Fibromyalgia: Understanding, Diagnosis and Modern Approaches to Treatment
Abstract
:1. Fibromyalgia
1.1. Pain Mechanisms—Central Sensitization
1.2. Pain Mechanisms—Peripheral Sensitization
2. Pathophysiology
2.1. Genetic Factors
2.2. Hormonal Changes
2.3. Immune System and Neuroinflammation
2.4. Somatic and Psychological Aspects
3. Diagnostics of Fibromyalgia and Classification Criteria
4. Therapeutic Approach
4.1. Pharmacotherapy
4.2. Nonpharmacological Therapy
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Perrot, S. Fibromyalgia: A misconnection in a multiconnected world? Eur. J. Pain 2019, 23, 866–873. [Google Scholar] [CrossRef]
- Meyer, H.P. Myofascial pain syndrome and its suggested role in the pathogenesis and treatment of fibromyalgia syndrome. Curr. Pain Headache Rep. 2002, 6, 274–283. [Google Scholar] [CrossRef] [PubMed]
- Malatji, B.G.; Mason, S.; Mienie, L.J.; Wevers, R.A.; Meyer, H.; van Reenen, M.; Reinecke, C.J. The GC-MS metabolomics signature in patients with fibromyalgia syndrome directs to dysbiosis as an aspect contributing factor of FMS pathophysiology. Metabolomics 2019, 15, 54. [Google Scholar] [CrossRef]
- Gracely, R.H.; Geisser, M.E.; Giesecke, T.; Grant, M.A.B.; Petzke, F.; Williams, D.A.; Clauw, D.J. Pain catastrophizing and neural responses to pain among persons with fibromyalgia. Brain 2004, 127, 835–843. [Google Scholar] [CrossRef]
- O’Brien, A.T.; Deitos, A.; Trinanes Pego, Y.; Fregni, F.; Carrillo-de-la-Pena, M.T. Defective Endogenous Pain Modulation in Fibromyalgia: A Meta-Analysis of Temporal Summation and Conditioned Pain Modulation Paradigms. J. Pain 2018, 19, 819–836. [Google Scholar] [CrossRef] [PubMed]
- Segerdahl, A.R.; Mezue, M.; Okell, T.W.; Farrar, J.T.; Tracey, I. The dorsal posterior insula subserves a fundamental role in human pain. Nat. Neurosci. 2015, 18, 499–500. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.G.; Kim, G.T. Etiopathogenesis of fibromyalgia. J. Electrodiagn. Neuromuscul. Dis. 2023, 25, 1–18. [Google Scholar] [CrossRef]
- Valdés, M.; Collado, A.; Bargalló, N.; Vázquez, M.; Rami, L.; Gómez, E.; Salamero, M. Increased glutamate/glutamine compounds in the brains of patients with fibromyalgia: A magnetic resonance spectroscopy study. Arthritis Rheum. 2010, 62, 1829–1836. [Google Scholar] [CrossRef] [PubMed]
- Harris, R.E.; Sundgren, P.C.; Pang, Y.; Hsu, M.; Petrou, M.; Kim, S.H.; McLean, S.A.; Gracely, R.H.; Clauw, D.J. Dynamic levels of glutamate within the insula are associated with improvements in multiple pain domains in fibromyalgia. Arthritis Rheum. 2008, 58, 903–907. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.C.; Chen, W.N.; Chen, C.J.; Lin, Y.W.; Zimmer, A.; Chen, C.C. An antinociceptive role for substance P in acid-induced chronic muscle pain. Proc. Natl. Acad. Sci. USA 2012, 109, E76–E83. [Google Scholar] [CrossRef] [PubMed]
- Chavan, S.S.; Pavlov, V.A.; Tracey, K.J. Mechanisms and therapeutic relevance of neuro-immune communication. Immunity 2017, 46, 927–942. [Google Scholar] [CrossRef] [PubMed]
- Favretti, M.; Iannuccelli, C.; Di Franco, M. Pain Biomarkers in Fibromyalgia Syndrome: Current Understanding and Future Directions. Int. J. Mol. Sci. 2023, 24, 10443. [Google Scholar] [CrossRef] [PubMed]
- Schank, J.R.; Heilig, M. Substance P and the Neurokinin-1 Receptor: The New CRF. Int. Rev. Neurobiol. 2017, 136, 151–175. [Google Scholar] [PubMed]
- Navratilova, E.; Porreca, F. Substance P and Inflammatory Pain: Getting It Wrong and Right Simultaneously. Neuron 2019, 101, 353–355. [Google Scholar] [CrossRef] [PubMed]
- Potvin, A.S.; Grignon, S.; Marchand, S. Human evidence of a supra-spinal modulating role of dopamine on pain perception. Synapse 2009, 63, 390–402. [Google Scholar] [CrossRef] [PubMed]
