Higher Sodium Intake Assessed by 24 Hour Urinary Sodium Excretion Is Associated with Non-Alcoholic Fatty Liver Disease: The PREVEND Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Measurements and Definitions
2.3. Laboratory Methods
2.4. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Independent Associations of Suspected NAFLD with Sodium Intake
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Loomba, R.; Sanyal, A.J. The global NAFLD epidemic. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 686–690. [Google Scholar] [CrossRef] [PubMed]
- Van den Berg, E.H.; Amini, M.; Schreuder, T.C.M.A.; Dullaart, R.P.F.; Faber, K.N.; Alizadeh, B.Z.; Blokzijl, H. Prevalence and determinants of non-alcoholic fatty liver disease in lifelines: A large Dutch population cohort. PLoS ONE 2017, 12, e0171502. [Google Scholar] [CrossRef] [PubMed]
- Puoti, C.; Elmo, M.G.; Ceccarelli, D.; Ditrinco, M. Liver steatosis: The new epidemic of the Third Millennium. Benign liver state or silent killer? Eur. J. Intern. Med. 2017, 46, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Bugianesi, E.; McCullough, A.J.; Marchesini, G. Insulin resistance: A metabolic pathway to chronic liver disease. Hepatology 2005, 42, 987–1000. [Google Scholar] [CrossRef] [PubMed]
- Ballestri, S.; Zona, S.; Targher, G.; Romagnoli, D.; Baldelli, E.; Nascimbeni, F.; Roverato, A.; Guaraldi, G.; Lonardo, A. Nonalcoholic fatty liver disease is associated with an almost twofold increased risk of incident type 2 diabetes and metabolic syndrome. Evidence from a systematic review and meta-analysis. J. Gastroenterol. Hepatol. 2016, 31, 936–944. [Google Scholar] [CrossRef] [PubMed]
- Van den Berg, E.H.; Flores-Guerrero, J.L.; Gruppen, E.G.; de Borst, M.H.; Wolak-Dinsmore, J.; Connelly, M.A.; Bakker, S.J.L.; Dullaart, R.P.F. Non-Alcoholic Fatty Liver Disease and Risk of Incident Type 2 Diabetes: Role of Circulating Branched-Chain Amino Acids. Nutrients 2019, 11, 705. [Google Scholar] [CrossRef] [Green Version]
- Nass, K.J.; van den Berg, E.H.; Faber, K.N.; Schreuder, T.C.M.A.; Blokzijl, H.; Dullaart, R.P.F. High prevalence of apolipoprotein B dyslipoproteinemias in non-alcoholic fatty liver disease: The lifelines cohort study. Metab. Clin. Exp. 2017, 72, 37–46. [Google Scholar] [CrossRef]
- Bril, F.; Sninsky, J.J.; Baca, A.M.; Superko, H.R.; Portillo Sanchez, P.; Biernacki, D.; Maximos, M.; Lomonaco, R.; Orsak, B.; Suman, A.; et al. Hepatic Steatosis and Insulin Resistance, But Not Steatohepatitis, Promote Atherogenic Dyslipidemia in NAFLD. J. Clin. Endocrinol. Metab. 2016, 101, 644–652. [Google Scholar] [CrossRef] [Green Version]
- Targher, G.; Marra, F.; Marchesini, G. Increased risk of cardiovascular disease in non-alcoholic fatty liver disease: Causal effect or epiphenomenon? Diabetologia 2008, 51, 1947–1953. [Google Scholar] [CrossRef] [Green Version]
- Arab, J.P.; Arrese, M.; Trauner, M. Recent Insights into the Pathogenesis of Nonalcoholic Fatty Liver Disease. Annu. Rev. Pathol. 2018, 13, 321–350. [Google Scholar] [CrossRef]
