Association between Air Quality and Sedentary Time in 3270 Chinese Adults: Application of a Novel Technology for Posture Determination
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Measurement of Sedentary Behaviour
2.3. Air Quality
2.4. Covariates
2.5. Statistical Analysis
3. Results
3.1. Sedentary Time and Potential Covariates
3.2. Air Quality and Sedentary Time
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tremblay, M.S.; Aubert, S.; Barnes, J.D.; Saunders, T.J.; Carson, V.; Latimercheung, A.E.; Chastin, S.F.M.; Altenburg, T.M.; Mai, J.M.C. Sedentary behavior research network (SBRN)—Terminology consensus project process and outcome. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 75. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B.; Li, T.Y.; Colditz, G.A.; Willett, W.C.; Manson, J.E. Television watching and other sedentary behaviors in relation to risk of obesity and type 2 diabetes mellitus in women. JAMA 2003, 289, 1785–1791. [Google Scholar] [CrossRef] [PubMed]
- Maher, C.A.; Mire, E.; Harrington, D.M.; Staiano, A.E.; Katzmarzyk, P.T. The independent and combined associations of physical activity and sedentary behavior with obesity in adults: Nhanes 2003–2006. Obesity 2013, 21, E730–E737. [Google Scholar] [CrossRef] [PubMed]
- Owen, N.; Bauman, A.; Brown, W. Too much sitting: A novel and important predictor of chronic disease risk? Br. J. Sports Med. 2009, 43, 81–83. [Google Scholar] [CrossRef] [PubMed]
- Shilpa, D.; Liza, S. Sedentary behavior and physical activity are independent predictors of successful aging in middle-aged and older adults. J. Aging Res. 2012, 2012, 190654. [Google Scholar]
- Biswas, A.; Oh, P.I.; Faulkner, G.E.; Bajaj, R.R.; Silver, M.A.; Mitchell, M.S.; Alter, D.A. Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults: A systematic review and meta-analysis. Ann. Intern. Med. 2015, 162, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Inoue, S.; Sugiyama, T.; Takamiya, T.; Oka, K.; Owen, N.; Shimomitsu, T. Television viewing time is associated with overweight/obesity among older adults, independent of meeting physical activity and health guidelines. J. Epidemiol. 2012, 22, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Dunstan, D.W.; Barr, E.G. Television viewing time and mortality: The australian diabetes, obesity and lifestyle study (AusDiab). Circulation 2010, 122, 384–391. [Google Scholar] [CrossRef] [PubMed]
- Grøntved, A.; Hu, F.B. Television viewing and risk of type 2 diabetes, cardiovascular disease, and all-cause mortality a meta-analysis. JAMA 2011, 305, 2448–2455. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Jiang, C.; Wang, M.; Zou, J. Characteristics of the chinese population whose physical exercise is ”only sedentariness” in leisure time. Shandong Sports Sci. Technol. 2015, 37, 104–109. [Google Scholar]
- Owen, N.; Sugiyama, T.; Eakin, E.E.; Gardiner, P.A.; Tremblay, M.S.; Sallis, J.F. Adults’ sedentary behavior determinants and interventions. Am. J. Preventive Med. 2011, 41, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, R.E.; Mark, R.S.; Temmel, C.P. Adult sedentary behavior: A systematic review. Am. J. Preventive Med. 2012, 42, e3–e28. [Google Scholar] [CrossRef] [PubMed]
- O’Donoghue, G.; Perchoux, C.; Mensah, K.; Lakerveld, J.; Van der Ploeg, H.; Bernaards, C.; Chastin, S.F.; Simon, C.; O’Gorman, D.; Nazare, J.A. A systematic review of correlates of sedentary behaviour in adults aged 18–65 years: A socio-ecological approach. BMC Public Health 2016, 16, 163. [Google Scholar] [CrossRef] [PubMed]
