Non-Proteinuric Diabetic Nephropathy
Abstract
:1. Introduction
2. Classic Diabetic Nephropathy
- Class I, glomerular basement membrane thickening: isolated glomerular basement membrane thickening and only mild, nonspecific changes by light microscopy that do not meet the criteria of classes II through IV.
- Class II, mesangial expansion, mild (IIa) or severe (IIb): glomeruli classified as mild or severe mesangial expansion but without nodular sclerosis (Kimmelstiel-Wilson lesions) or global glomerulosclerosis in more than 50% of glomeruli.
- Class III, nodular sclerosis (Kimmelstiel-Wilson lesions): at least one glomerulus with nodular increase in mesangial matrix (Kimmelstiel-Wilson) without changes described in class IV.
- Class IV, advanced diabetic glomerulosclerosis: more than 50% global glomerulosclerosis with other clinical or pathologic evidence that sclerosis is attributable to diabetic nephropathy [17].
3. Non-Proteinuric Diabetic Kidney Disease
3.1. Histopathological Findings
- Normal or near-normal renal structure. These patients (41%) had biopsies which were normal or showed mild mesangial expansion, tubulo-interstitial changes, or arteriolar hyalinosis.
- Typical diabetic nephropathology. These patients (26%) had established diabetic lesions with an approximately balanced severity of glomerular, tubulo-interstitial, and arteriolar changes. This picture was typical of that seen in Type 1 diabetic patients with obvious light microscopy DN changes.
- Atypical patterns of renal injury. These patients (33%) had relatively mild glomerular diabetic changes despite disproportionately severe renal structural changes in all possible combinations:
- a.
- Tubular atrophy, tubular basement membrane thickening, and reduplication and interstitial fibrosis (tubulo-interstitial lesions).
- b.
- Advanced glomerular arteriolar hyalinosis commonly associated with atherosclerosis of larger vessels.
- c.
- Global glomerular sclerosis.
CONTROL | GFR > 90 | GFR < 90 | |
---|---|---|---|
GBM width | 331.5 ± 45.7 | 469.4 ± 84.2 | 544.5 ± 140.7 |
Sv (PGBM/glom) | 0.20 ± 0.03 | 0.28 ± 0.06 | 0.34 ± 0.08 |
Vv (MC/glom) | 0.09 ± 0.02 | 0.15 ± 0.04 | 0.20 ± 0.06 |
Vv (Mes/glom) | 0.08 ± 0.02 | 0.08 ± 0.02 | 0.10 ± 0.02 |
Vv (MM/glom) | 0.126 ± 0.018 | 0.116 ± 0.019 | 0.094 ± 0.021 |
3.2. Risk of Progression
3.3. Causes of Non-Proteinuric Diabetic Nephropahty
Author Contributions
Conflicts of Interest
References
- Whiting, D.; Guariguata, L.; Weil, C.; Shaw, J. IDF diabetes atlas: Global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res. Clin. Pract. 2011, 94, 311–321. [Google Scholar] [CrossRef] [PubMed]
- De Boer, I.H.; Rue, T.C.; Hall, Y.N.; Heagerty, P.J.; Weiss, N.S.; Himmelfarb, J. Temporal trends in the prevalence of diabetic kidney disease in the United States. JAMA 2011, 305, 2532–2539. [Google Scholar] [CrossRef] [PubMed]
- Parving, H.; Lewis, J.; Ravid, M.; Remuzzi, G.; Hunsicker, L.G.; DEMAND investigators. Prevalence and risk factors for microalbuminuria in a referred cohort of Type 2 diabetic patients: A global perspective. Kidney Int. 2006, 69, 2057–2063. [Google Scholar] [CrossRef] [PubMed]
- US Renal Data System. USRDS 2012 Annual Data Report: Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the United States; National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda, MD, USA, 2012.