- Bibbins-Domingo, K.; Chertow, G.M.; Coxson, P.G.; Moran, A.; Lightwood, J.M.; Pletcher, M.J.; Goldman, L. Projected effect of dietary salt reductions on future cardiovascular disease. N. Engl. J. Med. 2010, 362, 590–599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vedovato, M.; Lepore, G.; Coracina, A.; Dodesini, A.R.; Jori, E.; Tiengo, A.; Del Prato, S.; Trevisan, R. Effect of sodium intake on blood pressure and albuminuria in Type 2 diabetic patients: The role of insulin resistance. Diabetologia 2004, 47, 300–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsen, S.C.; Ängquist, L.; Sørensen, T.I.A.; Heitmann, B.L. 24 h urinary sodium excretion and subsequent change in weight, waist circumference and body composition. PLoS ONE 2013, 8, e69689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huh, J.H.; Lee, K.J.; Lim, J.S.; Lee, M.Y.; Park, H.J.; Kim, M.Y.; Kim, J.W.; Chung, C.H.; Shin, J.Y.; Kim, H.-S.; et al. High Dietary Sodium Intake Assessed by Estimated 24-h Urinary Sodium Excretion Is Associated with NAFLD and Hepatic Fibrosis. PLoS ONE 2015, 10, e0143222. [Google Scholar] [CrossRef]
- Libuda, L.; Kersting, M.; Alexy, U. Consumption of dietary salt measured by urinary sodium excretion and its association with body weight status in healthy children and adolescents. Public Health Nutr. 2012, 15, 433–441. [Google Scholar] [CrossRef] [Green Version]
- Song, H.J.; Cho, Y.G.; Lee, H.-J. Dietary sodium intake and prevalence of overweight in adults. Metab. Clin. Exp. 2013, 62, 703–708. [Google Scholar] [CrossRef]
- Zhao, L.; Cogswell, M.E.; Yang, Q.; Zhang, Z.; Onufrak, S.; Jackson, S.L.; Chen, T.-C.; Loria, C.M.; Wang, C.-Y.; Wright, J.D.; et al. Association of usual 24-h sodium excretion with measures of adiposity among adults in the United States: NHANES, 2014. Am. J. Clin. Nutr. 2019, 109, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.; Lee, J.E.; Chang, Y.; Kim, M.K.; Sung, E.; Shin, H.; Ryu, S. Dietary sodium and potassium intake in relation to non-alcoholic fatty liver disease. Br. J. Nutr. 2016, 116, 1447–1456. [Google Scholar] [CrossRef] [Green Version]
- Campbell, N.R.C.; He, F.J.; Tan, M.; Cappuccio, F.P.; Neal, B.; Woodward, M.; Cogswell, M.E.; McLean, R.; Arcand, J.; MacGregor, G.; et al. The International Consortium for Quality Research on Dietary Sodium/Salt (TRUE) position statement on the use of 24-hour, spot, and short duration (. J Clin. Hypertens. 2019, 18, 1082. [Google Scholar] [CrossRef]
- Borggreve, S.E.; Hillege, H.L.; Wolffenbuttel, B.H.R.; de Jong, P.E.; Bakker, S.J.L.; van der Steege, G.; van Tol, A.; Dullaart, R.P.F.; PREVEND Study Group. The effect of cholesteryl ester transfer protein -629C- >A promoter polymorphism on high-density lipoprotein cholesterol is dependent on serum triglycerides. J. Clin. Endocrinol. Metab. 2005, 90, 4198–4204. [Google Scholar] [CrossRef] [Green Version]
- Kappelle, P.J.W.H.; Gansevoort, R.T.; Hillege, J.L.; Wolffenbuttel, B.H.R.; Dullaart, R.P.F.; PREVEND Study Group. Apolipoprotein B/A-I and total cholesterol/high-density lipoprotein cholesterol ratios both predict cardiovascular events in the general population independently of nonlipid risk factors, albuminuria and C-reactive protein. J. Intern. Med. 2011, 269, 232–242. [Google Scholar] [CrossRef] [PubMed]
