Sensors for Lung Cancer Diagnosis
Abstract
:1. Introduction
2. Introduction to Sensors
3. Biosensors for Biomarkers
4. Analysis of Volatile Metabolites in Breath
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Ferlay, J.; Shin, H.R.; Bray, F.; Forman, D.; Mathers, C.; Parkin, D.M. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer 2010, 127, 2893–2917. [Google Scholar] [CrossRef]
- Sobue, T.; Moriyama, N.; Kaneko, M.; Kusumoto, M.; Kobayashi, T.; Tsuchiya, R.; Kakinuma, R.; Ohmatsu., H.; Nagai, K.; Nishiyama, H.; et al. Screening for lung cancer with low-dose helical computed tomography: Anti-Lung Cancer Association Project. J. Clin. Oncol. 2002, 20, 911–920. [Google Scholar] [CrossRef] [PubMed]
- Goldstraw, P.; Crowley, J.; Chansky, K.; Giroux, D.J.; Groome, P.A.; Rami-Porta, R.; Postmus, P.E.; Rusch, V.; Sobin, L.; International Association for the Study of Lung Cancer International Staging Committee; et al. The IASLC Lung Cancer Staging Project: Proposals for the revision of the TNM stage groupings in the forthcoming (seventh) edition of the TNM Classification of malignant tumours. J. Thorac. Oncol. 2007, 2, 706–714. [Google Scholar] [CrossRef] [PubMed]
- Aberle, D.R.; Adams, A.M.; Berg, C.D.; Black, W.C.; Clapp, J.D.; Fagerstrom, R.M.; Gareen, I.F.; Gatsonis, C.; Marcus, P.M.; Sicks, J.D.; et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N. Engl. J. Med. 2011, 365, 395–409. [Google Scholar] [PubMed]
- Gründler, P. Chemical Sensors; Springer Verlag: Berlin, Germany, 2007. [Google Scholar]
- Buck, L.; Axel, R. A novel multigene family may encode odorant receptors: A molecular basis for odor recognition. Cell 1991, 65, 175–187. [Google Scholar] [CrossRef]
- Malnic, B.; Hirono, J.; Sato, T.; Buck, L. Combinatorial receptor codes for odors. Cell 1999, 96, 713–723. [Google Scholar] [CrossRef]
- Kellner, R.; Mermet, J.; Otto, M.; Valcarcel, M.; Widmer, H. Analytical Chemistry: A Modern Approach to Analytical Science; J. Wiley Sons: Chichester, UK, 2004. [Google Scholar]
- Ren, S.; Hinzmann, A.; Kang, E.; Szczesniak, R.; Lu, L. Computational and statistical analysis of metabolomics data. Metabolomics 2015, 11, 1492–1513. [Google Scholar] [CrossRef]
- Marco, S. The need for external validation in machine olfaction: Emphasis on health-related applications. Anal. Bioanal. Chem. 2014, 406, 3941. [Google Scholar] [CrossRef] [PubMed]
- Diamandis, E. Mass spectrometry as a diagnostic and a cancer biomarker discovery tool: Opportunities and potential limitations. Mol. Cell Proteomics 2004, 3, 367–378. [Google Scholar] [CrossRef] [PubMed]
- Tothill, I. Biosensors for cancer markers diagnosis. Semin Cell Dev. Biol. 2009, 20, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Hatzakisa, K.D.; Froudarakisa, M.E.; Bourosa, D.; Tzanakisa, N.; Karkavitsasb, N.; Siafakasa, N.M. Prognostic value of serum tumor markers in patients with lung cancer. Respiration 2002, 69, 25–29. [Google Scholar] [CrossRef]
- Cheng, S.; Hideshim, S.; Kuroiwa, S.; Nakamishi, T.; Osaka, T. Label-free detection of tumor markers using FET based biosensores for lung cancer diagnosis. Sensor Actuat. B-Chem. 2015, 212, 329–334. [Google Scholar] [CrossRef]
