduced levels of angiotensin I and II |
Vasoconstriction |
Suppression of renal secretion |
Increase in sodium and water retention |
Adrenal aldosterone production |
Study | Year | Key Findings | Conclusion |
---|---|---|---|
Seki H [59] | 2014 | Plasma renin and Ang II lower in PE despite hypertension; pressor response to Ang II predicts PE | The circulatory RAAS appears suppressed in PE; the tissue RAAS offers new insights into its pathogenesis |
Herse F et al. [61] | 2007 | High AT1R expression and AT1-AA in decidua in PE; AT1-AA combination crosses the ureteroplacental barrier | These components may contribute to PE pathophysiology |
Shah DM [62] | 2006 | Increased renin expression and activation of the uteroplacental RAAS in PE; novel Ang II-related mechanisms | Ang II-mediated mechanisms explain primary features of PE |
Dechend R et al. [40] | 2006 | Immune mechanisms like AT1-AA play a role in PE, AT1-AA induce signaling in vascular cells and trophoblasts, leading to tissue factor production and reactive oxygen species generation. | The role of AT1-AA in PE remains unproven but warrants further research. |
Zhang H et al. [41] | 2017 | Maternal and fetal polymorphisms in ACE I/D, ACE G2350A, AGT M235T, and AT1R A1166C associated with PE in Han Chinese women | Fetal ACE I/D, ACE G2350A, AGT M235T, and AT1R A1166C polymorphisms significantly influence PE development |
ProcopciucLM et al. [53] | 2019 | Specific RAAS gene polymorphisms independently associated with the risk of early- and late-onset PE | These findings highlight the role of RAAS genetic variations in PE susceptibility |
Gintoni I et al. [63] | 2021 | ACE I/D affects ACE expression and Ang II levels, impacting arterial pressure and fibrinolytic activity | ACE I/D polymorphism linked to pregnancy complications such as PE and aid in predicting pregnancy complications |
Shahvaisizadeh F et al. [64] | 2014 | Some polymorphisms of AGT (217 G→A and T704C) tend to be higher in early-onset PE compared with that in patients with late-onset PE | AGT variants -217 G→A and T704C may synergistically increase risk of severe PE |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsikouras, P.; Nikolettos, K.; Kotanidou, S.; Kritsotaki, N.; Oikonomou, E.; Bothou, A.; Andreou, S.; Nalmpanti, T.; Chalkia, K.; Spanakis, V.; et al. Renal Function and the Role of the Renin–Angiotensin–Aldosterone System (RAAS) in Normal Pregnancy and Pre-Eclampsia. J. Clin. Med. 2025, 14, 892. https://doi.org/10.3390/jcm14030892
Tsikouras P, Nikolettos K, Kotanidou S, Kritsotaki N, Oikonomou E, Bothou A, Andreou S, Nalmpanti T, Chalkia K, Spanakis V, et al. Renal Function and the Role of the Renin–Angiotensin–Aldosterone System (RAAS) in Normal Pregnancy and Pre-Eclampsia. Journal of Clinical Medicine. 2025; 14(3):892. https://doi.org/10.3390/jcm14030892
Chicago/Turabian StyleTsikouras, Panagiotis, Konstantinos Nikolettos, Sonia Kotanidou, Nektaria Kritsotaki, Efthymios Oikonomou, Anastasia Bothou, Sotiris Andreou, Theopi Nalmpanti, Kyriaki Chalkia, Vlasios Spanakis, and et al. 2025. "Renal Function and the Role of the Renin–Angiotensin–Aldosterone System (RAAS) in Normal Pregnancy and Pre-Eclampsia" Journal of Clinical Medicine 14, no. 3: 892. https://doi.org/10.3390/jcm14030892
APA StyleTsikouras, P., Nikolettos, K., Kotanidou, S., Kritsotaki, N., Oikonomou, E., Bothou, A., Andreou, S., Nalmpanti, T., Chalkia, K., Spanakis, V., Tsikouras, N., Pagaki, C., Iatrakis, G., Damaskos, C., Garmpis, N., Machairiotis, N., & Nikolettos, N. (2025). Renal Function and the Role of the Renin–Angiotensin–Aldosterone System (RAAS) in Normal Pregnancy and Pre-Eclampsia. Journal of Clinical Medicine, 14(3), 892. https://doi.org/10.3390/jcm14030892