- Oterdoom, L.H.; Gansevoort, R.T.; Schouten, J.P.; de Jong, P.E.; Gans, R.O.B.; Bakker, S.J.L. Urinary creatinine excretion, an indirect measure of muscle mass, is an independent predictor of cardiovascular disease and mortality in the general population. Atherosclerosis 2009, 207, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Joosten, M.M.; Gansevoort, R.T.; Mukamal, K.J.; Lambers Heerspink, H.J.; Geleijnse, J.M.; Feskens, E.J.M.; Navis, G.; Bakker, S.J.L.; PREVEND Study Group. Sodium excretion and risk of developing coronary heart disease. Circulation 2014, 129, 1121–1128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van den Berg, E.H.; Gruppen, E.G.; James, R.W.; Bakker, S.J.L.; Dullaart, R.P.F. Serum paraoxonase 1 activity is paradoxically maintained in nonalcoholic fatty liver disease despite low HDL cholesterol. J. Lipid. Res. 2019, 60, 168–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inker, L.A.; Schmid, C.H.; Tighiouart, H.; Eckfeldt, J.H.; Feldman, H.I.; Greene, T.; Kusek, J.W.; Manzi, J.; Van Lente, F.; Zhang, Y.L.; et al. CKD-EPI Investigators Estimating glomerular filtration rate from serum creatinine and cystatin C. N. Engl. J. Med. 2012, 367, 20–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bedogni, G.; Bellentani, S.; Miglioli, L.; Masutti, F.; Passalacqua, M.; Castiglione, A.; Tiribelli, C. The Fatty Liver Index: A simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol. 2006, 6, 33. [Google Scholar] [CrossRef] [Green Version]
- European Association for the Study of the Liver (EASL). Electronic address: [email protected]; European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO) EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J. Hepatol. 2016, 64, 1388–1402. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kim, D.; Kim, H.J.; Lee, C.-H.; Yang, J.I.; Kim, W.; Kim, Y.J.; Yoon, J.-H.; Cho, S.-H.; Sung, M.-W.; et al. Hepatic steatosis index: A simple screening tool reflecting nonalcoholic fatty liver disease. Dig. Liver Dis. 2010, 42, 503–508. [Google Scholar] [CrossRef]
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C.; et al. American Heart Association; National Heart, Lung, and Blood Institute Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005, 112, 2735–2752. [Google Scholar] [CrossRef] [Green Version]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar]
- Schumann, G.; Bonora, R.; Ceriotti, F.; Férard, G.; Ferrero, C.A.; Franck, P.F.H.; Gella, F.J.; Hoelzel, W.; Jørgensen, P.J.; Kanno, T.; et al. International Federation of Clinical Chemistry and Laboratory Medicine IFCC primary reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 degrees C. International Federation of Clinical Chemistry and Laboratory Medicine. Part 4. Reference procedure for the measurement of catalytic concentration of alanine aminotransferase. Clin. Chem. Lab. Med. 2002, 40, 718–724. [Google Scholar] [PubMed]
- Schumann, G.; Bonora, R.; Ceriotti, F.; Férard, G.; Ferrero, C.A.; Franck, P.F.H.; Gella, F.J.; Hoelzel, W.; Jørgensen, P.J.; Kanno, T.; et al. International Federation of Clinical Chemistry and Laboratory Medicine IFCC primary reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 degrees C. International Federation of Clinical Chemistry and Laboratory Medicine. Part 5. Reference procedure for the measurement of catalytic concentration of aspartate aminotransferase. Clin. Chem. Lab. Med. 2002, 40, 725–733. [Google Scholar] [PubMed]
