Biomarkers in the Diagnosis, Management, and Prognostication of Perioperative Right Ventricular Failure in Cardiac Surgery—Are We There Yet?
Abstract
:1. Introduction
2. The Importance of RV Function Post Cardiac Surgery
3. Etiology and Definition
4. Traditional Approaches to Measuring RV Function
5. Biomarkers and Perioperative RV Function
5.1. Biomarkers of Inflammation
5.1.1. Suppressor of Tumorgenicity 2 (ST2) and Soluble ST2 (sST2)
5.1.2. Galectin 3 (Gal-3)
5.1.3. C-Reactive Protein (CRP)
5.2. Biomarkers of Myocyte Injury and Stretch
5.2.1. Cardiac Troponins
5.2.2. High Sensitivity Troponin (hs-cTn)
5.2.3. Natriuretic Peptides
5.2.4. ANP
6. Implications for Research and Clinical Practice
7. Conclusions
Author Contributions
Conflicts of Interest
Abbreviations
Variable | Definition |
RV | right ventricular |
RVF | right ventricular failure |
HF | heart failure |
CVP | central venous pressure |
RAP | right atrial pressure |
CPB | cardiopulmonary bypass |
PH | pulmonary hypertension |
PE | pulmonary embolism |
VAD (LVAD/RVAD) | ventricular assist device (left/right) |
BNP/NT-pro-BNP | brain natriuretic peptide, N-terminal pro-brain natriuretic peptide |
References
- Haddad, F.; Doyle, R.; Murphy, D.J.; Hunt, SA. Right ventricular function in cardiovascular disease, part II: pathophysiology, clinical importance, and management of right ventricular failure. Circulation 2008, 117, 1717–1731. [Google Scholar] [CrossRef]
- Denault, A.Y.; Haddad, F.; Jacobsohn, E.; Deschamps, A. Perioperative right ventricular dysfunction. Curr. Opin. Anaesthesiol. 2013, 26, 71–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costachescu, T.; Denault, A.; Guimond, J.-G.; Couture, P.; Carignan, S.; Sheridan, P.; Hellou, G.; Blair, L.; Normandin, L.; Babin, D.; et al. The hemodynamically unstable patient in the intensive care unit: Hemodynamic vs. transesophageal echocardiographic monitoring. Crit. Care Med. 2002, 30, 1214–1223. [Google Scholar] [CrossRef] [PubMed]
- Lahm, T.; McCaslin, C.A.; Wozniak, T.C.; Ghumman, W.; Fadl, Y.Y.; Obeidat, O.S.; Schwab, K.; Meldrum, D.R. Medical and Surgical Treatment of Acute Right Ventricular Failure. J. Am. Cardiol. 2010, 56, 1435–1446. [Google Scholar] [CrossRef] [Green Version]
- Reichert, C.L.; Visser, C.A.; Brink, R.B.V.D.; Koolen, J.J.; Van Wezel, H.B.; Moulijn, A.C.; Dunning, A.J. Prognostic value of biventricular function in hypotensive patients after cardiac surgery as assessed by transesophageal echocardiography. J. Cardiothorac. Vasc. Anesthesia 1992, 6, 429–432. [Google Scholar] [CrossRef]
- Vizzardi, E.; D’Aloia, A.; Caretta, G.; Bordonali, T.; Bonadei, I.; Rovetta, R.; Quinzani, F.; Bugatti, S.; Curnis, A.; Metra, M. Long-term prognostic value of longitudinal strain of right ventricle in patients with moderate heart failure. Hell. J. Cardiol. 2014, 55, 150–155. [Google Scholar]
- Schmid, E.; Hilberath, J.N.; Blumenstock, G.; Shekar, P.S.; Kling, S.; Shernan, S.K.; Rosenberger, P.; Nowak-Machen, M. Tricuspid annular plane systolic excursion (TAPSE) predicts poor outcome in patients undergoing acute pulmonary embolectomy. Hear. lung Vessel. 2015, 7, 151–158. [Google Scholar]
- Pruszczyk, P.; Goliszek, S.; Lichodziejewska, B.; Kostrubiec, M.; Ciurzyński, M.; Kurnicka, K.; Dzikowska-Diduch, O.; Palczewski, P.; Wyzgal, A. Prognostic Value of Echocardiography in Normotensive Patients with Acute Pulmonary Embolism. JACC: Cardiovasc. 2014, 7, 553–560. [Google Scholar] [CrossRef] [PubMed]
- Greyson, C.R. Pathophysiology of right ventricular failure. Crit. Care Med. 2008, 36, S57–S65. [Google Scholar] [CrossRef] [PubMed]