- Hill, C.J.; Fogarty, D.G. Changing trends in end-stage renal disease due to diabetes in the United Kingdom. J. Ren. Care 2012, 38 (Suppl. 1), 12–22. [Google Scholar] [CrossRef] [PubMed]
- Grace, B.; Clayton, P.; McDonald, S. Increases in renal replacement therapy in Australia and New Zealand: Understanding trends in diabetic nephropathy. Nephrology (Carlton) 2012, 17, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Collins, A.J.; Kasiske, B.; Herzog, C.; Chavers, B.; Foley, R.; Gilbertson, D.; Grimm, R.; Liu, J.; Louis, T.; Manning, W.; et al. United States Renal Data System: Excerpts from the United States Renal Data System 2004 annual data report: Atlas of end-stage renal disease in the United States. Am. J. Kidney Dis. 2005, 45, A5–A7. [Google Scholar] [CrossRef] [PubMed]
- Adler, A.I.; Stevens, R.J.; Manley, S.E.; Bilous, R.W.; Cull, C.A.; Holman, R.R.; UKPDS GROUP. Development and progression of nephropathy in Type 2 diabetes: The United Kingdom Prospective Diabetes Study (UKPDS 64). Kidney Int. 2003, 63, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Ismail, N.; Becker, B.; Strzelczyk, P.; Ritz, E. Renal disease and hypertension in non-insulin dependent diabetes mellitus. Kidney Int. 1999, 55, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Parving, H.H.; Mauer, M.; Ritz, E. Diabetic nephropathy. In Brenner and Rector’s The Kidney, 8th ed.; Brenner, B., Ed.; Saunders: Philadelphia, PA, USA, 2007; Volume 2, pp. 1265–1298. [Google Scholar]
- Stokes, M.B.; Markowitz, G.S.; D’Agati, V.D. The modern spectrum of renal biopsy findings in patients with diabetes. Clin. J. Am. Soc. Nephrol. 2013, 8, 1718–1724. [Google Scholar]
- Groop, P.H.; Thomas, M.C.; Moran, J.L.; Wadèn, J.; Thorn, L.M.; Mäkinen, V.P.; Rosengård-Bärlund, M.; Saraheimo, M.; Hietala, K.; Heikkilä, O.; et al. The presence and severity of chronic kidney disease predicts all-cause mortality in Type 1 diabetes. Diabetes 2009, 58, 1651–1658. [Google Scholar] [CrossRef] [PubMed]
- Orchard, T.J.; Dorman, J.S.; Maser, R.E.; Becker, D.J.; Drash, A.L.; Ellis, D.; LaPorte, R.E.; Kuller, L.H. Prevalence of complications in IDDM by sex and duration. Pittsburgh Epidemiology of Diabetes Complications Study II. Diabetes 1990, 39, 1116–1124. [Google Scholar] [CrossRef] [PubMed]
- Hovind, P.; Rossing, P.; Tarnow, L.; Smidt, U.M.; Parving, H.H. Progression of diabetic nephropathy. Kidney Int. 2001, 59, 702–709. [Google Scholar] [CrossRef] [PubMed]
- Robles, N.; Fernández-Carbonero, E.; Sánchez Casado, E.; Cuberto, J. Growing incidence of diabetic nephropathy in the region of Badajoz during the period 1991–2006. Nefrologia 2009, 29, 244–248. [Google Scholar] [PubMed]
- Hostetter, T.H. Diabetic Nephropathy. In The Kidney, 4th ed.; Brenner, B.M., Rector, F.C., Eds.; Saunders: Londres, UK, 1991; Volume II, pp. 1695–1727. [Google Scholar]
- Tervaert, T.W.; Mooyaart, A.L.; Amann, K.; Cohen, A.H.; Cook, H.T.; Drachenberg, C.B.; Ferrario, F.; Fogo, A.B.; Haas, M.; de Heer, E.; et al. Pathologic classification of diabetic nephropathy. J. Am. Soc. Nephrol. 2010, 21, 556–563. [Google Scholar] [CrossRef] [PubMed]
- Rasch, R.; Nörgaard, J.O. Renal enlargement: Comparative autoradiographic studies of 3H-thymidine uptake in diabetic and uninephrectomized rats. Diabetologia 1983, 25, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Pagtalunan, M.E.; Miller, P.L.; Jumping-Eagle, S.; Nelson, R.G.; Myers, B.D.; Rennke, H.G.; Coplon, N.S.; Sun, L.; Meyer, T.W. Podocyte loss and progressive glomerular injury in Type 2 diabetes. J. Clin. Investig. 1997, 99, 342–348. [Google Scholar] [CrossRef] [PubMed]