- Seo, S.; Jung, Y.H.; Lee, D.; Lee, W.J.; Jang, J.H.; Lee, J.Y.; Choi, S.H.; Moon, J.Y.; Lee, J.S.; Cheon, G.J.; et al. Abnormal neuroinflammation in fibromyalgia and CRPS using [11C]-(R)-PK11195 PET. PLoS ONE 2021, 16, e0246152. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yuan, M.; Xiao, J. Gray Matter Abnormalities in Patients with Chronic Primary Pain: A Coordinate-Based Meta-Analysis. Pain Physician 2022, 25, 1–13. [Google Scholar] [PubMed]
- Miró, E.; Martínez, M.P.; Sánchez, A.I.; Cáliz, R. Clinical Manifestations of Trauma Exposure in Fibromyalgia: The Role of Anxiety in the Association Between Posttraumatic Stress Symptoms and Fibromyalgia Status. J. Trauma. Stress 2020, 33, 1082–1092. [Google Scholar] [CrossRef] [PubMed]
- Thompson, L.; Van Dyne, A.; Sadler, M.; Cronan, T. The indirect effects of recalled trauma severity on pain ratings among people with fibromyalgia: A moderated mediation model. Behav. Med. 2023, 50, 211–223. [Google Scholar] [CrossRef] [PubMed]
- Treede, R.D.; Rief, W.; Barke, A.; Aziz, Q.; Bennett, M.I.; Benoliel, R.; Cohen, M.; Evers, S.; Finnerup, N.B.; First, M.B.; et al. Chronic pain as a symptom or a disease: The IASP Classification of Chronic Pain for the International Classification of Diseases (ICD-11). Pain 2019, 160, 19–27. [Google Scholar] [CrossRef]
- Souza Monteiro de Araujo, D.; Nassini, R.; Geppetti, P.; De Logu, F. TRPA1 as a therapeutic target for nociceptive pain. Expert Opin. Ther. Targets 2020, 24, 997–1008. [Google Scholar] [CrossRef]
- Gilliam, W.P.; Schumann, M.E.; Cunningham, J.L.; Evans, M.M.; Luedtke, C.A.; Morrison, E.J.; Sperry, J.A.; Vowles, K.E. Pain catastrophizing as a treatment process variable in cognitive behavioral therapy for adults with chronic pain. Eur. J. Pain 2021, 25, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Jensen, M.P.; Brownstone, R.M. Mechanisms of spinal cord stimulation for the treatment of pain: Still in the dark after 50 years. Eur. J. Pain 2019, 23, 652–659. [Google Scholar] [CrossRef] [PubMed]
- Nadim, F.; Bucher, D. Neuromodulation of neurons and synapses. Curr. Opin. Neurobiol. 2014, 29, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Manion, J.; Waller, M.A.; Clark, T.; Massingham, J.N.; Neely, G.G. Developing Modern Pain Therapies. Front. Neurosci. 2019, 13, 1370. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Kelliher, L. Physiology of pain—A narrative review on the pain pathway and its application in the pain management. Dig. Med. Res. 2022, 5, 56. [Google Scholar] [CrossRef]
- Bennett, D.L.; Clark, A.L.; Huang, J.; Waxman, S.G.; Dib-Hajj, S.D. The Role of Voltage-Gated Sodium Channels in Pain Signaling. Physiol. Rev. 2019, 99, 1079–1151. [Google Scholar] [CrossRef]
- Lo, Y.-C.; Li, T.J.T.; Lin, T.-C.; Chen, Y.-Y.; Kang, J.-H. Microstructural Evidence of Neuroinflammation for Psychological Symptoms and Pain in Patients with Fibromyalgia. J. Rheumatol. 2022, 49, 942–947. [Google Scholar] [CrossRef] [PubMed]
- Caro, X.J.; Winter, E.F. Evidence of abnormal epidermal nerve fiber density in fibromyalgia: Clinical and immunologic implications. Arthritis Rheumatol. 2014, 66, 1945–1954. [Google Scholar] [CrossRef]
- Boneparth, A.; Chen, S.; Horton, D.B.; Moorthy, L.N.; Farquhar, I.; Downs, H.M.; Lee, H.; Oaklander, A.L. Epidermal neurite density in skin biopsies from patients with juvenile fibromyalgia. J. Rheumatol. 2021, 48, 575–578. [Google Scholar] [CrossRef]
- Ramírez, M.; Martínez-Martínez, L.A.; Hernández-Quintela, E.; Velazco-Casapía, J.; Vargas, A.; Martínez-Lavín, M. Small fiber neuropathy in women with fibromyalgia. An in vivo assessment using corneal confocal bio-microscopy. Semin. Arthritis Rheum. 2015, 45, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Grayston, R.; Czanner, G.; Elhadd, K.; Goebel, A.; Frank, B.; Üçeyler, N.; Malik, R.A.; Alam, U. A systematic review and meta-analysis of the prevalence of small fiber pathology in fibromyalgia: Implications for a new paradigm in fibromyalgia etiopathogenesis. Semin. Arthritis Rheum. 2019, 48, 933–940. [Google Scholar] [CrossRef] [PubMed]