- Kubba, S.; Davila, C.D.; Forfia, P.R. Methods for Evaluating Right Ventricular Function and Ventricular–Arterial Coupling. Prog. Cardiovasc. Dis. 2016, 59, 42–51. [Google Scholar] [CrossRef]
- Marzec, L.N.; Ambardekar, A.V. Preoperative Evaluation and Perioperative Management of Right Ventricular Failure After Left Ventricular Assist Device Implantation. Semin. Cardiothorac. Vasc. Anesthesia 2013, 17, 249–261. [Google Scholar] [CrossRef]
- Denault, A.Y.; Bussières, J.S.; Arellano, R.; Finegan, B.; Gavra, P.; Haddad, F.; Nguyen, A.Q.; Varin, F.; Fortier, A.; Levesque, S.; et al. A multicentre randomized-controlled trial of inhaled milrinone in high-risk cardiac surgical patients. Can. J. Anesth. 2016, 63, 1140–1153. [Google Scholar] [CrossRef]
- Borlaug, B.A.; Kass, D.A. Invasive Hemodynamic Assessment in Heart Failure. Hear. Fail. Clin. 2009, 5, 217–228. [Google Scholar] [CrossRef] [PubMed]
- Voelkel, N.F.; Quaife, R.A.; Leinwand, L.A.; Barst, R.J.; McGoon, M.D.; Meldrum, D.R.; Dupuis, J.; Long, C.S.; Rubin, L.J.; Smart, F.W.; et al. Right Ventricular Function and Failure: Report of a National Heart, Lung, and Blood Institute Working Group on Cellular and Molecular Mechanisms of Right Heart Failure. Circulation 2006, 114, 1883–1891. [Google Scholar] [CrossRef] [PubMed]
- Passino, C.; Sironi, A.M.; Favilli, B.; Poletti, R.; Prontera, C.; Ripoli, A.; Lombardi, M.; Emdin, M. Right heart overload contributes to cardiac natriuretic hormone elevation in patients with heart failure. Int. J. Cardiol. 2005, 104, 39–45. [Google Scholar] [CrossRef]
- Gaggin, H.K.; Januzzi, J.L. Biomarkers and diagnostics in heart failure. Biochim. et Biophys. N.a. (BBA)—Mol. Basis 2013, 1832, 2442–2450. [Google Scholar] [CrossRef] [Green Version]
- Simon, M.A. Assessment and treatment of right ventricular failure. Nat. Rev. Cardiol. 2013, 10, 204–218. [Google Scholar] [CrossRef]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 16, 233–271. [Google Scholar] [CrossRef]
- Buckberg, G.; Hoffman, J.I. Right ventricular architecture responsible for mechanical performance: Unifying role of ventricular septum. J. Thorac. Cardiovasc. Surg. 2014, 148, 3166–3171. [Google Scholar] [CrossRef]
- Pinedo, M.; Villacorta, E.; Tapia, C.; Arnold, R.; Lopez, J.; Revilla, A.; Gómez, I.; Fulquet, E.; Román, J.A.S. Inter- and Intra-Observer Variability in the Echocardiographic Evaluation of Right Ventricular Function. Revista Española de Cardiología (English Edition) 2010, 63, 802–809. [Google Scholar] [CrossRef]
- Konstam, M.A.; Kiernan, M.S.; Bernstein, D.; Bozkurt, B.; Jacob, M.; Kapur, N.K.; Kociol, R.D.; Lewis, E.F.; Mehra, M.R.; Pagani, F.D.; et al. Evaluation and Management of Right-Sided Heart Failure: A Scientific Statement From the American Heart Association. Circulation 2018, 137, e578–e622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lupi, E.; Dumont, C.; Tejada, V.M.; Horwitz, S.; Golland, F.; Galland, F. A Radiologic Index of Pulmonary Arterial Hypertension. Chest 1975, 68, 28–31. [Google Scholar] [CrossRef] [PubMed]
- Atluri, P.; Goldstone, A.B.; Fairman, A.S.; MacArthur, J.W.; Shudo, Y.; Cohen, J.E.; Acker, A.L.; Hiesinger, W.; Howard, J.L.; Acker, M.A.; et al. Predicting Right Ventricular Failure in the Modern, Continuous Flow Left Ventricular Assist Device Era. Ann. Thorac. Surg. 2013, 96, 857–864. [Google Scholar] [CrossRef] [Green Version]
- Taghavi, S.; Zuckermann, A.; Ankersmit, J.; Wieselthaler, G.; Rajek, A.; Laufer, G.; Wolner, E.; Grimm, M. Extracorporeal Membrane Oxygenation is Superior to Right Ventricular Assist Device for Acute Right Ventricular Failure After Heart Transplantation. Ann. Thorac. Surg. 2004, 78, 1644–1649. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Sendon, J.; Coma-Canella, I.; Gamallo, C. Sensitivity and specificity of hemodynamic criteria in the diagnosis of acute right ventricular infarction. Circulation 1981, 64, 515–525. [Google Scholar] [CrossRef]
