Internal Malignancy Risk After Carbon Monoxide Poisoning: A Nationwide Population-Based Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source and Ethics Statement
2.2. Study Population
2.3. Validation of Patient Identification with CO Poisoning Using ICD-10 Codes
2.4. Outcome Measurement
2.5. Covariates
2.6. Statistical Analyses
3. Results
3.1. Criteria Validation for Identifying Patients with CO Poisoning
3.2. Baseline Characteristics of the Study Population
3.3. Development of Internal Malignancies
3.4. Subgroup Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moon, R.E.; Bakker, D.; Barnes, R.; Bennett, M.; Camporesi, E.; Cianci, P. Hyperbaric Oxygen Therapy Indications; Best Publishing Company: North Palm Beach, FL, USA, 2019. [Google Scholar]
- Hampson, N.B. US Mortality from Carbon Monoxide Poisoning 1999–2014: Accidental and Intentional Deaths. Ann. Am. Thorac. Soc. 2016, 13, 1768–1774. [Google Scholar] [CrossRef]
- Hampson, N.B.; Weaver, L.K. Carbon monoxide poisoning: A new incidence for an old disease. Undersea Hyperb. Med. 2007, 34, 163–168. [Google Scholar]
- Weaver, L.K.; Hopkins, R.O.; Chan, K.J.; Churchill, S.; Elliott, C.G.; Clemmer, T.P.; Orme, J.F.J.; Thomas, F.O.; Morris, A.H. Hyperbaric Oxygen for Acute Carbon Monoxide Poisoning. New Engl. J. Med. 2002, 347, 1057–1067. [Google Scholar] [CrossRef]
- Choi, S. Delayed Neurologic Sequelae in Carbon Monoxide Intoxication. Arch. Neurol. 1983, 40, 433–435. [Google Scholar] [CrossRef]
- Satran, D.; Henry, C.R.; Adkinson, C.; Nicholson, C.I.; Bracha, Y.; Henry, T.D. Cardiovascular Manifestations of Moderate to Severe Carbon Monoxide Poisoning. J. Am. Coll. Cardiol. 2005, 45, 1513–1516. [Google Scholar] [CrossRef]
- Cha, Y.S.; Kim, H.; Hwang, S.O.; Kim, J.Y.; Kim, Y.K.; Choi, E.H.; Kim, O.H.; Kim, H.I.; Cha, K.C.; Lee, K.H. Incidence and patterns of cardiomyopathy in carbon monoxide-poisoned patients with myocardial injury. Clin. Toxicol. 2016, 54, 481–487. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Sohn, C.H.; Seo, D.-W.; Oh, B.J.; Lim, K.S.; Chang, J.W.; Kim, W.Y. Analysis of the development and progression of carbon monoxide poisoning–related acute kidney injury according to the Kidney Disease Improving Global Outcomes (KDIGO) criteria. Clin. Toxicol. 2018, 56, 759–764. [Google Scholar] [CrossRef]
- Huang, T.-L.; Tung, M.-C.; Lin, C.-L.M.; Chang, K.-H. Risk of acute kidney injury among patients with carbon monoxide poisoning. Medicine 2021, 100, e27239. [Google Scholar] [CrossRef]
- Henry, C.R.; Satran, D.; Lindgren, B.; Adkinson, C.; Nicholson, C.I.; Henry, T.D. Myocardial Injury and Long-term Mortality Following Moderate to Severe Carbon Monoxide Poisoning. JAMA 2006, 295, 398–402. [Google Scholar] [CrossRef]
- Ahn, G.J.; Lee, S.; Heo, Y.-W.; Cha, Y.S. Mortality Risks and Causes in Previous Carbon Monoxide Poisoning: A Nationwide Population-Based Cohort Study. Crit. Care Med. 2024, 52, 1866–1876. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Gullotta, F.; di Masi, A.; Ascenzi, P. Carbon monoxide: An unusual drug. IUBMB Life 2012, 64, 378–386. [Google Scholar] [CrossRef]