- Van Assche, D.C.F.; Plaghki, L.; Masquelier, E.; Hatem, S.M. Fibromyalgia syndrome—A laser-evoked potentials study unsupportive of small nerve fibre involvement. Eur. J. Pain 2019, 24, 448–456. [Google Scholar] [CrossRef] [PubMed]
- Di Carlo, M.; Bianchi, B.; Cipolletta, E.; Farah, S.; Filippucci, E.; Salaffi, F. Imaging of the peripheral nervous system in nociplastic pain: An ultrasound study in patients with fibromyalgia. J. Neuroimaging 2023, 33, 558–565. [Google Scholar] [CrossRef] [PubMed]
- Arnold, L.M.; Fan, J.; Russell, I.J.; Yunus, M.B.; Khan, M.A.; Kushner, I.; Olson, J.M.; Iyengar, S.K. The fibromyalgia family study: A genome-wide linkage scan study. Arthritis Rheum. 2013, 65, 1122–1128. [Google Scholar] [CrossRef]
- Kimura, A.; Yamasaki, H.; Ishii, H.; Yoshida, H.; Shimizu, M.; Mori, T. Effects of Polymorphisms in the Serotonin Transporter Promoter-Linked Polymorphic Region on Postthoracotomy Pain Severity. J. Pain Res. 2021, 14, 1389–1397. [Google Scholar] [CrossRef] [PubMed]
- D’Agnelli, S.; Arendt-Nielsen, L.; Gerra, M.C.; Zatorri, K.; Boggiani, L.; Baciarello, M.; Bignami, E. Fibromyalgia: Genetics and epigenetics insights may provide the basis for the development of diagnostic biomarkers. Mol. Pain 2019, 15, 1744806918819944. [Google Scholar] [CrossRef] [PubMed]
- Nugraha, B.; Anwar, S.L.; Gutenbrunner, C.; Korallus, C. Polymorphisms of brain-derived neurotrophic factor genes are associated with anxiety and body mass index in fibromyalgia syndrome patients. BMC Res. Notes 2020, 13, 402. [Google Scholar] [CrossRef]
- Lee, Y.H.; Choi, S.J.; Ji, J.D.; Song, G.G. Candidate gene studies of fibromyalgia: A systematic review and meta-analysis. Rheumatol. Int. 2012, 32, 417–426. [Google Scholar] [CrossRef]
- Mamoun Abdelmageid, S.; Mousa Alamir, F.; Yousif Abdelrahman, H.; Mohamed Abushama, H. Association of COMT Val158Met Polymorphism with Fibromyalgia in Khartoum State, Sudan. Pain Res. Manag. 2023, 7313587. [Google Scholar] [CrossRef] [PubMed]
- Offenbaecher, M.; Bondy, B.; Jonge, S.D.; Glatzeder, K.; Krüger, M.; Schoeps, P.; Ackenheil, M. Possible association of fibromyalgia with a polymorphism in the serotonin transporter gene regulatory region. Arthritis Rheum. 1999, 42, 2482–2488. [Google Scholar] [CrossRef] [PubMed]
- Ledermann, K.; Hasler, G.; Jenewein, J.; Sprott, H.; Schnyder, U.; Martin-Soelch, C. 5ʹUTR polymorphism in the serotonergic receptor HTR3A gene is differently associated with striatal Dopamine D2/D3 receptor availability in the right putamen in Fibromyalgia patients and healthy controls—Preliminary evidence. Synapse 2020, 74, e22147. [Google Scholar] [CrossRef]
- McLean, S.A.; Williams, D.A.; Harris, R.E.; Kop, W.J.; Groner, K.H.; Ambrose, K.; Lyden, A.K.; Gracely, R.H.; Crofford, L.; Geisser, M.E.; et al. Momentary relationship between cortisol secretion and symptoms in patients with fibromyalgia. Arthritis Rheum. 2005, 52, 3660–3669. [Google Scholar] [CrossRef] [PubMed]
- Crofford, L.J.; Young, E.A.; Engleberg, N.C.; Korszun, A.; Brucksch, C.B.; McClure, L.A.; Brown, M.B.; Demitrack, M.A. Basal circadian and pulsatile ACTH and cortisol secretion in patients with fibromyalgia and/or chronic fatigue syndrome. Brain Behav. Immun. 2004, 18, 314–325. [Google Scholar] [CrossRef]
- Abeles, A.M.; Pillinger, M.H.; Solitar, B.M.; Abeles, M. Narrative review: The pathophysiology of fibromyalgia. Ann. Intern. Med. 2007, 146, 726–734. [Google Scholar] [CrossRef] [PubMed]
- Knezevic, E.; Nenic, K.; Milanovic, V.; Knezevic, N.N. The Role of Cortisol in Chronic Stress, Neurodegenerative Diseases, and Psychological Disorders. Cells 2023, 12, 2726. [Google Scholar] [CrossRef]
- Atamer, Y.; Şahbaz, T.; Aşık, H.K.; Saraç, S.; Atamer, A. The relationship between serum leptin, insulin-like growth factor-1, and insulin-like growth factor binding protein-3 levels and clinical parameters in primary fibromyalgia patients. Rev. Assoc. Medica Bras. 2023, 69, e20230240. [Google Scholar] [CrossRef] [PubMed]