- Schumann, G.; Bonora, R.; Ceriotti, F.; Férard, G.; Ferrero, C.A.; Franck, P.F.H.; Gella, F.J.; Hoelzel, W.; Jørgensen, P.J.; et al. International Federation of Clinical Chemistry and Laboratory Medicine IFCC primary reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 degrees C. International Federation of Clinical Chemistry and Laboratory Medicine. Part 6. Reference procedure for the measurement of catalytic concentration of gamma-glutamyltransferase. Clin. Chem. Lab. Med. 2002, 40, 734–738. [Google Scholar] [PubMed]
- Shen, X.; Jin, C.; Wu, Y.; Zhang, Y.; Wang, X.; Huang, W.; Li, J.; Wu, S.; Gao, X. Prospective study of perceived dietary salt intake and the risk of non-alcoholic fatty liver disease. J. Hum. Nutr. Diet. 2019, 67, 11. [Google Scholar] [CrossRef] [PubMed]
- WHO. Guideline: Sodium Intake for Adults and Children 2012; World Health Organization: Geneva, Switzerland, 2012. [Google Scholar]
- Yi, S.S.; Kansagra, S.M. Associations of sodium intake with obesity, body mass index, waist circumference, and weight. Am. J. Prev. Med. 2014, 46, e53–e55. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; He, F.J.; MacGregor, G.A. High salt intake: Independent risk factor for obesity? Hypertension 2015, 66, 843–849. [Google Scholar] [CrossRef] [PubMed]
- Nam, G.E.; Kim, S.M.; Choi, M.-K.; Heo, Y.-R.; Hyun, T.-S.; Lyu, E.-S.; Oh, S.-Y.; Park, H.-R.; Ro, H.-K.; Han, K.; et al. Association between 24-h urinary sodium excretion and obesity in Korean adults: A multicenter study. Nutrition 2017, 41, 113–119. [Google Scholar] [CrossRef]
- Fonseca-Alaniz, M.H.; Brito, L.C.; Borges-Silva, C.N.; Takada, J.; Andreotti, S.; Lima, F.B. High dietary sodium intake increases white adipose tissue mass and plasma leptin in rats. Obesity 2007, 15, 2200–2208. [Google Scholar] [CrossRef]
- Fonseca-Alaniz, M.H.; Takada, J.; Andreotti, S.; de Campos, T.B.F.; Campaña, A.B.; Borges-Silva, C.N.; Lima, F.B. High sodium intake enhances insulin-stimulated glucose uptake in rat epididymal adipose tissue. Obesity 2008, 16, 1186–1192. [Google Scholar] [CrossRef]
- Lee, M.; Sorn, S.R.; Lee, Y.; Kang, I. Salt Induces Adipogenesis/Lipogenesis and Inflammatory Adipocytokines Secretion in Adipocytes. Int. J. Mol. Sci. 2019, 20, 160. [Google Scholar] [CrossRef] [Green Version]
- Lyon, C.J.; Law, R.E.; Hsueh, W.A. Minireview: Adiposity, inflammation, and atherogenesis. Endocrinology 2003, 144, 2195–2200. [Google Scholar] [CrossRef] [PubMed]
- Kato, J.; Koda, M.; Kishina, M.; Tokunaga, S.; Matono, T.; Sugihara, T.; Ueki, M.; Murawaki, Y. Therapeutic effects of angiotensin II type 1 receptor blocker, irbesartan, on non-alcoholic steatohepatitis using FLS-ob/ob male mice. Int. J. Mol. Med. 2012, 30, 107–113. [Google Scholar] [PubMed]
- Graudal, N.A.; Hubeck-Graudal, T.; Jurgens, G. Effects of low sodium diet versus high sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride. Cochrane Database Syst. Rev. 2017, 4, CD004022. [Google Scholar] [CrossRef] [PubMed]
- Lely, A.T.; Krikken, J.A.; Bakker, S.J.L.; Boomsma, F.; Dullaart, R.P.F.; Wolffenbuttel, B.H.R.; Navis, G. Low dietary sodium and exogenous angiotensin II infusion decrease plasma adiponectin concentrations in healthy men. J. Clin. Endocrinol. Metab. 2007, 92, 1821–1826. [Google Scholar] [CrossRef] [Green Version]