- Prince, S.A.; Reed, J.L.; McFetridge, C.; Tremblay, M.S.; Reid, R.D. Correlates of sedentary behaviour in adults: A systematic review. Obesity Rev. Off. J. Int. Assoc. Study Obesity 2017, 18, 915–935. [Google Scholar] [CrossRef] [PubMed]
- Van Uffelen, J.G.; Heesch, K.C.; Brown, W. Correlates of sitting time in working age australian women: Who should be targeted with interventions to decrease sitting time? J. Phys. Act. Health 2012, 9, 270–287. [Google Scholar] [CrossRef] [PubMed]
- Uijtdewilligen, L.; Twisk, J.W.; Singh, A.S.; Chinapaw, M.J.; Van Mechelen, W.; Brown, W.J. Biological, socio-demographic, work and lifestyle determinants of sitting in young adult women: A prospective cohort study. Int. J. Behav. Nutr. Phys. Act. 2014, 11, 7. [Google Scholar] [CrossRef] [PubMed]
- Storgaard, R.L.; Hansen, H.S.; Aadahl, M.; Glumer, C. Association between neighbourhood green space and sedentary leisure time in a danish population. Scand. J. Public Health 2013, 41, 846–852. [Google Scholar] [CrossRef] [PubMed]
- Astell-Burt, T.; Feng, X.; Kolt, G.S. Greener neighborhoods, slimmer people? Evidence from 246,920 australians. Int. J. Obesity 2014, 38, 156–159. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, T.; Salmon, J.; Dunstan, D.W.; Bauman, A.E.; Owen, N. Neighborhood walkability and TV viewing time among australian adults. Am. J. Prev. Med. 2007, 33, 444–449. [Google Scholar] [CrossRef] [PubMed]
- Kozo, J.; Sallis, J.F.; Conway, T.L.; Kerr, J.; Cain, K.; Saelens, B.E.; Frank, L.D.; Owen, N. Sedentary behaviors of adults in relation to neighborhood walkability and income. Health Psychol. Off. J. Div. Health Psychol. Am. Psychol. Assoc. 2012, 31, 704–713. [Google Scholar] [CrossRef] [PubMed]
- Rich, C.; Griffiths, L.J.; Dezateux, C. Seasonal variation in accelerometer-determined sedentary behaviour and physical activity in children: A review. Int. J. Behav. Nutr. Phys. Act. 2012, 9, 49. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Ecology and Environment of the People’s Republic of China: Daily Report on Air Quality of Cities in China. Available online: http://www.mep.gov.cn/hjzli/dqwrfz/dqwrfzxdjh/ (accessed on 29 May 2018).
- Ministry of Ecology and Environment of the People’s Republic of China: Ambient Air Quality Standards. Available online: http://kjs.mep.gov.cn/hjbhbz/bzwb/dqhjbh/dqhjzlbz/201203/t20120302_224165.shtml (accessed on 29 May 2018).
- United States Environmental Protection Agency: National Ambient Air Quality Standards. Available online: https://www.epa.gov/criteria-air-pollutants/naaqs-table (accessed on 29 May 2018).
- Mannucci, P.M.; Harari, S.; Martinelli, I.; Franchini, M. Effects on health of air pollution: A narrative review. Intern. Emerg. Med. 2015, 10, 657–662. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Ambient (Outdoor) Air Quality and Health. Available online: http://www.who.int/mediacentre/factsheets/fs313/en/ (accessed on 30 May 2018).
- Wen, X.J.; Balluz, L.; Mokdad, A. Association between media alerts of air quality index and change of outdoor activity among adult asthma in six states, brfss, 2005. J. Community Health 2009, 34, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.D.; Voss, J.D.; Knight, B. The association of ambient air pollution and physical inactivity in the united states. PLoS ONE 2014, 9, e90143. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.J.; Balluz, L.S.; Shire, J.D.; Mokdad, A.H.; Kohl, H.W., III. Association of self-reported leisure-time physical inactivity with particulate matter 2.5 air pollution. J. Environ. Health 2009, 72, 40–44. [Google Scholar] [PubMed]