- Nagendran, J.; Gurtu, V.; Fu, D.Z.; Dyck, J.R.; Haromy, A.; Ross, D.B.; Rebeyka, I.M.; Michelakis, E.D. A dynamic and chamber-specific mitochondrial remodeling in right ventricular hypertrophy can be therapeutically targeted. J. Thorac. Cardiovasc. Surg. 2008, 136, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 2001, 69, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Hellman, Y.; Malik, A.S.; Lin, H.; Shen, C.; Wang, I.W.; Wozniak, T.C.; Hashmi, Z.A.; Shaukat, A.; Pickrell, J.; Caccamo, M.A.; et al. B-type natriuretic peptide-guided therapy and length of hospital stay post left ventricular assist device implantation. ASAIO J. 2015, 61, 156–160. [Google Scholar] [CrossRef]
- Di Salvo, T.G.; Yang, K.-C.; Brittain, E.; Absi, T.; Maltais, S.; Hemnes, A. Right Ventricular Myocardial Biomarkers in Human Heart Failure. J. Fail. 2015, 21, 398–411. [Google Scholar] [CrossRef]
- Vondráková, D.; Málek, F.; Ošt׳ádal, P.; Kru¨ger, A.; Neužil, P. New biomarkers and heart failure. Cor et Vasa 2013, 55, e345–e354. [Google Scholar] [CrossRef] [Green Version]
- Chow, S.L.; Maisel, A.S.; Anand, I.; Bozkurt, B.; De Boer, R.A.; Felker, G.M.; Fonarow, G.C.; Greenberg, B.; Januzzi, J.L.; Kiernan, M.S.; et al. Role of Biomarkers for the Prevention, Assessment, and Management of Heart Failure: A Scientific Statement From the American Heart Association. Circulation 2017, 135, e1054–e1091. [Google Scholar] [CrossRef] [Green Version]
- Sanada, S.; Hakuno, D.; Higgins, L.J.; Schreiter, E.R.; McKenzie, A.N.; Lee, R.T. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J. Clin. Investig. 2007, 117, 1538–1549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Januzzi, J.L., Jr.; Peacock, W.F.; Maisel, A.S.; Chae, C.U.; Jesse, R.L.; Baggish, A.L.; O’Donoghue, M.; Sakhuja, R.; Chen, A.A.; van Kimmenade, R.R.; et al. Measurement of the interleukin family member ST2 in patients with acute dyspnea: Results from the PRIDE (Pro-Brain Natriuretic Peptide Investigation of Dyspnea in the Emergency Department) study. J. Am. Coll. Cardiol. 2007, 50, 607–613. [Google Scholar] [CrossRef]
- Rehman, S.U.; Mueller, T.; Januzzi, J.L. Characteristics of the Novel Interleukin Family Biomarker ST2 in Patients With Acute Heart Failure. J. Am. Cardiol. 2008, 52, 1458–1465. [Google Scholar] [CrossRef] [PubMed]
- Shah, R.V.; Januzzi, J.L. ST2: A Novel Remodeling Biomarker in Acute and Chronic Heart Failure. Hear. Fail. Rep. 2010, 7, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Ky, B.; French, B.; McCloskey, K.; Rame, J.E.; McIntosh, E.; Shahi, P.; Dries, D.L.; Tang, W.H.; Wu, A.H.; Fang, J.C.; et al. High-sensitivity ST2 for prediction of adverse outcomes in chronic heart failure. Circ. Heart Fail. 2011, 4, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, A.; Januzzi, J.L., Jr. ST2, a novel biomarker for heart failure. Expert Rev. Mol. Diagn. 2010, 10, 459–464. [Google Scholar] [CrossRef]
- Shimpo, M.; Morrow, D.; Weinberget, E. Serum levels of the interleukin-1 receptor family member ST2 predict mortality and clinical outcome in acute myocardial infarction. ACC J. 2004, 109, 2186–2190. [Google Scholar]
- Sabatine, M.S.; Morrow, D.A.; Higgins, L.J.; MacGillivray, C.; Guo, W.; Bode, C.; Rifai, N.; Cannon, C.P.; Gerszten, R.E.; Lee, R.T. Complementary Roles for Biomarkers of Biomechanical Strain ST2 and N-Terminal Prohormone B-Type Natriuretic Peptide in Patients With ST-Elevation Myocardial Infarction. Circulation 2008, 117, 1936–1944. [Google Scholar] [CrossRef] [Green Version]