- Finelli, C.; Tarantino, G. What is the role of adiponectin in obesity related non-alcoholic fatty liver disease? World J. Gastroenterol. 2013, 19, 802–812. [Google Scholar] [CrossRef]
- Ogihara, T.; Asano, T.; Ando, K.; Chiba, Y.; Sekine, N.; Sakoda, H.; Anai, M.; Onishi, Y.; Fujishiro, M.; Ono, H.; et al. Insulin resistance with enhanced insulin signaling in high-salt diet-fed rats. Diabetes 2001, 50, 573–583. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.M.; Kwock, C.K.; Park, S.; Eicher-Miller, H.A.; Yang, Y.J. An association of urinary sodium-potassium ratio with insulin resistance among Korean adults. Nutr. Res. Pract 2018, 12, 443–448. [Google Scholar] [CrossRef]
- Kim, Y.M.; Kim, S.H.; Shim, Y.S. Association of sodium intake with insulin resistance in Korean children and adolescents: The Korea National Health and Nutrition Examination Survey 2010. J. Pediatr. Endocrinol. Metab. 2018, 31, 117–125. [Google Scholar] [CrossRef]
- Hoffmann, I.S.; Cubeddu, L.X. Salt and the metabolic syndrome. Nutr. Metab. Cardiovasc. Dis. 2009, 19, 123–128. [Google Scholar] [CrossRef]
- Oikonomou, D.; Georgiopoulos, G.; Katsi, V.; Kourek, C.; Tsioufis, C.; Alexopoulou, A.; Koutli, E.; Tousoulis, D. Non-alcoholic fatty liver disease and hypertension: Coprevalent or correlated? Eur. J Gastroenterol. Hepatol. 2018, 30, 979–985. [Google Scholar] [CrossRef]
- Kunutsor, S.K.; Bakker, S.J.L.; Blokzijl, H.; Dullaart, R.P.F. Associations of the fatty liver and hepatic steatosis indices with risk of cardiovascular disease: Interrelationship with age. Clin. Chim. Acta 2017, 466, 54–60. [Google Scholar] [CrossRef] [Green Version]
- Gruppen, E.G.; Bakker, S.J.L.; James, R.W.; Dullaart, R.P.F. Serum paraoxonase-1 activity is associated with light to moderate alcohol consumption: The PREVEND cohort study. Am. J. Clin. Nutr. 2018, 108, 1283–1290. [Google Scholar] [CrossRef]
FLI < 60, n = 4196 (68.4%) | FLI ≥ 60, n = 1936 (31.6%) | p Value | |
---|---|---|---|
Age (years), mean ± SD | 52.2 ± 12.0 | 57.2 ± 11.4 | <0.001 |
Sex | <0.001 | ||
Men, n (%) | 1750 (41.7) | 1282 (66.2) | |
Women, n (%) | 2446 (58.3) | 654 (33.8) | |
MetS, n (%) | 372 (8.9) | 1193 (61.7) | <0.001 |
Type 2 diabetes mellitus, n (%) | 130 (3.1) | 256 (13.2) | <0.001 |
History of cardiovascular disease, n (%) | 192 (4.6) | 194 (10.0) | <0.001 |
Hypertension, n (%) | 1014 (24.2) | 1050 (54.3) | <0.001 |
Current smokers, n (%) | 1184 (28.2) | 513 (26.5) | 0.162 |
Alcohol ≥ 10 g/day, n (%) | 139 (3.3) | 117 (6.1) | <0.001 |
Antihypertensive medication, n (%) | 613 (14.6) | 703 (36.3) | <0.001 |
Glucose lowering drugs, n (%) | 73 (1.7) | 152 (7.9) | <0.001 |
Lipid lowering drugs, n (%) | 273 (6.5) | 307 (15.9) | <0.001 |
Systolic blood pressure (mm Hg), mean ± SD | 121 ± 17 | 135 ± 18 | <0.001 |
Diastolic blood pressure (mm Hg), mean ± SD | 71 ± 9 | 77 ± 9 | <0.001 |
BMI (kg/m2), mean ± SD | 24.8 ± 2.9 | 30.9 ± 4.1 | <0.001 |
BSA (m2), mean ± SD | 1.87 ± 0.17 | 2.12 ± 0.18 | <0.001 |
Waist circumference (cm), mean ± SD | 86.0 ± 9.2 | 105.0 ± 9.2 | <0.001 |
Waist/hip ratio, mean ± SD | 0.87 ± 0.07 | 0.96 ± 0.07 | <0.001 |