- Gao, W.; Wang, W.; Yao, S.; Wu, S.; Zhang, H.; Zhang, J.; Jing, F.; Mao, H.; Jin, Q.; Cong, H.; et al. Highly sensitive detection of multiple tumor markers for lung cancer using gold nanoparticle probes and nanoarrays. Anal. Chim Acta. 2017, 958, 77–84. [Google Scholar] [CrossRef]
- Sheng, S.L.; Huang, G.; Yu, B.; Qin, W.X. Clinical significance and prognostic value of serum Dickkopf-1 concentrations in patients with lung cancer. Clin. Chem. 2009, 55, 55–1656. [Google Scholar] [CrossRef]
- Siegelin, M.; Borczuk, A. Epidermal growth factor receptor mutations in lung adenocarcinoma. Lab. Invest. 2014, 94, 129–137. [Google Scholar] [CrossRef]
- Liu, Q.; Lim, S.; Soo, R.; Park, M.; Shin, Y. A rapid MZI-IDA sensor system for EGFR mutation testing in non-small cell lung cancer (NSCLC). Biosens Bioelectron 2015, 74, 865–871. [Google Scholar] [CrossRef]
- Hayes, S.; Haefliger, S.; Harris, B.; Pavlakis, N.; Clarke, S.; Howell, M. Exhaled breath condensate for lung cancer protein analysis: A review of methods and biomarkers. J. Breath Res. 2016, 10, 034001. [Google Scholar] [CrossRef]
- Zhang, X.; Zou, Y.; An, C.; Ying, K.; Chen, X.; Wang, P. Sensitive detection of carcinoembryonic antigen in exhaled breath condensate using surface acoustic wave immunosensor. Sensor Actuat B-Chem 2015, 201, 100–106. [Google Scholar] [CrossRef]
- Grunnet, M.; Sorensen, J. Carcinoembryogenic antigen as tumor marker in lung cancer. Lung Cancer 2012, 76, 138–143. [Google Scholar] [CrossRef]
- Zhou, J.; Huang, Z.; Kumar, U.; Chen, D. Review of recent developments in determining volatile organic compounds in exhaled breath as biomarkers for lung cancer diagnosis. Anal. Chim. Acta 2017, 996, 1–8. [Google Scholar] [CrossRef]
- Dummer, J.; Storer, M.; Swanney, M.; McEwan, M.; Scott-Thomas, A.; Bhandari, S.; Chambers, S.; Dweik, R.; Epton, M. Analysis of biogenic volatile organic compounds in human health and disease. TRACS- Trend-Anal. Chem. 2011, 30, 960–967. [Google Scholar] [CrossRef]
- Shirasu, M.; Tohuara, K. The scent of disease: Volatile organic compounds of the human body related to disease and disorder. J. Biochem 2011, 150, 257–266. [Google Scholar] [CrossRef]
- Miekisch, W.; Kischkel, S.; Sawacki, A.; Liebau, T.; Mieth, M.; Schubert, J. Impact of sampling procedures on the results of breath analysis. J. Breath Res. 2008, 2, 1–7. [Google Scholar] [CrossRef]
- Cope, K.; Watson, M.; Foster, W.; Sehnert, S.; Risby, T. Effects of ventilation on the collection of exhaled breath in humans. J. Appl. Physiol. 2004, 96, 1371–1379. [Google Scholar] [CrossRef]
- Capuano, R.; Santonico, M.; Pennazza, G.; Ghezzi, S.; Martinelli, E.; Roscioni, C.; Lucantoni, G.; Galluccio, G.; Paolesse, R.; Di Natale, C.; et al. The lung cancer breath signature: A comparative analysis of exhaled breath and air sampled from inside the lungs. Sci. Rep. 2015, 5, 1649. [Google Scholar] [CrossRef]
- Krilaviciute, A.; Heiss, J.; Leja, M.; Kupcinskas, J.; Haick, H.; Brenner, H. Detection of cancer through exhaled breath: A systematic review. Oncotarget 2015, 6, 38643–38657. [Google Scholar] [CrossRef]