- An, R.; Xiang, X. Ambient fine particulate matter air pollution and leisure-time physical inactivity among us adults. Public Health 2015, 129, 1637–1644. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Zhu, L.; Xu, Y.; Lyu, J.; Imm, K.; Yang, L. Relationship between air quality and outdoor exercise behavior in china: A novel mobile-based study. Int. J. Behav. Med. 2017, 24, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; An, R.; Andrade, F. Ambient fine particulate matter air pollution and physical activity: A longitudinal study of university retirees in beijing, china. Am. J. Health Behav. 2017, 41, 401. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Miao, Y.; Gordon, S.P.; Zhang, R. The association between ambient fine particulate air pollution and physical activity: A cohort study of university students living in beijing. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 136. [Google Scholar] [CrossRef] [PubMed]
- Salmon, J.; Owen, N.; Crawford, D.; Bauman, A.; Sallis, J.F. Physical activity and sedentary behavior: A population-based study of barriers, enjoyment, and preference. Health Psychol. Off. J. Div. Health Psychol. Am. Psychol. Assoc. 2003, 22, 178–188. [Google Scholar] [CrossRef]
- Adams, S.A.; Matthews, C.E.; Ebbeling, C.B.; Moore, C.G.; Cunningham, J.E.; Fulton, J.; Hebert, J.R. The effect of social desirability and social approval on self-reports of physical activity. Am. J. Epidemiol. 2005, 161, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Matthews, C.E.; Chen, K.Y.; Freedson, P.S.; Buchowski, M.S.; Beech, B.M.; Pate, R.R.; Troiano, R.P. Amount of time spent in sedentary behaviors in the United States, 2003–2004. Am. J. Epidemiol. 2008, 167, 875–881. [Google Scholar] [CrossRef] [PubMed]
- Atkin, A.J.; Gorely, T.; Clemes, S.A.; Yates, T.; Edwardson, C.; Brage, S.; Salmon, J.; Marshall, S.J.; Biddle, S.J. Methods of measurement in epidemiology: Sedentary behaviour. Int. J. Epidemiol. 2012, 41, 1460–1471. [Google Scholar] [CrossRef] [PubMed]
- Freedson, P.S.; John, D. Comment on “estimating activity and sedentary behavior from an accelerometer on the hip and wrist”. Med. Sci. Sports Exerc. 2013, 45, 962–963. [Google Scholar] [CrossRef] [PubMed]
- Rowlands, A.V.; Olds, T.S.; Hillsdon, M.; Pulsford, R.; Hurst, T.L.; Eston, R.G.; Gomersall, S.R.; Johnston, K.; Langford, J. Assessing sedentary behavior with the geneactiv: Introducing the sedentary sphere. Med. Sci. Sports Exerc. 2014, 46, 1235–1247. [Google Scholar] [CrossRef] [PubMed]
- Pavey, T.G.; Gomersall, S.R.; Clark, B.K.; Brown, W.J. The validity of the geneactiv wrist-worn accelerometer for measuring adult sedentary time in free living. J. Sci. Med. Sport 2016, 19, 395–399. [Google Scholar] [CrossRef] [PubMed]
- Rowlands, A.V.; Yates, T.; Olds, T.S.; Davies, M.; Khunti, K.; Edwardson, C.L. Sedentary sphere: Wrist-worn accelerometer-brand independent posture classification. Med. Sci. Sports Exerc. 2016, 48, 748–754. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Industry and Information Technology of People’s Republic of China: China Internet Domain Name System. Available online: http://www.miit.gov.cn/n1146295/n1652858/n1652930/n4509607/c6072462/content.html (accessed on 30 May 2018).
- Leicester-Loughborough Diet, Lifestyle and Physical Activity Biomedical Research Unit. Sedentary Sphere: A Method for the Analysis, Identification and Visual Presentation of Raw Acceleration Data from Triaxial Accelerometers (Geneactiv, Activinsights, Cambs, UK). Available online: http://www.ll.dlpa.bru.nihr.ac.uk/Sedentary_Sphere-5483.html (accessed on 23 August 2018).