Glucose (mmol/L), mean ± SD | 4.80 ± 0.86 | 5.48 ± 1.41 | <0.001 |
Insulin (mU/L), median (IQR) | 6.80 (5.1–9.3) | 13.00 (9.5–19.0) | <0.001 |
HOMA-IR (mU mmol/L2/22.5), median (IQR) | 0.36 (0.04–0.70) | 1.10 (0.73–1.53) | <0.001 |
hsCRP (mg/L), median (IQR) | 1.02 (0.49–2.32) | 2.44 (1.23–4.47) | <0.001 |
ALT (U/L), median (IQR) | 15 (12–20) | 23 (17–32) | <0.001 |
AST (U/L), median (IQR) | 22 (19–25) | 25 (21–29) | <0.001 |
ALP (U/L), mean ± SD | 65 ± 19 | 76 ± 23 | <0.001 |
GGT (U/L), median (IQR) | 19 (14–27) | 40 (28–61) | <0.001 |
Total cholesterol (mmol/L), mean ± SD | 5.32 ± 1.01 | 5.67 ± 1.06 | <0.001 |
Non-HDL cholesterol (mmol/L), mean ± SD | 3.98 ± 0.99 | 4.57 ± 1.02 | <0.001 |
LDL cholesterol (mmol/L), mean ± SD | 3.51 ± 0.92 | 3.74 ± 0.94 | <0.001 |
HDL cholesterol (mmol/L), mean ± SD | 1.34 ± 0.31 | 1.10 ± 0.24 | <0.001 |
Triglycerides (mmol/L), median (IQR) | 0.95 (0.72–1.26) | 1.67 (1.28–2.20) | <0.001 |
Serum creatinine (umol/L), mean ± SD | 82.92 ± 22.42 | 89.56 ± 19.23 | <0.001 |
eGFR (mL/min/1.73 m2), mean ± SD | 93.8 ± 16.4 | 86.5 ± 17.8 | <0.001 |
Averaged 24 h urine excretion values | |||
Sodium excretion (mmol/24 h), mean ± SD | 136.76 ± 50.90 | 163.63 ± 61.81 | <0.001 |
UAE (mg/24 h), median (IQR) | 7.44 (5.65–11.21) | 10.04 (6.69–18.81) | <0.001 |
24 h Urinary Sodium Excretion | p Value | ||||
---|---|---|---|---|---|
Quartile 1 | Quartile 2 | Quartile 3 | Quartile 4 | ||
N (%) | 1533 (25.0) | 1532 (25.0) | 1532 (25.0) | 1533 (25.0) | |
24 h Sodium excretion (mmol/day), mean ± SD | 82.14 ± 18.02 | 122.92 ± 9.79 | 155.83 ± 10.08 | 220.06 ± 42.67 | <0.001 |
Suspected NAFLD | |||||
FLI ≥ 60, n (%) | 329 (21.5) | 386 (25.2) | 505 (33.0) | 715 (46.6) | <0.001 |
HSI > 36, n (%) | 324 (21.1) | 355 (23.2) | 445 (29.0) | 608 (39.7) | <0.001 |
Age (years), mean ± SD | 54.9 ± 12.6 | 54.1 ± 12.1 | 53.0 ± 12.0 | 52.1 ± 11.3 | <0.001 |
Sex | <0.001 | ||||
Men, n (%) | 466 (30.4) | 632 (41.3) | 822 (53.7) | 1.112 (72.5) | |
Women, n (%) | 1067 (69.6) | 900 (58.7) | 710 (46.3) | 421 (27.5) | |
MetS, n (%) | 333 (21.7) | 344 (22.5) | 375 (24.5) | 512 (33.4) | <0.001 |
Type 2 diabetes mellitus, n (%) | 82 (5.3) | 89 (5.8) | 98 (6.4) | 117 (7.6) | 0.007 |
History of cardiovascular disease, n (%) | 96 (6.3) | 90 (5.9) | 100 (6.5) | 100 (6.5) | 0.605 |
Hypertension, n (%) | 506 (33.0) | 491 (32.1) | 517 (33.7) | 550 (35.9) | 0.057 |
Current smokers, n (%) | 493 (32.2) | 427 (27.9) | 385 (25.1) | 391 (25.5) | <0.001 |
Alcohol ≥ 10 g/day, n (%) | 66 (4.3) | 65 (4.3) | 52 (3.4) | 73 (4.8) | 0.810 |
Antihypertensive medication, n (%) | 342 (22.3) | 317 (20.7) | 327 (21.3) | 330 (21.5) | 0.718 |
Glucose lowering drugs, n (%) | 49 (3.2) | 49 (3.2) | 56 (3.7) | 71 (4.6) | 0.027 |
Lipid lowering drugs, n (%) | 152 (9.9) | 146 (9.5) | 136 (8.9) | 146 (9.5) | 0.585 |
Systolic blood pressure (mm Hg), mean ± SD | 124 ± 19 | 125 ± 20 | 125 ± 18 | 128 ± 17 | <0.001 |
Diastolic blood pressure (mm Hg), mean ± SD | 71 ± 9 | 73 ± 9 | 73 ± 9 | 74 ± 9 | <0.001 |
BMI (kg/m2), mean ± SD | 25.7 ± 4.1 | 26.1 ± 4.0 | 26.6 ± 4.3 | 28.1 ± 4.5 | <0.001 |
BSA (m2), mean ± SD | 1.86 ± 0.19 | 1.91 ± 0.19 | 1.97 ± 0.19 | 2.07 ± 0.20 | <0.001 |
Waist circumference (cm), mean ± SD | 87.9 ± 11.8 | 89.7 ± 11.9 | 91.8 ± 12.0 | 97.3 ± 12.9 | <0.001 |