- Deveci, H. Relationship between fibromyalgia clinical and laboratory parameters with obesity. Pamukkale Med. J. 2020, 13, 207–214. [Google Scholar]
- Tander, B.; Atmaca, A.; Aliyazicioglu, Y.; Canturk, F. Serum ghrelin levels but not GH, IGF-1 and IGFBP-3 levels are altered in patients with fibromyalgia syndrome. Jt. Bone Spine 2007, 74, 477–481. [Google Scholar] [CrossRef]
- Hulens, M.; Dankaerts, W.; Rasschaert, R.; Bruyninckx, F.; Mulder, P.; Bervoets, C. The link between empty sella syndrome, fibromyalgia, and chronic fatigue syndrome: The role of ıncreased cerebrospinal fluid pressure. J. Pain Res. 2023, 16, 205–219. [Google Scholar] [CrossRef] [PubMed]
- Koca, T.T.; Berk, E.; Seyithanoğlu, M.; Koçyiğit, B.F.; Demirel, A. Relationship of leptin, growth hormone, and insulin-like growth factor levels with body mass index and disease severity in patients with fibromyalgia syndrome. Acta Neurol. Belg. 2020, 120, 595–599. [Google Scholar] [CrossRef] [PubMed]
- Musker, M.; McArthur, A.; Munn, Z.; Wong, M.L. Circulating leptin levels in patients with myalgic encephalomyelitis, chronic fatigue syndrome or fibromyalgia: A systematic review protocol. JBI Evid. Synth. 2021, 19, 695–701. [Google Scholar] [CrossRef] [PubMed]
- Gümüş, G.A. The association of IGF-1 with clinical symptoms in female patients with fibromyalgia syndrome. Ank. Med. J. 2018, 18, 410–418.40. [Google Scholar]
- Paul-Savoie, E.; Marchand, S.; Morin, M.; Bourgault, P.; Brissette, N.; Rattanavong, V.; Cloutier, C.; Bissonnette, A.; Potvin, S. Is the deficit in pain inhibition in fibromyalgia influenced by sleep impairments? Open Rheumatol. J. 2012, 6, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Schertzinger, M.; Wesson-Sides, K.; Parkitny, L.; Younger, J. Daily fluctuations of progesterone and testosterone are associated with fibromyalgia pain severity. J. Pain 2018, 19, 410–417. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Silman, A.J. Psychological stress and fibromyalgia: A review of the evidence suggesting a neuroendocrine link. Arthritis Res. Ther. 2004, 6, 98. [Google Scholar] [CrossRef]
- Koca, T.; Kocyigit, B.; Seyithanoglu, M.; Berk, E. The Importance of G-protein Coupled Estrogen Receptor in Patients with Fibromyalgia. Arch. Rheumatol. 2019, 34, 419–425. [Google Scholar] [CrossRef]
- Viviani, B.; Bartesaghi, S.; Gardoni, F.; Vezzani, A.; Behrens, M.M.; Bartfai, T.; Binaglia, M.; Corsini, E.; Di Luca, M.; Galli, C.; et al. Interleukin-1β Enhances NMDA Receptor-Mediated Intracellular Calcium Increase through Activation of the Src Family of Kinases. J. Neurosci. Off. J. Soc. Neurosci. 2003, 23, 8692–8700. [Google Scholar] [CrossRef] [PubMed]
- Littlejohn, G.; Guymer, E. Neurogenic inflammation in fibromyalgia. Semin. Immunopathol. 2018, 40, 291–300. [Google Scholar] [CrossRef]
- Sturgill, J.; McGee, E.; Menzies, V. Unique cytokine signature in the plasma of patients with fibromyalgia. J. Immunol. Res. 2014, 2014, 938576. [Google Scholar] [CrossRef]
- Mendieta, D.; De la Cruz-Aguilera, D.L.; Barrera-Villalpando, M.I.; Becerril-Villanueva, E.; Arreola, R.; Hernandez-Ferreira, E.; Pérez-Tapia, S.M.; Pérez-Sánchez, G.; Garcés-Alvarez, M.E.; Aguirre-Cruz, L.; et al. IL-8 and IL-6 primarily mediate the inflammatory response in fibromyalgia patients. J. Neuroimmunol. 2016, 290, 22–25. [Google Scholar] [CrossRef] [PubMed]
- O’Mahony, L.F.; Srivastava, A.; Mehta, P.; Ciurtin, C. Is fibromyalgia associated with a unique cytokine profile? A systematic review and meta-analysis. Rheumatology 2021, 60, 2602–2614. [Google Scholar] [CrossRef] [PubMed]
- Mastrangelo, F.; Frydas, I.; Ronconi, G.; Kritas, S.K.; Tettamanti, L.; Caraffa, A.I.; D Ovidio, C.; Younes, A.; Gallenga, C.; Conti, P. Low-grade chronic inflammation mediated by mast cells in fibromyalgia: Role of IL-37. J. Biol. Regul. Homeost. Agents. 2018, 32, 195–198. [Google Scholar]
- Coskun, B.I. Role of inflammation in the pathogenesis and treatment of fibromyalgia. Rheumatol. Int. 2019, 39, 781–791. [Google Scholar] [CrossRef] [PubMed]