- MacIsaac, R.J.; Tsalamandris, C.; Panagiotopoulos, S.; Smith, T.J.; McNeil, K.J.; Jerums, G. Nonalbuminuric renal insufficiency in Type 2 diabetes. Diabetes Care 2004, 27, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Garg, A.X.; Kiberd, B.A.; Clark, W.F.; Haynes, R.B.; Clase, C.M. Albuminuria and renal insufficiency prevalence guides population screening: Results from the NHANES III. Kidney Int. 2002, 61, 2165–2175. [Google Scholar] [CrossRef] [PubMed]
- Kramer, H.J.; Nguyen, Q.D.; Curhan, G.; Hsu, C.Y. Renal insufficiency in the absence of albuminuria and retinopathy among adults with Type 2 diabetes mellitus. JAMA 2003, 289, 3273–3277. [Google Scholar] [CrossRef] [PubMed]
- Penno, G.; Solini, A.; Bonora, E.; Fondelli, C.; Orsi, E.; Zerbini, G.; Trevisan, R.; Vedovato, M.; Gruden, G.; Cavalot, F.; et al. Clinical significance of nonalbuminuric renal impairment in Type 2 diabetes. J. Hypertens. 2011, 29, 1802–1809. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.C.; Macisaac, R.J.; Jerums, G.; Weekes, A.; Moran, J.; Shaw, J.E.; Atkins, R.C. Nonalbuminuric renal impairment in Type 2 diabetic patients and in the general population (national evaluation of the frequency of renal impairment cO-existing with NIDDM [NEFRON] 11). Diabetes Care 2009, 32, 1497–1502. [Google Scholar] [CrossRef] [PubMed]
- Retnakaran, R.; Cull, C.A.; Thorne, K.I.; Adler, A.I.; Holman, R.R.; UKPDS Study Group. Risk factors for renal dysfunction in Type 2 diabetes: UK Prospective Diabetes Study 74. Diabetes 2006, 55, 1832–1839. [Google Scholar] [CrossRef] [PubMed]
- Ninomiya, T.; Perkovic, V.; de Galan, B.E.; Zoungas, S.; Pillai, A.; Jardine, M.; Patel, A.; Cass, A.; Neal, B.; Poulter, N.; et al. Albuminuria and kidney function independently predict cardiovascular and renal outcomes in diabetes. J. Am. Soc. Nephrol. 2009, 20, 1813–1821. [Google Scholar] [CrossRef] [PubMed]
- Rigalleau, V.; Lasseur, C.; Raffaitin, C.; Beauvieux, M.C.; Barthe, N.; Chauveau, P.; Combe, C.; Gin, H. Normoalbuminuric renal insufficient diabetic patients: A lower risk group. Diabetes Care 2007, 30, 2034–2039. [Google Scholar] [CrossRef] [PubMed]
- Moriya, T.; Moriya, R.; Yajima, Y.; Steffes, M.W.; Mauer, M. Urinary albumin as an indicator of diabetic nephropathy lesions in Japanese Type 2 diabetic patients. Nephron 2002, 91, 292–299. [Google Scholar] [CrossRef] [PubMed]
- Fioretto, P.; Stehouwer, C.D.; Mauer, M.; Chiesura-Corona, M.; Brocco, E.; Carraro, A.; Bortoloso, E.; van Hinsbergh, V.W.; Crepaldi, G.; Nosadini, R. Heterogeneous nature of microalbuminuria in NIDDM: Studies of endothelial function and renal structure. Diabetologia 1998, 41, 233–236. [Google Scholar] [CrossRef] [PubMed]
- Fioretto, P.; Mauer, M.; Brocco, E.; Velussi, M.; Frigato, F.; Muollo, B.; Sambataro, M.; Abaterusso, C.; Baggio, B.; Crepaldi, G.; et al. Patterns of renal injury in Type 2 (non-insulin-dependent) diabetic patients with microalbuminuria. Diabetologia 1996, 39, 1569–1576. [Google Scholar] [CrossRef] [PubMed]
- Brocco, E.; Fioretto, P.; Mauer, M.; Saller, A.; Carraro, A.; Frigato, F.; Chiesura-Corona, M.; Bianchi, L.; Baggio, B.; Maioli, M.; et al. Renal structure and function in non-insulin-dependent diabetic patients with microalbuminuria. Kidney Int. 1997, 52, S40–S44. [Google Scholar]