- Motterlini, R.; Otterbein, L.E. The therapeutic potential of carbon monoxide. Nat. Rev. Drug Discov. 2010, 9, 728–743. [Google Scholar] [CrossRef]
- Seong, S.C.; Kim, Y.-Y.; Khang, Y.-H.; Heon Park, J.; Kang, H.-J.; Lee, H.; Do, C.-H.; Song, J.-S.; Hyon Bang, J.; Ha, S.; et al. Data Resource Profile: The National Health Information Database of the National Health Insurance Service in South Korea. Int. J. Epidemiol. 2017, 46, 799–800. [Google Scholar] [CrossRef]
- Bae, J.M.; Chung, K.Y.; Yun, S.J.; Kim, H.; Park, B.C.; Kim, J.S.; Seo, S.H.; Ahn, H.H.; Lee, D.-Y.; Kim, Y.C.; et al. Markedly Reduced Risk of Internal Malignancies in Patients With Vitiligo: A Nationwide Population-Based Cohort Study. J. Clin. Oncol. 2019, 37, 903–911. [Google Scholar] [CrossRef]
- Jung, S.-W.; Jeon, J.J.; Kim, Y.H.; Choe, S.J.; Lee, S. Long-term risk of autoimmune diseases after mRNA-based SARS-CoV2 vaccination in a Korean, nationwide, population-based cohort study. Nat. Commun. 2024, 15, 6181. [Google Scholar] [CrossRef]
- Read, W.L.; Tierney, R.M.; Page, N.C.; Costas, I.; Govindan, R.; Spitznagel, E.L.; Piccirillo, J.F. Differential Prognostic Impact of Comorbidity. J. Clin. Oncol. 2004, 22, 3099–3103. [Google Scholar] [CrossRef]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Austin, P.C.; Stuart, E.A. Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies. Stat. Med. 2015, 34, 3661–3679. [Google Scholar] [CrossRef]
- Huang, C.-C.; Ho, C.-H.; Chen, Y.-C.; Hsu, C.-C.; Lin, H.-J.; Tian, Y.-F.; Wang, J.-J.; Guo, H.-R. Impact of carbon monoxide poisoning on the risk of breast cancer. Sci. Rep. 2020, 10, 20450. [Google Scholar] [CrossRef]
- Vítek, L.; Gbelcová, H.; Muchová, L.; Váňová, K.; Zelenka, J.; Koníčková, R.; Šuk, J.; Zadinova, M.; Knejzlík, Z.; Ahmad, S.; et al. Antiproliferative effects of carbon monoxide on pancreatic cancer. Dig. Liver Dis. 2014, 46, 369–375. [Google Scholar] [CrossRef]
- Nemeth, Z.; Csizmadia, E.; Vikstrom, L.; Li, M.; Bisht, K.; Feizi, A.; Otterbein, S.; Zuckerbraun, B.; Costa, D.B.; Pandolfi, P.P.; et al. Alterations of tumor microenvironment by carbon monoxide impedes lung cancer growth. Oncotarget 2016, 7, 23919–23932. [Google Scholar] [CrossRef]
- Lee, S.J.; Lee, S.; Kim, Y.H.; Cha, Y.S. Risk of lung diseases in patients with previous carbon monoxide poisoning: A nationwide population-based cohort study in the Republic of Korea. Clin. Toxicol. 2024, 62, 425–431. [Google Scholar] [CrossRef]
- Motterlini, R.; Foresti, R. Biological signaling by carbon monoxide and carbon monoxide-releasing molecules. Am. J. Physiol. Physiol. 2017, 312, C302–C313. [Google Scholar] [CrossRef]
- Hess, D.R. Inhaled Carbon Monoxide: From Toxin to Therapy. Respir. Care 2017, 62, 1333–1342. [Google Scholar] [CrossRef]
- Knauert, M.; Vangala, S.; Haslip, M.; Lee, P.J. Therapeutic Applications of Carbon Monoxide. Oxidative Med. Cell. Longev. 2013, 2013, 360815. [Google Scholar] [CrossRef]