- Buskila, D.; Atzeni, F.; Sarzi-Puttini, P. Etiology of fibromyalgia: The possible role of infection and vaccination. Autoimmun. Rev. 2008, 8, 41–43. [Google Scholar] [CrossRef]
- Fitzcharles, M.A.; Ste-Marie, P.A.; Mailis, A.; Shir, Y. Adjudication of fibromyalgia syndrome: Challenges in the medicolegal arena. Pain Res. Manag. 2014, 19, 287–292. [Google Scholar] [CrossRef]
- Clauw, D.J.; Engel, C.C.; Aronowitz, R.; Jones, E.; Kipen, H.M.; Kroenke, K.; Ratzan, S.; Sharpe, M.; Wessely, S. Unexplained symptoms after terrorism and war: An expert consensus statement. J. Occup. Environ. Med. 2003, 45, 1040–1048. [Google Scholar] [CrossRef] [PubMed]
- Hunskar, G.S.; Rortveit, G.; Litleskare, S.; Eide, G.E.; Hanevik, K.; Langeland, N.; Wensaas, K.A. Prevalence of fibromyalgia 10 years after infection with Giardia lamblia: A controlled prospective cohort study. Scand. J. Pain 2021, 22, 348–355. [Google Scholar] [CrossRef]
- Giesecke, T.; Gracely, R.H.; Williams, D.A.; Geisser, M.E.; Petzke, F.W.; Clauw, D.J. The relationship between depression, clinical pain, and experimental pain in a chronic pain cohort. Arthritis Rheum. 2005, 52, 1577–1584. [Google Scholar] [CrossRef]
- Epstein, S.A.; Kay, G.; Clauw, D.; Heaton, R.; Klein, D.; Krupp, L.; Kuck, J.; Leslie, V.; Masur, D.; Wagner, M.; et al. Psychiatric disorders in patients with fibromyalgia: A multicenter investigation. Psychosomatics 1999, 40, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Cohen, H.; Buskila, D.; Neumann, L.; Ebstein, R.P. Confirmation of an association between fibromyalgia and serotonin transporter promoter region (5-HTTLPR) polymorphism, and relationship to anxiety-related personality traits. Arthritis Rheum. 2002, 46, 845–847. [Google Scholar] [CrossRef]
- Tong, R.L.; Kahn, U.N.; Grafe, L.A.; Hitti, F.L.; Fried, N.T.; Corbett, B.F. Stress circuitry: Mechanisms behind nervous and immune system communication that influence behavior. Front. Psychiatry 2023, 14, 1240783. [Google Scholar] [CrossRef] [PubMed]
- Kleinman, L.; Mannix, S.; Arnold, L.M.; Burbridge, C.; Howard, K.; McQuarrie, K.; Pitman, V.; Resnick, M.; Roth, T.; Symonds, T. Assessment of sleep in patients with fibromyalgia: Qualitative development of the fibromyalgia sleep diary. Health Qual. Life Outcomes 2014, 12, 111. [Google Scholar] [CrossRef] [PubMed]
- Finan, P.H.; Goodin, B.R.; Smith, M.T. The association of sleep and pain: An update and a path forward. J. Pain 2013, 14, 1539–1552. [Google Scholar] [CrossRef] [PubMed]
- Vijayan, S.; Klerman, E.B.; Adler, G.K.; Kopell, N.J. Thalamic mechanisms underlying alpha-delta sleep with implications for fibromyalgia. J. Neurophysiol. 2015, 114, 1923–1930. [Google Scholar] [CrossRef]
- Durkin, J.M.; Aton, S.J. How sleep shapes thalamocortical circuitfunction in the visual system. Annu. Rev. Vis. Sci. 2019, 5, 295–315. [Google Scholar] [CrossRef] [PubMed]
- Flodin, P.; Martinsen, S.; Löfgren, M.; Bileviciute-Ljungar, I.; Kosek, E.; Fransson, P. Fibromyalgia is associated with decreased connectivity between pain- and sensorimotor brain areas. Brain Connect. 2014, 4, 587–594. [Google Scholar] [CrossRef] [PubMed]
- Keskindag, B.; Karaaziz, M. The association between pain and sleep in fibromyalgia. Saudi Med. J. 2017, 38, 465–475. [Google Scholar] [CrossRef]
- Bigatti, S.M.; Hernandez, A.M.; Cronan, T.A.; Rand, K.L. Sleep disturbances in fibromyalgia syndrome: Relationship to pain and depression. Arthritis Care Res. 2008, 59, 961–967. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, N.A.; Affleck, G.; Tennen, H.; Karlson, C.; Luxton, D.; Preacher, K.J.; Templin, J.L. Fibromyalgia: The role of sleep-in affect and in negative event reactivity and recovery. Health Psychol. 2008, 27, 490–497. [Google Scholar] [CrossRef] [PubMed]