- Davies, G.; Reilly, J.J.; McGowan, A.J.; Dall, P.M.; Granat, M.H.; Paton, J.Y. Validity, practical utility, and reliability of the activpal in preschool children. Med. Sci. Sports Exerc. 2012, 44, 761–768. [Google Scholar] [CrossRef] [PubMed]
- Dowd, K.P.; Harrington, D.M.; Donnelly, A.E. Criterion and concurrent validity of the activpal professional physical activity monitor in adolescent females. PLoS ONE 2012, 7, e47633. [Google Scholar] [CrossRef] [PubMed]
- Marr, L.C.; Harley, R.A. Spectral analysis of weekday-weekend differences in ambient ozone, nitrogen oxide, and non-methane hydrocarbon time series in california. Atmos. Environ. 2002, 36, 2327–2335. [Google Scholar] [CrossRef]
- Clemens, D.; Nicole, G.; Wirth, M.D.; Hand, G.A.; Shook, R.P.; Stephanie, B.; Blair, S.N. The association of physical activity during weekdays and weekend with body composition in young adults. J. Obesity 2016, 2016, PMC4855007. [Google Scholar] [CrossRef] [PubMed]
- Wu, D. A study on north-south differences in economic growth. Geogr. Res. 2001, 20, 238–246. [Google Scholar]
- Chen, Z. Regional development difference from the south to the north in east and middle China. Geogr. Res. 1999, 18, 80–87. [Google Scholar]
- Vallance, J.K.; Boyle, T.; Courneya, K.S.; Lynch, B.M. Accelerometer-assessed physical activity and sedentary time among colon cancer survivors: Associations with psychological health outcomes. J. Cancer Surviv. Res. Pract. 2015, 9, 404–411. [Google Scholar] [CrossRef] [PubMed]
- Walker, R.G.; Obeid, J.; Nguyen, T.; Ploeger, H.; Proudfoot, N.A.; Bos, C.; Chan, A.K.; Pedder, L.; Issenman, R.M.; Scheinemann, K.; et al. Sedentary time and screen-based sedentary behaviors of children with a chronic disease. Pediatr. Exerc. Sci. 2015, 27, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Healy, G.N.; Wijndaele, K.; Dunstan, D.W.; Shaw, J.E.; Salmon, J.; Zimmet, P.Z.; Owen, N. Objectively measured sedentary time, physical activity, and metabolic risk: The australian diabetes, obesity and lifestyle study (Ausdiab). Diabetes Care 2008, 31, 369–371. [Google Scholar] [CrossRef] [PubMed]
- Matthews, C.E.; Ainsworth, B.E.; Thompson, R.W.; Bassett, D.R., Jr. Sources of variance in daily physical activity levels as measured by an accelerometer. Med. Sci. Sports Exerc. 2002, 34, 1376–1381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rundell, K.W.; Caviston, R. Ultrafine and fine particulate matter inhalation decreases exercise performance in healthy subjects. J. Strength Cond. Res. 2008, 22, 2. [Google Scholar] [CrossRef] [PubMed]
- Cutrufello, P.T.; Rundell, K.W.; Smoliga, J.M.; Stylianides, G.A. Inhaled whole exhaust and its effect on exercise performance and vascular function. Inhal. Toxicol. 2011, 23, 658. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.; Xu, G.; Li, L.; Shen, Y.; He, T.; Liang, Y.; Yang, Z.; Zhou, W.W.; Xu, J. Knowledge and perceptions of air pollution in ningbo, china. BMC Public Health 2016, 16, 1138. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.T.; Luben, R.; Wareham, N.; Griffin, S.; Jones, A.P. Weather, day length and physical activity in older adults: Cross-sectional results from the european prospective investigation into cancer and nutrition (EPIC) norfolk cohort. PLoS ONE 2017, 12, e0177767. [Google Scholar] [CrossRef] [PubMed]
- Rezende, L.F.M.; Rey-López, J.P.; Matsudo, V.K.R.; Luiz, O.C. Sedentary behavior and health outcomes among older adults: A systematic review. BMC Public Health 2014, 14, 333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Bureau of Statistics of China. China Statistical Yearbook 2015. Available online: http://www.stats.gov.cn/tjsj/ndsj/2015/indexch.htm (accessed on 18 July 2018).