- Lee, S.J.; Kim, T.; Cha, Y.S.; Kim, M.; Lee, J.Y.; Lee, W.-Y. Alveolar damage and development of emphysema in rats with carbon monoxide poisoning. Mol. Cell. Toxicol. 2023, 20, 959–968. [Google Scholar] [CrossRef]
- Hecht, S.S. Cigarette smoking: Cancer risks, carcinogens, and mechanisms. Langenbeck’s Arch. Surg. 2006, 391, 603–613. [Google Scholar] [CrossRef]
- Jindal, S.K.; Aggarwal, A.N.; Chaudhry, K.; Chhabra, S.K.; D’Souza, G.A.; Gupta, D.; Katiyar, S.K.; Kumar, R.; Shah, B.; Vijayan, V.K.; et al. A multicentric study on epidemiology of chronic obstructive pulmonary disease and its relationship with tobacco smoking and environmental tobacco smoke exposure. Indian J. Chest Dis. Allied Sci. 2006, 48, 23–29. [Google Scholar]
- Teo, K.K.; Ounpuu, S.; Hawken, S.; Pandey, M.R.; Valentin, V.; Hunt, D.; Diaz, R.; Rashed, W.; Freeman, R.; Jiang, L.; et al. Tobacco use and risk of myocardial infarction in 52 countries in the INTERHEART study: A case-control study. Lancet 2006, 368, 647–658. [Google Scholar] [CrossRef]
- Shapiro, H.; Goldenberg, K.; Ratiner, K.; Elinav, E. Smoking-induced microbial dysbiosis in health and disease. Clin. Sci. 2022, 136, 1371–1387. [Google Scholar] [CrossRef]
- Marti-Aguado, D.; Clemente-Sanchez, A.; Bataller, R. Cigarette smoking and liver diseases. J. Hepatol. 2022, 77, 191–205. [Google Scholar] [CrossRef]
- Wang, H.; Chen, X.; Gao, Q.; Liu, K.; Bi, G.; Deng, J.; Zhang, X. Smoking induces the occurrence of colorectal cancer via changing the intestinal permeability. J. BUON 2021, 26, 1009–1015. [Google Scholar]
- Zhou, Z.; Chen, P.; Peng, H. Are healthy smokers really healthy? Tob. Induc. Dis. 2016, 14, 35. [Google Scholar] [CrossRef]
- Zong, D.; Liu, X.; Li, J.; Ouyang, R.; Chen, P. The role of cigarette smoke-induced epigenetic alterations in inflammation. Epigenetics Chromatin 2019, 12, 65. [Google Scholar] [CrossRef]
- Beckman, J.D.; Marker, P.H.; Nguyen, J.; Belcher, J.D.; Croatt, A.J.; Nath, K.A.; Hebbel, R.P.; Varcellotti, G.M. Carbon Monoxide Therapy Modulates Hematopoietic Stem Cell Development in Heme-Oxygenase-1 Knockout Mice. Blood 2011, 118, 1318. [Google Scholar] [CrossRef]
- Li, J.; Song, L.; Hou, M.; Wang, P.; Wei, L.; Song, H. Carbon monoxide releasing molecule-3 promotes the osteogenic differentiation of rat bone marrow mesenchymal stem cells by releasing carbon monoxide. Int. J. Mol. Med. 2018, 41, 2297–2305. [Google Scholar] [CrossRef]
- Li, J.; Han, Q.; Chen, H.; Liu, T.; Song, J.; Hou, M.; Wei, L.; Song, H. Carbon Monoxide-Releasing Molecule-3 Enhances Osteogenic Differentiation of Rat Bone Marrow Mesenchymal Stem Cells via miR-195-5p/Wnt3a Pathway. Drug Des. Dev. Ther. 2022, 16, 2101–2117. [Google Scholar] [CrossRef]
- Jackson, C.S.; Schmitt, S.; Dou, Q.P.; Kodanko, J.J. Synthesis, Characterization, and Reactivity of the Stable Iron Carbonyl Complex [Fe(CO)(N4Py)](ClO4)2: Photoactivated Carbon Monoxide Release, Growth Inhibitory Activity, and Peptide Ligation. Inorg. Chem. 2011, 50, 5336–5338. [Google Scholar] [CrossRef]