- Moldofsky, H. The significance of dysfunctions of the sleeping/waking brain to the pathogenesis and treatment of fibromyalgia syndrome. Rheum. Dis. Clin. N. Am. 2009, 35, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Irwin, M.R.; Olmstead, R.; Carrillo, C.; Sadeghi, N.; Fitzgerald, J.D.; Ranganath, V.K.; Nicassio, P.M. Sleep loss exacerbates fatigue, depression, and pain in rheumatoid arthritis. Sleep 2012, 35, 537–543. [Google Scholar] [CrossRef]
- Kvarnström, K.; Westerholm, A.; Airaksinen, M.; Liira, H. Factors Contributing to Medication Adherence in Patients with a Chronic Condition: A Scoping Review of Qualitative Research. Pharmaceutics 2021, 13, 1100. [Google Scholar] [CrossRef] [PubMed]
- Furness, P.J.; Vogt, K.; Ashe, S.; Taylor, S.; Haywood-Small, S.; Lawson, K. What cause fibromyalgia? An online survey of patient perspectives. Health Psychol Open 2018, 5, 2055102918802683. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, F.; Smythe, H.A.; Yunus, M.B.; Bennett, R.M.; Bombardier, C.; Goldenberg, D.L.; Tugwell, P.; Campbell, S.M.; Abeles, M.; Clark, P.; et al. The American College of Rheumatology 1990 criteria for classification of fibromyalgia. Report of the multicenter criteria committee. Arthritis Rheum. 1990, 33, 160–172. [Google Scholar] [CrossRef] [PubMed]
- Motaqi, M.; Ghanjal, A. Trigger and Tender Points (Definitions, Similarities, Differences, Treatments). Int. J. Musculoskelet. Pain Prev. 2020, 5, 393–395. [Google Scholar] [CrossRef]
- Borg-Stein, J.; Stein, J. Trigger points and tender points: One and the same? Does injection treatment help? Rheum. Dis. Clin. N. Am. 1996, 22, 305–322. [Google Scholar] [CrossRef]
- Wolfe, F.; Clauw, D.J.; Fitzcharles, M.A.; Goldenberg, D.L.; Häuser, W.; Katz, R.L.; Mease, P.J.; Russell, A.S.; Russell, I.J.; Walitt, B. 2016 Revisions to the 2010/2011 fibromyalgia diagnostic criteria. Semin. Arthritis Rheum. 2016, 46, 319–329. [Google Scholar] [CrossRef]
- Arnold, L.M.; Bennett, R.M.; Crofford, L.J.; Dean, L.E.; Clauw, D.J.; Goldenberg, D.L.; Fitzcharles, M.A.; Paiva, E.S.; Staud, R.; Sarzi-Puttini, P.; et al. AAPT diagnostic criteria for fibromyalgia. J. Pain 2018, 20, 611–628. [Google Scholar] [CrossRef] [PubMed]
- Baron, R.; Perrot, S.; Guillemin, I.; Alegre, C.; Dias-Barbosa, C.; Choy, E.; Gilet, H.; Cruccu, G.; Desmeules, J.; Margaux, J.; et al. Improving the primary care physicians’ decision making for fibromyalgia in clinical practice: Development and validation of the fibromyalgia detection (FibroDetect®) screening tool. Health Qual. Life Outcomes 2014, 12, 128. [Google Scholar] [CrossRef] [PubMed]
- Bennett, R.M.; Perrot, S.; Guillemin, I.; Alegre, C.; Dias-Barbosa, C.; Choy, E.; Gilet, H.; Cruccu, G.; Desmeules, J.; Margaux, J.; et al. The Revised Fibromyalgia Impact Questionnaire (FIQR): Validation and psychometric properties. Arthritis Res. Ther. 2009, 11, R120. [Google Scholar] [CrossRef]
- Salaffi, F.; Sarzi-Puttini, P.; Girolimetti, R.; Gasparini, S.; Atzeni, F.; Grassi , W. Development and validation of the self-administered Fibromyalgia Assessment Status: A disease-specific composite measure for evaluating treatment effect. Arthritis Res. Ther. 2009, 11, R125. [Google Scholar] [CrossRef] [PubMed]
- Iannuccelli, C.; Sarzi-Puttini, P.; Atzeni, F.; Cazzola, M.; di Franco, M.; Guzzo, M.P.; Bazzichi, L.; Cassisi, G.A.; Marsico, A.; Stisi, S.; et al. Psychometric properties of the Fibromyalgia Assessment Status (FAS) index: A national web-based study of fibromyalgia. Clin. Exp. Rheumatol. 2011, 29, S49–S54. [Google Scholar]
- Macfarlane, G.J.; Kronisch, C.; Dean, L.E.; Atzeni, F.; Häuser, W.; Fluß, E.; Choy, E.; Kosek, E.; Amris, K.; Branco, J.; et al. EULAR revised recommendations for the management of fibromyalgia. Ann. Rheum. Dis. 2017, 76, 318–328. [Google Scholar] [CrossRef] [PubMed]
- Calandre, E.P.; Rico-Villademoros, F.; Slim, M. An update on pharmacotherapy for the treatment of fibromyalgia. Expert. Opin. Pharmacother. 2015, 16, 1347–1368. [Google Scholar] [CrossRef] [PubMed]