Waist/hip ratio, mean ± SD | 0.87 ± 0.08 | 0.88 ± 0.08 | 0.90 ± 0.08 | 0.93 ± 0.08 | <0.001 |
Glucose (mmol/L), mean ± SD | 4.94 ± 1.07 | 4.96 ± 1.09 | 4.98 ± 1.11 | 5.12 ± 1.08 | <0.001 |
Insulin (mU/L), median (IQR) | 7.50 (5.3–10.9) | 7.60 (5.5–11.0) | 8.10 (5.8–11.8) | 9.50 (6.6–14.3) | <0.001 |
HOMA-IR (mU mmol/L2/22.5), median (IQR) | 0.49 (0.11–0.91) | 0.46 (0.12–0.90) | 0.53 (0.15–0.97) | 0.72 (0.32–1.20) | <0.001 |
hsCRP (mg/L), median (IQR) | 1.37 (0.65–3.07) | 1.35 (0.58–3.09) | 1.33 (0.61–2.87) | 1.31 (0.63–3.08) | 0.036 |
ALT (U/L), median (IQR) | 15 (12–21) | 16 (12–22) | 17 (13–25) | 20 (14–28) | <0.001 |
AST (U/L), median (IQR) | 22 (19–26) | 22 (19–26) | 23 (20–26) | 23 (20–27) | <0.001 |
ALP (U/L), mean ± SD | 69 ± 21 | 69 ± 23 | 66 ± 18 | 69 ± 19 | 0.089 |
GGT (U/L), median (IQR) | 21 (14–34) | 21 (14–33) | 23 (16–37) | 27 (18–43) | <0.001 |
Total cholesterol (mmol/L), mean ± SD | 5.45 ± 1.05 | 5.39 ± 1.03 | 5.37 ± 1.03 | 5.46 ± 1.04 | 0.372 |
Non-HDL cholesterol (mmol/L), mean ± SD | 4.14 ± 1.04 | 4.11 ± 1.02 | 4.10 ± 1.04 | 4.26 ± 1.03 | <0.001 |
LDL cholesterol (mmol/L), mean ± SD | 3.59 ± 0.94 | 3.55 ± 0.92 | 3.54 ± 0.92 | 3.63 ± 0.94 | 0.079 |
HDL cholesterol (mmol/L), mean ± SD | 1.31 ± 0.32 | 1.29 ± 0.32 | 1.27 ± 0.31 | 1.20 ± 0.29 | <0.001 |
Triglycerides (mmol/L), median (IQR) | 1.08 (0.79–1.45) | 1.06 (0.75–1.55) | 1.05 (0.80–1.54) | 1.22 (0.86–1.75) | <0.001 |
Serum creatinine (umol/L), mean ± SD | 82.77 ± 24.48 | 83.48 ± 17.41 | 85.78 ± 26.83 | 87.67 ± 15.93 | <0.001 |
eGFR (ml/min/1.73 m2), mean ± SD | 89.0 ± 17.1 | 91.0 ± 17.1 | 92.7 ± 17.3 | 94.2 ± 16.7 | <0.001 |
UAE (mg/24 h), median (IQR) | 6.90 (5.16–10.76) | 7.77 (5.75–12.53) | 8.21 (6.0–3.36) | 9.24 (6.67–16.45) | <0.001 |
Model 1 | Model 2 | Model 3 | Model 4 | |||||
---|---|---|---|---|---|---|---|---|
OR (95% CI) | p Value | OR (95% CI) | p Value | OR (95% CI) | p Value | OR (95% CI) | p Value | |
Age (years) | 1.04 (1.03–1.04) | <0.001 | 1.01 (1.01–1.02) | <0.001 | 1.00 (0.99–1.01) | 0.665 | 0.99 (0.99–1.00) | 0.131 |
Sex (men vs. women) | 2.02 (1.79–2.28) | <0.001 | 2.02 (1.78–2.29) | <0.001 | 2.07 (1.82–2.37) | <0.001 | 2.48 (2.13–2.90) | <0.001 |
Sodium excretion per 24 h (1 SD increment) | 1.54 (1.45–1.64) | <0.001 | 1.51 (1.42–1.61) | <0.001 | 1.54 (1.44–1.64) | <0.001 | 1.30 (1.21–1.41) | <0.001 |
Type 2 diabetes mellitus (yes/no) | 3.13 (2.46–3.97) | <0.001 | 3.30 (2.26–4.82) | <0.001 | 0.48 (0.30–0.75) | 0.001 | ||
History of cardiovascular disease (yes/no) | 1.00 (0.79–1.27) | 0972 | 0.77 (0.59–1.01) | 0.057 | 0.71 (0.53–0.97) | 0.031 | ||
Hypertension (yes/no) | 2.94 (2.56–3.37) | <0.001 | 2.39 (1.99–2.88) | <0.001 | 2.04 (1.64–2.52) | <0.001 | ||
Alcohol intake (≥10 g/day vs. <10 g/day) | 1.56 (1.18–2.06) | 0.002 | 1.68 (1.26–2.24) | <0.001 | 2.23 (1.59–3.14) | <0.001 | ||
Current smoking (yes/no) | 1.09 (0.95–1.25) | 0.202 | 1.05 (0.91–1.21) | 0.489 | 1.24 (1.05–1.46) | 0.010 | ||
eGFR (mL/min/1.73 m2) | 0.99 (0.98–0.99) | <0.001 | 0.99 (0.98–0.99) | <0.001 | ||||
UAE (mg/24 h) | 1.00 (1.00–1.00) | 0.018 | 1.00 (1.00–1.00) | 0.104 | ||||
Use of antihypertensive medication (yes/no) | 1.22 (0.99–1.50) | 0.063 | 1.01 (0.80–1.29) | 0.909 | ||||