Total | Male | Female | t/χ2 | p | |
---|---|---|---|---|---|
Number of participants (%) | 3270 (100) | 2021 (61.8) | 1249 (38.2) | - | - |
Person-day | 37,361 | 23,225 | 14,136 | - | - |
Wearing time/day, hour; mean (SD) | 22.69 (0.98) | 22.67 (1.00) | 22.71 (0.94) | −4.69 *** | 0.000 |
Monitored duration, day; mean (SD) | 11.43 (4.15) | 11.49 (4.11) | 11.32 (4.20) | 1.17 | 0.244 |
Age group (%) | |||||
18–29 | 1763 (53.9) | 1089 (53.9) | 674 (54.0) | 4.86 | 0.182 |
30–39 | 1171 (35.8) | 723 (35.8) | 448 (35.9) | ||
40–49 | 247 (7.6) | 145 (7.2) | 102 (8.2) | ||
Above 50 | 89 (2.7) | 64 (3.2) | 25 (2.0) | ||
BMI level (%) | |||||
Underweight | 757 (23.1) | 376 (18.6) | 381 (30.5) | 104.04 *** | 0.000 |
Normal | 2175 (66.5) | 1386 (68.6) | 789 (63.2) | ||
Overweight | 327 (10.0) | 258 (12.8) | 69 (5.5) | ||
Obese | 11 (0.3) | 1 (0.0) | 10 (0.8) | ||
Sedentary time/day, minute; mean (SD) | 576.89 (146.93) | 585.56 (149.22) | 562.65 (141.94) | 14.84 *** | 0.000 |
Unadjusted | Adjusted 1 | ||||||
---|---|---|---|---|---|---|---|
Estimate (SE) | 95% CI | p | Estimate (SE) | 95% CI | p | ||
Age | 18–29 | 12.51 (9.88) | −6.86, 31.89 | 0.205 | 9.76 (10.81) | −11.45, 30.96 | 0.367 |
30–39 | 4.04 (10.00) | −15.57, 23.64 | 0.686 | 0.54 (10.91) | −20.87, 21.94 | 0.961 | |
40–49 | −6.73 (11.27) | −28.83, 15.37 | 0.550 | −7.40 (12.32) | −31.58, 16.77 | 0.548 | |
≥50 (ref) | - | - | - | - | - | - | |
Gender | Female | −21.90 (3.29) *** | −28.35, −15.45 | 0.000 | −24.69 (3.71) *** | −31.96, −17.43 | 0.000 |
Male (ref) | - | - | - | - | - | - | |
BMI | Underweight | −13.36 (28.67) | −69.57, 42.85 | 0.641 | −53.87 (33.49) | −119.53, 11.79 | 0.108 |
Normal | −12.95 (28.54) | −68.92, 43.00 | 0.650 | −60.57 (33.36) | −125.99, 4.85 | 0.070 | |
Overweight | −11.19 (28.93) | −67.91, 45.53 | 0.699 | −60.02 (33.78) | −126.27, 6.22 | 0.076 | |
Obese (ref) | - | - | - | - | - | - | |
Region | North | −5.77 (3.50) | −12.63, 1.10 | 1.00 | −6.51 (4.12) | −14.60, 1.58 | 0.115 |
South (ref) | - | - | - | - | - | - | |
Weather | Sunny | −8.04 (2.30) *** | −12.55, −3.52 | 0.000 | −6.73 (2.28) ** | −11.24, −2.23 | 0.003 |
Cloudy and overcast | −3.67 (1.89) | −7.39, 0.05 | 0.053 | −5.84 (1.88) ** | −9.53, −2.16 | 0.002 | |
Rain (ref) | - | - | - | - | - | - | |
Weekday/weekend | Weekdays | 48.57 (1.44) *** | 45.74, 51.39 | 0.000 | 47.43 (1.69) *** | 44.12, 50.74 | 0.000 |
Weekends (ref) | - | - | - | - | - | - | |
Temperature | <20 | 2.95 (3.18) | −3.27, 9.18 | 0.353 | −0.57 (3.49) | −7.42, 6.28 | 0.870 |
20–22.1 | 10.51 (2.76) *** | 5.09, 15.92 | 0.000 | 5.54 (3.06) | −0.47, 11.55 | 0.071 | |
22.1–25 | 6.12 (2.51) * | 1.20, 11.05 | 0.015 | 4.13 (2.76) | −1.29, 9.54 | 0.135 | |
≥25 (ref) | - | - | - | - | - | - |
AQI Categories, Days (%) | |
Excellent (AQI = 0–50) | 11,680 (31.3) |
Good (AQI = 50–100) | 19,088 (51.1) |
Lightly polluted (AQI = 100–150) | 6155 (16.5) |
Moderately and heavily polluted (AQI > 150) | 438 (1.2) |
PM2.5 Levels, Days (%) | |
0–35 µg/m3 | 18,594 (49.8) |