- Alciati, A.; Atzeni, F.; Masala, I.F.; Cirillo, M.; Sciortino, D.; Perna, G.; Sarzi-Puttini, P. Controlled-release pregabalin in the treatment of fibromyalgia. Expert Rev. Neurother. 2018, 18, 617–623. [Google Scholar] [CrossRef] [PubMed]
- Littlejohn, G.O.; Guymer, E.K.; Ngian, G.-S. Is there a role for opioids in the treatment ofb fibromyalgia? Pain Manag. 2016, 6, 347–355. [Google Scholar] [CrossRef]
- Clauw, D.J.; Hassett, A.L. The role of centralised pain in osteoarthritis. Clin. Exp. Rheumatol. 2017, 35, S79–S84. [Google Scholar]
- Arnold, L.M.; Russell, I.J.; Diri, E.W.; Duan, W.R.; Young, J.P., Jr.; Sharma, U.; Martin, S.A.; Barrett, J.A.; Haig, G. A 14-week, randomized, double-blinded, placebo-controlled monotherapy trial of pregabalin in patients with fibromyalgia. J. Pain 2008, 9, 792–805. [Google Scholar] [CrossRef] [PubMed]
- Bernardy, K.; Klose, P.; Welsch, P.; Häuser, W. Efficacy, acceptability and safety of cognitive behavioural therapies in fibromyalgia syndrome—A systematic review and meta-analysis of randomized controlled trials. Eur. J. Pain 2018, 22, 242–260. [Google Scholar] [CrossRef]
- Busch, A.J.; Barber, K.A.R.; Overend, T.J.; Peloso, P.M.J.; Schachter, C.L. Exercise for treating fibromyalgia syndrome. Cochrane Database Syst. Rev. 2007, 17, CD003786. [Google Scholar] [CrossRef] [PubMed]
- O’Dwyer, T.; Maguire, S.; Mockler, D.; Durcan, L.; Wilson, F. Behaviour change interventions targeting physical activity in adults with fibromyalgia: A systematic review. Rheumatol. Int. 2019, 39, 805–817. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Fang, L.; Zhang, J.; Liu, Y.; Wang, G.; Qi, R. Repetitive Transcranial Magnetic Stimulation for Patients with Fibromyalgia: A Systematic Review with Meta-Analysis. Pain Med. 2022, 23, 499–514. [Google Scholar] [CrossRef]
- Moshfeghinia, R.; Shekouh, D.; Mostafavi, S.; Hosseinzadeh, M.; Bahadori, A.R.; Abdollahifard, S.; Razmkon, A. The effects of transcranial direct-current stimulation (tDCS) on pain intensity of patients with fibromyalgia: A systematic review and meta-analysis. BMC Neurol. 2023, 23, 395. [Google Scholar] [CrossRef] [PubMed]
- Ansari, A.H.; Pal, A.; Ramamurthy, A.; Kabat, M.; Jain, S.; Kumar, S. Fibromyalgia pain and depression: An update on the role of repetitive transcranial magnetic stimulation. ACS Chem. Neurosci. 2021, 12, 256–270. [Google Scholar] [CrossRef]
- Teixeira, P.E.P.; Pacheco-Barrios, K.; Branco, L.C.; de Melo, P.S.; Marduy, A.; Caumo, W.; Papatheodorou, S.; Keysor, J.; Fregni, F. The Analgesic Effect of Transcranial Direct Current Stimulation in Fibromyalgia: A Systematic Review, Meta-Analysis, and Meta-Regression of Potential Influencers of Clinical Effect. Neuromodulation 2023, 26, 715–727. [Google Scholar] [CrossRef]
Table 1 | Tender Points | Trigger Points |
---|---|---|
Definition | Pain-sensitive points in the muscles, the junction of muscles—tendons, bursae or fat pads | Areas of muscle that are painful to the touch and have stiff (short) muscle fibers that create a pattern of pain referrals |
Distribution | Symmetric widespread | Focal/asymmetric, any muscle |
Allodynia/Hyperalgesia | Present in tender points and in control sites throughout the body | Present in the trigger point only |
Treatment | Lifestyle modification, exercise, stretching, cognitive behavioral therapy, acupuncture, acupressure, massage, yoga pharmacotherapy for Fibromyalgia | Transcutaneous Electrical Nerve Stimulation (TENS), dry needling, high-intensity focused ultrasound, pressure release, ice pack/warm pad, injection to the trigger point |
Authority/Organization | Diagnostic Criteria | Key Updates | Associated Symptoms |
---|---|---|---|
American College of Rheumatology (ACR) | ACR 1990 Criteria | First standardized diagnostic criteria. Focused on tender points and widespread pain. | Chronic widespread pain, localized tenderness, morning stiffness, fatigue. |
- Widespread pain for at least 3 months. | |||
- Pain on palpation of 11 out of 18 specific tender points. | |||