Use of glucose lowering drugs (yes/no) | 0.89 (0.55–1.45) | 0.647 | 1.83 (1.05–3.20) | 0.033 | ||||
Use of lipid lowering drugs (yes/no) | 1.50 (1.20–1.87) | <0.001 | 1.25 (0.98–1.61) | 0.077 | ||||
HOMA-IR (mU mmol/L2/22.5) | 9.45 (8.10–11.01) | <0.001 |
Model 1 | Model 2 | Model 3 | Model 4 | |||||
---|---|---|---|---|---|---|---|---|
OR (95% CI) | p Value | OR (95% CI) | p Value | OR (95% CI) | p Value | OR (95% CI) | p Value | |
Age (years) | 1.03 (1.02–1.03) | <0.001 | 1.00 (1.00–1.01) | 0.906 | 0.99 (0.98–1.00) | 0.021 | 0.99 (0.98–1.00) | 0.003 |
Sex (men vs. women) | 0.62 (0.55–0.70) | <0.001 | 0.59 (0.52–0.67) | <0.001 | 0.61 (0.53–0.70) | <0.001 | 0.57 (0.49–0.65) | <0.001 |
Sodium excretion per 24 h (1 SD increment) | 1.63 (1.54–1.74) | <0.001 | 1.59 (1.49–1.70) | <0.001 | 1.59 (1.49–1.70) | <0.001 | 1.40 (1.31–1.51) | <0.001 |
Type 2 diabetes mellitus (yes/no) | 5.01 (3.95–6.35) | <0.001 | 5.36 (3.69–7.79) | <0.001 | 1.69 (1.12–2.56) | 0013 | ||
History of cardiovascular disease (yes/no) | 0.82 (0.64–1.05) | 0.109 | 0.66 (0.50–0.88) | 0.004 | 0.62 (0.46–0.84) | 0002 | ||
Hypertension (yes/no) | 2.41 (2.09–2.77) | <0.001 | 2.07 (1.71–2.50) | <0.001 | 1.77 (1.44–2.16) | <0.001 | ||
Alcohol intake (≥10 g/day vs. <10 g/day) | 1.28 (0.95–1.73) | 0.106 | 1.34 (0.99–1.82) | 0.060 | 1.44 (1.04–2.01) | 0.029 | ||
Current smoking (yes/no) | 0.73 (0.63–0.83) | <0.001 | 0.71 (0.61–0.82) | <0.001 | 0.74 (0.64–0.87) | <0.001 | ||
eGFR (mL/min/1.73 m2) | 0.99 (0.99–1.00) | 0.001 | 1.00 (0.99–1.00) | 0.198 | ||||
UAE (mg/24 h) | 1.00 (1.00–1.00) | 0.800 | 1.00 (1.00–1.00) | 0.730 | ||||
Use of antihypertensive medication (yes/no) | 1.18 (0.96–1.45) | 0.120 | 1.01 (0.81–1.26) | 0.942 | ||||
Use of glucose lowering drugs (yes/no) | 0.83 (0.52–1.34) | 0.450 | 1.30 (0.77–2.18) | 0.325 | ||||
Use of lipid lowering drugs (yes/no) | 1.42 (1.13–1.77) | 0.002 | 1.25 (0.98–1.58) | 0.068 | ||||
HOMA-IR (mU mmol/L2/22.5) | 4.04 (3.56–4.57) | <0.001 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
van den Berg, E.H.; Gruppen, E.G.; Blokzijl, H.; Bakker, S.J.L.; Dullaart, R.P.F. Higher Sodium Intake Assessed by 24 Hour Urinary Sodium Excretion Is Associated with Non-Alcoholic Fatty Liver Disease: The PREVEND Cohort Study. J. Clin. Med. 2019, 8, 2157. https://doi.org/10.3390/jcm8122157
van den Berg EH, Gruppen EG, Blokzijl H, Bakker SJL, Dullaart RPF. Higher Sodium Intake Assessed by 24 Hour Urinary Sodium Excretion Is Associated with Non-Alcoholic Fatty Liver Disease: The PREVEND Cohort Study. Journal of Clinical Medicine. 2019; 8(12):2157. https://doi.org/10.3390/jcm8122157
Chicago/Turabian Stylevan den Berg, Eline H., Eke G. Gruppen, Hans Blokzijl, Stephan J.L. Bakker, and Robin P.F. Dullaart. 2019. "Higher Sodium Intake Assessed by 24 Hour Urinary Sodium Excretion Is Associated with Non-Alcoholic Fatty Liver Disease: The PREVEND Cohort Study" Journal of Clinical Medicine 8, no. 12: 2157. https://doi.org/10.3390/jcm8122157
APA Stylevan den Berg, E. H., Gruppen, E. G., Blokzijl, H., Bakker, S. J. L., & Dullaart, R. P. F. (2019). Higher Sodium Intake Assessed by 24 Hour Urinary Sodium Excretion Is Associated with Non-Alcoholic Fatty Liver Disease: The PREVEND Cohort Study. Journal of Clinical Medicine, 8(12), 2157. https://doi.org/10.3390/jcm8122157