- Horvath, I.; Lazar, Z.; Gyulai, N.; Kollai, M.; Losonczy, G. Exhaled biomarkers in lung cancer. Eur. Respir. J. 2009, 34, 261–275. [Google Scholar] [CrossRef]
- Phillips, M.; Altorki, N.; Austin, J.; Cameron, R.; Cataneo, R.; Kloss, R.; Maxfield, R.; Munavar, M.; Pass, H.; Rashid, A.; et al. Detection of lung cancer using weighted digital analysis of breath biomarkers. Clin. Chim. Acta 2008, 393, 76–84. [Google Scholar] [CrossRef]
- Peng, G.; Tisch, U.; Adams, O.; Hakim, M.; Shehada, N.; Broza, Y.; Billan, S.; Abdah-Bortnyak, R.; Kuten, A.; Haick, H. Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat. Nanotechnol 2009, 4, 669–673. [Google Scholar] [CrossRef]
- Pennazza, G.; Santonico, M.; Martinelli, E.; D’Amico, A.; Di Natale, C. Interpretation of exhaled volatile organic compounds. Eur. Respir. Mon. 2010, 49, 115–129. [Google Scholar]
- Hakim, M.; Broza, Y.; Barash, O.; Peled, N.; Phillips, M.; Amann, A.; Haick, H. Volatile organic compounds of lung cancer and possible biochemical pathways. Chem. Rev. 2012, 112, 5949–5966. [Google Scholar] [CrossRef] [PubMed]
- Denisov, I.; Makris, T.; Sligar, S.; Schlichting, I. Structure and chemistry of cytochrome P450. Chem. Rev. 2005, 105, 2253–2278. [Google Scholar] [CrossRef] [PubMed]
- Freuhauf, J.; Meyskens, F. Reactive oxygen species: A breath of life or death? Clin. Cancer Res. 2007, 13, 789–794. [Google Scholar] [CrossRef] [PubMed]
- Vousden, K.; Ryan, K. p53 and metabolism. Nat. Rev. Cancer 2009, 9, 691–700. [Google Scholar] [CrossRef] [PubMed]
- Bayley, J.; Devilee, P. Warburg tumors and the mechanisms of mitochondrial tumor suppressor genes. Barking up the right tree? Curr. Opin. Genet. Dev. 2010, 20, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, R. The Biology of Cancer; Garland Publishing Inc.: Princeton, NY, USA, 2006. [Google Scholar]
- Feinberg, T.; Alkoby-Meshullam, L.; Herbig, J.; Cancilla, J.; Torrecilla, J.; Gai-Mor, N.; Bar, J.; Ilouze, M.; Haick, H.; Peled, N. Cancerous glucose metabolism in lung cancer—evidence from exhaled breath analysis. J. Breath Res. 2016, 10, 026012. [Google Scholar] [CrossRef] [PubMed]
- Di Natale, C.; Paolesse, R.; Martinelli, E.; Capuano, R. Solid-state gas sensors for breath analysis. Anal. Chim. Acta 2014, 824, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Di Natale, C.; Macagnano, A.; Martinelli, E.; Paolesse, R.; D’Arcangelo, G.; Roscioni, C.; Finazzi-Agrò, A.; D’Amico, A. Lung cancer identification by the analysis of breath by means of an array of non-selective gas sensors. Biosens Bioelectron 2003, 18, 1209–1218. [Google Scholar] [CrossRef]
- Paolesse, R.; Nardis, S.; Monti, D.; Stefanelli, M.; Di Natale, C. Porphyrinoids for chemical sensor applications. Chem. Rev. 2017, 117, 2517–2583. [Google Scholar] [CrossRef] [PubMed]
- D’Amico, A.; Pennazza, G.; Santonico, M.; Martinelli, E.; Roscioni, C.; Galluccio, G.; Paolesse, R.; Di Natale, C. An investigation on electronic nose diagnosis of lung cancer. Lung Cancer 2010, 68, 170–176. [Google Scholar]
- Gasparri, R.; Santonico, M.; Valentini, C.; Sedda, G.; Borri, A.; Petrella, F.; Maisonneuve, P.; Pennazza, G.; D’Amico, A.; Di Natale, C.; et al. Volatile signature for early detection of lung cancer. J. Breath Res. 2016, 10, 016007. [Google Scholar] [CrossRef] [PubMed]