- Niesel, J.; Pinto, A.; N’Dongo, H.W.P.; Merz, K.; Ott, I.; Gust, R.; Schatzschneider, U. Photoinduced CO release, cellular uptake and cytotoxicity of a tris(pyrazolyl)methane (tpm) manganese tricarbonyl complex. Chem. Commun. 2008, 15, 1798–1800. [Google Scholar] [CrossRef]
- Carrington, S.J.; Chakraborty, I.; Mascharak, P.K. Rapid CO release from a Mn(i) carbonyl complex derived from azopyridine upon exposure to visible light and its phototoxicity toward malignant cells. Chem. Commun. 2013, 49, 11254–11256. [Google Scholar] [CrossRef]
- Loureiro, A.; Bernardes, G.J.; Shimanovich, U.; Sárria, M.P.; Nogueira, E.; Preto, A.; Gomes, A.C.; Cavaco-Paulo, A. Folic acid-tagged protein nanoemulsions loaded with CORM-2 enhance the survival of mice bearing subcutaneous A20 lymphoma tumors. Nanomed. Nanotechnol. Biol. Med. 2015, 11, 1077–1083. [Google Scholar] [CrossRef]
- Daruwalla, J.; Christophi, C. Hyperbaric Oxygen Therapy for Malignancy: A Review. World J. Surg. 2006, 30, 2112–2131. [Google Scholar] [CrossRef]
- Sakihama, H.; Lee, G.R.; Chin, B.Y.; Csizmadia, E.; Gallo, D.; Qi, Y.; Gagliani, N.; Wang, H.; Bach, F.H.; Otterbein, L.E. Carbon Monoxide Suppresses Neointima Formation in Transplant Arteriosclerosis by Inhibiting Vascular Progenitor Cell Differentiation. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 1915–1927. [Google Scholar] [CrossRef]
- Chen, S.-Y.; Tsuneyama, K.; Yen, M.-H.; Lee, J.-T.; Chen, J.-L.; Huang, S.-M. Hyperbaric oxygen suppressed tumor progression through the improvement of tumor hypoxia and induction of tumor apoptosis in A549-cell-transferred lung cancer. Sci. Rep. 2021, 11, 12033. [Google Scholar] [CrossRef]
- Moen, I.; Stuhr, L.E.B. Hyperbaric oxygen therapy and cancer—A review. Target. Oncol. 2012, 7, 233–242. [Google Scholar] [CrossRef]
Characteristics | Pre-Weighting, Patients, No. (%) | Post-Weighting, (Weighted %) | ||||
---|---|---|---|---|---|---|
CO Poisoning (n = 42,874) | Control (n = 905,285) | SMD | CO Poisoning | Control | SMD | |
Age, mean ± SD, y | 51.49 ± 16.60 | 50.86 ± 16.31 | 0.038 | 51.01 ± 78.14 | 50.89 ± 16.70 | 0.001 |
Sex, n (%) | 0.001 | 0.009 | ||||
Male | 23,882 (55.70%) | 503,935 (55.67%) | (55.20) | (55.67) | ||
Female | 18,992 (44.30%) | 401,350 (44.33%) | (44.80) | (44.33) | ||
Insurance type, n (%) | 0.214 | 0.000 | ||||
Standard | 37,838 (88.25%) | 853.379 (94.27%) | (94.02) | (93.99) | ||
Medicaid | 5036 (11.75%) | 51,906 (5.73%) | (5.98) | (6.01) | ||
Income level quartile, n (%) | - | 0.233 | 0.000 | |||
Highest | 9435 (22.01%) | 267,512 (29.55%) | (28.55) | (29.24) | ||
Higher | 12,754 (29.75%) | 295,769 (32.67%) | (32.52) | (32.54) | ||
Lower | 13,780 (32.14%) | 242,736 (26.81%) | (28.65) | (26.96) | ||
Lowest | 6905 (16.11%) | 99,268 (10.97%) | (10.28) | (11.26) | ||
Area of residence, n (%) | 0.118 | 0.002 | ||||
Urban area | 25,627 (59.77%) | 488,085 (53.92%) | (54.28) | (54.18) | ||
Rural area | 17,247 (40.23%) | 417,200 (46.08%) | (45.72) | (45.82) | ||
Preexisting comorbidities, n (%) | ||||||