35–75 µg/m3 | 16,485 (44.1) |
75–115 µg/m3 | 2112 (5.7) |
>115 µg/m3 | 170 (0.5) |
PM10 Levels, Days (%) | |
0–50 µg/m3 | 13,087 (35.0) |
50–150 µg/m3 | 23,630 (63.2) |
150–250 µg/m3 | 626 (1.7) |
>250 µg/m3 | 18 (0.0) |
O3 Levels, Days (%) | |
0–160 µg/m3 | 23,960 (64.1) |
160–200 µg/m3 | 7716 (20.7) |
200–300 µg/m3 | 5423 (14.5) |
>300 µg/m3 | 262 (0.7) |
Unadjusted | Adjusted 1 | ||||||
---|---|---|---|---|---|---|---|
Estimate (SE) | 95% CI | p | Estimate (SE) | 95% CI | p | ||
AQI | Excellent | −12.21 (6.56) | −25.08, 0.65 | 0.063 | −19.20 (8.63) * | −34.91, −3.49 | 0.017 |
Good | −17.44 (6.51) ** | −30.20, −4.69 | 0.007 | −22.92 (7.94) ** | −38.48, −7.35 | 0.004 | |
Lightly polluted | −9.10 (6.48) | −21.79, 3.60 | 0.160 | −21.28 (7.91) ** | −36.78, −5.78 | 0.007 | |
Moderately and heavily polluted (ref) | - | - | - | - | - | - | |
PM2.5 | 0–35 µg/m3 | −36.80 (10.64) *** | −57.65, −15.94 | 0.001 | −45.35 (12.21) *** | −69.29, −21.41 | 0.000 |
35–75 µg/m3 | −36.77 (10.63) *** | −57.61, −15.93 | 0.001 | −45.74 (12.19) *** | −69.64, −21.84 | 0.000 | |
75–115 µg/m3 | −33.13 (10.80) ** | −54.29, −11.96 | 0.002 | −45.54 (12.35) *** | −69.74, −21.33 | 0.000 | |
>115 µg/m3 (ref) | - | - | - | - | - | - | |
PM10 | 0–50 µg/m3 | −32.81 (32.87) | −97.24, 31.62 | 0.318 | −32.59 (32.60) | −96.49, 31.31 | 0.318 |
50–150 µg/m3 | −36.31 (32.85) | −100.68, 28.07 | 0.269 | −35.65 (32.57) | −99.48, 28.18 | 0.274 | |
150–250 µg/m3 | −26.47 (32.92) | −90.99, 38.06 | 0.421 | −31.07 (32.66) | −95.08, 32.94 | 0.341 | |
>250 µg/m3 (ref) | - | - | - | - | - | - | |
O3 | 0–160 µg/m3 | −3.74 (8.25) | −19.83, 12.34 | 0.648 | −6.17 (10.57) | −26.89, 14.55 | 0.560 |
160–200 µg/m3 | −2.68 (8.30) | −18.94, 13.58 | 0.747 | −6.14 (10.63) | −26.98, 14.69 | 0.563 | |
200–300 µg/m3 | 3.93 (8.16) | −12.05, 19.92 | 0.629 | −5.53 (10.50) | −26.11, 15.04 | 0.598 | |
>300 µg/m3 (ref) | - | - | - | - | - | - |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Yuan, B.; Fan, S.; Luo, Y.; Wen, X. Association between Air Quality and Sedentary Time in 3270 Chinese Adults: Application of a Novel Technology for Posture Determination. J. Clin. Med. 2018, 7, 257. https://doi.org/10.3390/jcm7090257
Ma Y, Yuan B, Fan S, Luo Y, Wen X. Association between Air Quality and Sedentary Time in 3270 Chinese Adults: Application of a Novel Technology for Posture Determination. Journal of Clinical Medicine. 2018; 7(9):257. https://doi.org/10.3390/jcm7090257
Chicago/Turabian StyleMa, Yiqun, Bing Yuan, Shuhui Fan, Yizhou Luo, and Xu Wen. 2018. "Association between Air Quality and Sedentary Time in 3270 Chinese Adults: Application of a Novel Technology for Posture Determination" Journal of Clinical Medicine 7, no. 9: 257. https://doi.org/10.3390/jcm7090257
APA StyleMa, Y., Yuan, B., Fan, S., Luo, Y., & Wen, X. (2018). Association between Air Quality and Sedentary Time in 3270 Chinese Adults: Application of a Novel Technology for Posture Determination. Journal of Clinical Medicine, 7(9), 257. https://doi.org/10.3390/jcm7090257