- Broza, Y.; Kremer, R.; Tisch, U.; Gevorkan, A.; Shiban, A.; Best, L.; Haick, H. A nanomaterial-based breath test for short-term follow-up after lung tumor resection. Nanomedicine 2013, 9, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Shlomi, D.; Abud-Hawa, M.; Liran, O.; Bar, J.; Gal-Mor, N.; Ilouze, M.; Onn, A.; Ben-Nun, A.; Haick, H.; Peled, N. Detection of lung cancer and EGFR mutation by electronic nose system. J. Thorac. Oncol. 2017, 12, 1544–1551. [Google Scholar] [CrossRef] [PubMed]
- Nardi-Agmon, I.; Abud-Hawa, M.; Liran, O.; Gal-Mor, N.; Ilouze, M.; Onn, A.; Bar, J.; Shlomi, D.; Haick, H.; Peled, N. Exhaled breath analysis for monitoring response to treatment in advanced lung cancer. J. Thorac. Oncol. 2017, 11, 827–837. [Google Scholar] [CrossRef] [PubMed]
- Tirzite, M.; Bukovskis, M.; Strazda, G.; Jurka, N.; Taivans, I. Detection of lung cancer in exhaled breath with an electronic nose using support vector machine. J. Breath Res. 2017, 11, 036009. [Google Scholar] [CrossRef] [PubMed]
- Mazzone, P.; Wang, X.; Lim, S.; Jettm, J.; Choi, H.; Zhang, Q.; Beukermann, M.; Seeley, M.; Martino, R.; Rhodes, P. Progress in the development of volatile exhaled breath signatures of lung cancer. Ann. Am. Thorac. Soc. 2015, 12, 752–757. [Google Scholar] [CrossRef] [PubMed]
- Bruzzi, J.F.; Truong, M.; Zinner, R.; Erasmus, J.J.; Sabloff, B.; Munden, R. Short-term restaging of patients with non small cell lung cancer receiving chemotherapy. J. Thorac. Oncol. 2006, 1, 425–429. [Google Scholar] [CrossRef] [PubMed]
- Nakhleh, M.; Amal, H.; Jeries, R.; Broza, Y.; Aboud, M.; Gharra, A.; Ivgi, H.; Khatib, S.; Badarneh, S.; Har-Shai, L.; et al. Diagnosis and Classification of 17 Diseases from 1404 Subjects via Pattern Analysis of Exhaled Molecules. ACS Nano 2016, 11, 112–125. [Google Scholar] [CrossRef] [PubMed]
Case | Sensitivity | Specificity | Accuracy | Reference |
---|---|---|---|---|
Lung cancer vs. control | 100% | 90% | 93% | [43] |
Lung cancer vs. control | 100% | 83% | 90% | [44] |
Lung cancer vs control | 91.8% | 68.8% | 90.3% | [48] |
Early LC vs benign nodule | 75% | 93.3% | 86.9% | [46] |
EGFR vs. wild-type | 78.9% | 85.3% | 83.02% | [46] |
Baseline vs. partial response and stable disease | 93% | 85% | 89% | [47] |
partial response and stable disease vs. progressive disease | 28% | 100% | 92% | [47] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capuano, R.; Catini, A.; Paolesse, R.; Di Natale, C. Sensors for Lung Cancer Diagnosis. J. Clin. Med. 2019, 8, 235. https://doi.org/10.3390/jcm8020235
Capuano R, Catini A, Paolesse R, Di Natale C. Sensors for Lung Cancer Diagnosis. Journal of Clinical Medicine. 2019; 8(2):235. https://doi.org/10.3390/jcm8020235
Chicago/Turabian StyleCapuano, Rosamaria, Alexandro Catini, Roberto Paolesse, and Corrado Di Natale. 2019. "Sensors for Lung Cancer Diagnosis" Journal of Clinical Medicine 8, no. 2: 235. https://doi.org/10.3390/jcm8020235
APA StyleCapuano, R., Catini, A., Paolesse, R., & Di Natale, C. (2019). Sensors for Lung Cancer Diagnosis. Journal of Clinical Medicine, 8(2), 235. https://doi.org/10.3390/jcm8020235