Hypertension | 10,193 (23.77%) | 196,103 (21.66%) | 0.050 | (21.93) | (21.76) | 0.004 |
Diabetes mellitus | 7513 (17.52%) | 133,331 (14.73%) | 0.076 | (14.88) | (14.85) | 0.001 |
Dyslipidemia | 14,718 (34.33%) | 273,248 (30.18%) | 0.089 | (30.34) | (30.37) | 0.001 |
Chronic obstructive pulmonary disease | 1181 (2.75%) | 17,722 (1.96%) | 0.053 | (2.05) | (1.99) | 0.004 |
Chronic heart failure | 928 (2.16%) | 16,827 (1.86%) | 0.022 | (1.91) | (1.87) | 0.002 |
Liver cirrhosis | 358 (0.84%) | 5395 (0.60%) | 0.028 | (0.59) | (0.61) | 0.002 |
Chronic kidney disease | 268 (0.63%) | 5970 (0.66%) | 0.004 | (0.70) | (0.66) | 0.005 |
Lifestyle factors, n (%) | ||||||
Current smoker | 8942 (20.86%) | 176,448 (19.49%) | 0.034 | (19.06) | (19.55) | 0.012 |
Drinking | 26,408 (61.59%) | 581,713 (64.26%) | 0.055 | (64.61) | (64.14) | 0.011 |
General health examination data, mean ± SD | ||||||
Height, cm | 165.11 ± 9.63 | 165.46 ± 9.54 | 0.036 | 165.3 ± 45.22 | 165.4 ± 9.77 | 0.012 |
Weight, kg | 66.79 ± 14.28 | 67.13 ± 14.11 | 0.024 | 67.10 ± 67.74 | 67.12 ± 14.44 | 0.001 |
Waist circumference, cm | 82.04 ± 10.70 | 81.92 ± 10.64 | 0.011 | 81.96 ± 50.48 | 81.93 ± 10.88 | 0.003 |
Blood pressure, mmHg | ||||||
Systolic | 123.39 ± 15.23 | 123.54 ± 15.08 | 0.001 | 123.6 ± 71.74 | 123.5 ± 15.43 | 0.002 |
Diastolic | 76.31 ± 10.46 | 76.20 ± 10.43 | 0.011 | 76.16 ± 49.10 | 76.20 ± 10.67 | 0.004 |
Laboratory values, mean ± SD | ||||||
Hemoglobin, g/dL | 14.29 ± 1.67 | 14.28 ± 1.62 | 0.006 | 14.27 ± 7.83 | 14.28 ± 1.66 | 0.008 |
Fasting glucose, mg/dL | 102.89 ± 29.08 | 101.87 ± 26.19 | 0.037 | 101.9 ± 127.50 | 101.9 ± 26.90 | 0.000 |
Aspartate aminotransferase, U/L | 27.71 ± 18.82 | 26.96 ± 16.80 | 0.042 | 27.00 ± 77.98 | 26.99 ± 17.33 | 0.000 |
Alanine transaminase, U/L | 27.40 ± 24.04 | 26.98 ± 22.62 | 0.018 | 26.98 ± 109.10 | 27.00 ± 23.19 | 0.001 |
Creatinine, mg/dL | 0.87 ± 0.41 | 0.86 ± 0.43 | 0.002 | 0.87 ± 2.19 | 0.87 ± 0.42 | 0.004 |
CCI at index date, mean ± SD | 1.41 ± 1.95 | 1.28 ± 1.90 | 0.068 | 1.31 ± 8.85 | 1.28 ± 1.95 | 0.011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahn, G.J.; Lee, S.; Lee, S.J.; Cha, Y.S. Internal Malignancy Risk After Carbon Monoxide Poisoning: A Nationwide Population-Based Cohort Study. J. Clin. Med. 2025, 14, 937. https://doi.org/10.3390/jcm14030937
Ahn GJ, Lee S, Lee SJ, Cha YS. Internal Malignancy Risk After Carbon Monoxide Poisoning: A Nationwide Population-Based Cohort Study. Journal of Clinical Medicine. 2025; 14(3):937. https://doi.org/10.3390/jcm14030937
Chicago/Turabian StyleAhn, Gyo Jin, Solam Lee, Seok Jeong Lee, and Yong Sung Cha. 2025. "Internal Malignancy Risk After Carbon Monoxide Poisoning: A Nationwide Population-Based Cohort Study" Journal of Clinical Medicine 14, no. 3: 937. https://doi.org/10.3390/jcm14030937
APA StyleAhn, G. J., Lee, S., Lee, S. J., & Cha, Y. S. (2025). Internal Malignancy Risk After Carbon Monoxide Poisoning: A Nationwide Population-Based Cohort Study. Journal of Clinical Medicine, 14(3), 937. https://doi.org/10.3390/jcm14030937