- Fioretto, P.; Mauer, M. Histopathology of diabetic nephropathy. Semin. Nephrol. 2007, 27, 195–207. [Google Scholar] [CrossRef] [PubMed]
- Dalla Vestra, M.; Saller, A.; Bortoloso, E.; Mauer, M.; Fioretto, P. Structural involvement in Type 1 and Type 2 diabetic nephropathy. Diabetes Metab. 2000, 26 (Suppl. 4), 8–14. [Google Scholar] [PubMed]
- Caramori, M.L.; Fioretto, P.; Mauer, M. Low glomerular filtration rate in normoalbuminuric Type 1 diabetic patients: An indicator of more advanced glomerular lesions. Diabetes 2003, 52, 1036–1040. [Google Scholar] [CrossRef] [PubMed]
- Tsalamandris, C.; Allen, T.J.; Gilbert, R.E.; Sinha, A.; Panagiotopoulos, S.; Cooper, M.E.; Jerums, G. Progressive decline in renal function in diabetic patients with and without albuminuria. Diabetes 1994, 43, 649–655. [Google Scholar] [CrossRef] [PubMed]
- Perkins, B.; Ficociello, L.; Roshan, B.; Warram, J.H.; Krolewski, A.S. In patients with Type 1 diabetes and new-onset microalbuminuria the development of advanced chronic kidney disease may not require progression to proteinuria. Kidney Int. 2001, 77, 57–64. [Google Scholar] [CrossRef]
- Bash, L.D.; Selvin, E.; Steffes, M.; Coresh, J.; Astor, B.C. Poor glycemic control in diabetes and the risk of incident chronic kidney disease even in the absence of albuminuria and retinopathy: Atherosclerosis Risk in Communities (ARIC) Study. Arch. Intern. Med. 2008, 168, 2440–2447. [Google Scholar] [CrossRef] [PubMed]
- Jerums, G.; Premaratne, E.; Panagiotopoulos, S.; Clarke, S.; Power, D.A.; MacIsaac, R.J. New and old markers of progression of diabetic nephropathy. Diabetes Res. Clin. Pract. 2008, 82 (Suppl. 1), S30–S37. [Google Scholar] [CrossRef] [PubMed]
- Messerli, F.H.; Panjrath, G.S. The J-Curve Between Blood Pressure and Coronary Artery Disease or Essential Hypertension Exactly How Essential? J. Am. Coll. Cardiol. 2009, 54, 1827–1834. [Google Scholar] [CrossRef] [PubMed]
- Wald, R.; Quinn, R.R.; Luo, J.; Li, P.; Scales, D.C.; Mamdani, M.M.; Ray, J.G.; University of Toronto Acute Kidney Injury Research Group. Chronic dialysis and death among survivors of acute kidney injury requiring dialysis. JAMA 2009, 302, 1179–1185. [Google Scholar] [CrossRef] [PubMed]
- Ishani, A.; Xue, J.; Himmelfarb, J.; Eggers, P.W.; Kimmel, P.L.; Molitoris, B.A.; Collins, A.J. Acute kidney injury increases risk of ESRD among elderly. J. Am. Soc. Nephrol. 2009, 20, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.Y.; McCulloch, C.E.; Fan, D.; Ordoñez, J.D.; Chertow, G.M.; Go, A.S. Community-based incidence of acute renal failure. Kidney Int. 2007, 72, 208–212. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC). Prevalence of chronic kidney disease and associated risk factors–United States, 1999–2004. MMWR Morb. Mortal. Wkly. Rep. 2007, 56, 161–165. [Google Scholar]
- Onuigbo, M.A.C. Can ACE Inhibitors and Angiotensin Receptor Blockers Be Detrimental in CKD Patients? Nephron Clin. Pract. 2011, 118, c407–c419. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.; Pressel, S.; Davis, B.R.; Nwachuku, C.; Wright, J.T., Jr.; Whelton, P.K.; Barzilay, J.; Batuman, V.; Eckfeldt, J.H.; Farber, M.; et al. Renal outcomes in high-risk hypertensive patients treated with an angiotensin-converting enzyme inhibitor or a calcium channel blocker vs. a diuretic: A report from the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). Arch. Intern. Med. 2005, 165, 936–946. [Google Scholar] [PubMed]