ACR | ACR 2010 Preliminary Criteria | Emphasis on a broader range of symptoms (e.g., fatigue, cognitive issues). | Chronic pain, fatigue, sleep disturbances, cognitive dysfunction (“fibro fog”), and headaches. |
- Removed tender point exam. | |||
- Introduced Widespread Pain Index (WPI) and Symptom Severity Scale (SSS). | |||
ACR (Modified) | 2011 Modified ACR Criteria | Allowed diagnosis in clinical practice without tender point examination. | Chronic pain, stiffness, fatigue, memory issues, depression, anxiety, and irritable bowel symptoms. |
- Simplified the 2010 criteria. | |||
- Introduced self-report surveys for WPI and SSS. | |||
ACR | Revised ACR 2016 Criteria | Improved specificity and reduced overdiagnosis. | Widespread pain, unrefreshing sleep, fatigue, sensitivity to external stimuli (light, noise), depression. |
- Added a generalized pain criterion (at least 4 of 5 regions). | |||
- Retained WPI and SSS but refined scoring rules. | |||
European League Against Rheumatism (EULAR) | EULAR 2019 Guidelines | Provided a comprehensive approach for diagnosis and treatment, not solely criteria-based. | Pain amplification, severe fatigue, sleep disorders, mood disorders, cognitive impairments, and IBS. |
- Emphasized multidisciplinary management of FM. | |||
- Highlighted the importance of patient-reported outcomes and functional impact. | |||
Research and Clinical Practice | Evolving understanding of FM as a centralized pain condition with possible genetic, psychological, and environmental influences. | New biomarkers and imaging technologies are under investigation to enhance diagnosis. | Neuroinflammation, altered pain pathways, chronic fatigue, anxiety, depression, and autonomic issues. |
Treatment | Mechanism of Action | Evidence Level (EULAR) | Potential Side Effects |
---|---|---|---|
Amitriptyline | Increases serotonin and norepinephrine levels to modulate pain pathways | IA (low-dose only) | Sedation, dry mouth, weight gain, dizziness |
Pregabalin | Reduces nerve signaling related to pain via calcium channel modulation | IA | Dizziness, somnolence, weight gain, peripheral edema |
Duloxetine | Inhibits serotonin and norepinephrine reuptake to enhance pain modulation | IA | Nausea, headache, dry mouth, fatigue |
Cognitive Behavioral Therapy (CBT) | Addresses negative thought patterns and coping mechanisms for pain management | IA | None specific; potential emotional discomfort during therapy |
Exercise (Aerobic/Strength Training) | Enhances endorphin release and improves overall physical functioning | IA | Muscle soreness, risk of overexertion |
Mindfulness-based Stress Reduction (MBSR) | Reduces stress and enhances self-regulation of pain | IA | None specific; initial frustration or difficulty adhering to practice |
Acupuncture | Stimulates nerve pathways and alters pain perception | IA | Mild bruising, temporary pain at needle sites |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filipovic, T.; Filipović, A.; Nikolic, D.; Gimigliano, F.; Stevanov, J.; Hrkovic, M.; Bosanac, I. Fibromyalgia: Understanding, Diagnosis and Modern Approaches to Treatment. J. Clin. Med. 2025, 14, 955. https://doi.org/10.3390/jcm14030955
Filipovic T, Filipović A, Nikolic D, Gimigliano F, Stevanov J, Hrkovic M, Bosanac I. Fibromyalgia: Understanding, Diagnosis and Modern Approaches to Treatment. Journal of Clinical Medicine. 2025; 14(3):955. https://doi.org/10.3390/jcm14030955
Chicago/Turabian StyleFilipovic, Tamara, Aleksandar Filipović, Dejan Nikolic, Francesca Gimigliano, Jelena Stevanov, Marija Hrkovic, and Ivana Bosanac. 2025. "Fibromyalgia: Understanding, Diagnosis and Modern Approaches to Treatment" Journal of Clinical Medicine 14, no. 3: 955. https://doi.org/10.3390/jcm14030955
APA StyleFilipovic, T., Filipović, A., Nikolic, D., Gimigliano, F., Stevanov, J., Hrkovic, M., & Bosanac, I. (2025). Fibromyalgia: Understanding, Diagnosis and Modern Approaches to Treatment. Journal of Clinical Medicine, 14(3), 955. https://doi.org/10.3390/jcm14030955