- Ponte, B.; Felipe, C.; Muriel, A.; Tenorio, M.T.; Liano, F. Long-term functional evolution after an acute kidney injury: A 10-year study. Nephrol. Dial. Transplant 2008, 23, 3859–3866. [Google Scholar] [CrossRef] [PubMed]
- Onuigbo, M.A.; Achebe, N.J. Acute Kidney Injury on Chronic Kidney Disease-The Rainbow Syndrome of Too Many Colors: A Mayo Clinic Health System Case Series Report. In ACE Inhibitors: Medical Uses, Mechanisms of Action, Potential Adverse Effects and Related Topics; Onuigbo, M.A.C., Ed.; NOVA Publishers: New York, NY, USA, 2013; Volume 1, pp. 91–108. [Google Scholar]
- Onuigbo, M.A. Syndrome of rapid-onset end-stage renal disease: A new unrecognized pattern of CKD progression to ESRD. Ren. Fail 2010, 32, 954–958. [Google Scholar] [CrossRef] [PubMed]
- Onuigbo, M.A.; Agbasi, N. Diabetic Nephropathy and CKD-Analysis of Individual Patient Serum Creatinine Trajectories: A Forgotten Diagnostic Methodology for Diabetic CKD Prognostication and Prediction. J. Clin. Med. 2015, 4, 1348–1368. [Google Scholar] [CrossRef] [PubMed]
- Packham, D.K.; Ivory, S.E.; Reutens, A.T.; Wolfe, R.; Rohde, R.; Lambers Heerspink, H.; Dwyer, J.P.; Atkins, R.C.; Lewis, J.; Collaborative Study Group. Proteinuria in Type 2 diabetic patients with renal impairment: The changing face of diabetic nephropathy. Nephron Clin. Pract. 2011, 118, c331–c338. [Google Scholar] [CrossRef] [PubMed]
- Onuigbo, M.A.; Onuigbo, N.T. Use of ultrahigh RAAS blockade: Implications for exacerbation of renal failure. Kidney Int. 2006, 69, 194–195. [Google Scholar] [CrossRef] [PubMed]
- Suissa, S.; Hutchinson, T.; Brophy, J.M.; Kezouh, A. ACE-inhibitor use and the long-term risk of renal failure in diabetes. Kidney Int. 2006, 69, 913–919. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.K.; Kamath, N.S.; El Kossi, M.; El Nahas, A.M. The impact of stopping inhibitors of the renin-angiotensin system in patients with advanced chronic kidney disease. Nephrol. Dial. Transplant. 2010, 25, 3977–3982. [Google Scholar] [CrossRef] [PubMed]
- Rychlik, I.; Fliser, D.; Ritz, E. Non-diabetic renal disease in Type 2 diabetes mellitus. In Nephropathy in Type 2 Diabetes; Ritz, E., Rychlik, I., Eds.; Oxford University Press: Oxford, UK, 1999; pp. 7–88. [Google Scholar]
- Yasuno, S.; Ueshima, K.; Oba, K.; Fujimoto, A.; Ogihara, T.; Saruta, T.; Nakao, K. Clinical significance of left ventricular hypertrophy and changes in left ventricular mass in high-risk hypertensive patients: A subanalysis of the Candesartan Antihypertensive Survival Evaluation in Japan trial. J. Hypertens. 2009, 27, 1705–1712. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robles, N.R.; Villa, J.; Gallego, R.H. Non-Proteinuric Diabetic Nephropathy. J. Clin. Med. 2015, 4, 1761-1773. https://doi.org/10.3390/jcm4091761
Robles NR, Villa J, Gallego RH. Non-Proteinuric Diabetic Nephropathy. Journal of Clinical Medicine. 2015; 4(9):1761-1773. https://doi.org/10.3390/jcm4091761
Chicago/Turabian StyleRobles, Nicolas Roberto, Juan Villa, and Roman Hernandez Gallego. 2015. "Non-Proteinuric Diabetic Nephropathy" Journal of Clinical Medicine 4, no. 9: 1761-1773. https://doi.org/10.3390/jcm4091761
APA StyleRobles, N. R., Villa, J., & Gallego, R. H. (2015). Non-Proteinuric Diabetic Nephropathy. Journal of Clinical Medicine, 4(9), 1761-1773. https://doi.org/10.3390/jcm4091761