- Broch, K.; Andreassen, A.K.; Ueland, T.; Michelsen, A.E.; Stueflotten, W.; Aukrust, P.; Aakhus, S.; Gullestad, L. Soluble ST2 reflects hemodynamic stress in non-ischemic heart failure. Int. J. Cardiol. 2015, 179, 378–384. [Google Scholar] [CrossRef]
- Bartunek, J.; Delrue, L.; Van Durme, F.; Muller, O.; Casselman, F.; De Wiest, B.; Croes, R.; Verstreken, S.; Goethals, M.; De Raedt, H.; et al. Non-Myocardial Production of ST2 Protein in Human Hypertrophy and Failure is Related to Diastolic Load. J. Am. Cardiol. 2008, 52, 2166–2174. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.-G.; Yang, T.; He, J.-G.; Chen, G.; Liu, Z.-H.; Xiong, C.-M.; Gu, Q.; Ni, X.-H.; Zhao, Z.-H. Plasma Soluble ST2 Levels Correlate With Disease Severity and Predict Clinical Worsening in Patients With Pulmonary Arterial Hypertension. Clin. Cardiol. 2014, 37, 365–370. [Google Scholar] [CrossRef] [Green Version]
- Broch, K.; Leren, I.S.; Saberniak, J.; Ueland, T.; Edvardsen, T.; Gullestad, L.; Haugaa, K.H. Soluble ST2 is associated with disease severity in arrhythmogenic right ventricular cardiomyopathy. Biomarkers 2017, 22, 367–370. [Google Scholar] [CrossRef]
- Ojji, D.B.; Lecour, S.; Adeyemi, O.M.; Sliwa, K. Soluble ST2 correlates with some indicators of right ventricular function in hypertensive heart failure. Vasc. Heal. Risk Manag. 2017, 13, 311–316. [Google Scholar] [CrossRef] [Green Version]
- Sano, H.; Hsu, D.K.; Apgar, J.R.; Yu, L.; Sharma, B.B.; Kuwabara, I.; Izui, S.; Liu, F.T. Critical role of galectin-3 in phagocytosis by macrophages. J. Clin. Invest. 2003, 112, 389–397. [Google Scholar] [CrossRef] [Green Version]
- Yang, R.-Y.; Rabinovich, G.A.; Liu, F.-T. Galectins: structure, function and therapeutic potential. Expert Rev. Mol. Med. 2008, 10, e17. [Google Scholar] [CrossRef]
- Kim, H.; Lee, J.; Hyun, J.W.; Park, J.W.; Joo, H.; Shin, T. Expression and immunohistochemical localization of galectin-3 in various mouse tissues. Cell Boil. Int. 2007, 31, 655–662. [Google Scholar] [CrossRef]
- Brown, R.D.; Ambler, S.K.; Mitchell, M.D.; Long, C.S. THE CARDIAC FIBROBLAST: Therapeutic Target in Myocardial Remodeling and Failure. Annu. Pharmacol. Toxicol. 2005, 45, 657–687. [Google Scholar] [CrossRef]
- Sharma, U.C. Galectin-3 Marks Activated Macrophages in Failure-Prone Hypertrophied Hearts and Contributes to Cardiac Dysfunction. Circulation 2004, 110, 3121–3128. [Google Scholar] [CrossRef] [Green Version]
- Januzzi, J.L.; Camargo, C.A.; Anwaruddin, S.; Baggish, A.L.; Chen, A.A.; Krauser, D.G.; Tung, R.; Cameron, R.; Nagurney, J.T.; Chae, C.U.; et al. The N-terminal Pro-BNP Investigation of Dyspnea in the Emergency department (PRIDE) study. Am. J. Cardiol. 2005, 95, 948–954. [Google Scholar] [CrossRef]
- Van Kimmenade, R.R.; Januzzi, J.L.; Ellinor, P.T.; Sharma, U.C.; Bakker, J.A.; Low, A.F.; Martinez, A.; Crijns, H.J.; Macrae, C.A.; Menheere, P.P.; et al. Utility of Amino-Terminal Pro-Brain Natriuretic Peptide, Galectin-3, and Apelin for the Evaluation of Patients with Acute Heart Failure. J. Am. Cardiol. 2006, 48, 1217–1224. [Google Scholar] [CrossRef] [PubMed]
- de Boer, R.A.; Lok, D.J.; Jaarsma, T.; van der Meer, P.; Voors, A.A.; Hillege, H.L.; van Veldhuisen, D.J. Predictive value of plasma galectin-3 levels in heart failure with reduced and preserved ejection fraction. Ann. Med. 2011, 43, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Gruson, D.; Mancini, M.; Ahn, S.; Rousseau, M. Measurement of Galectin-3 with the ARCHITECT assay: Clinical validity and cost-effectiveness in patients with heart failure. Clin. Biochem. 2014, 47, 1006–1009. [Google Scholar] [CrossRef] [PubMed]
- Fenster, B.E.; Lasalvia, L.; Schroeder, J.D.; Smyser, J.; Silveira, L.J.; Buckner, J.K.; Brown, K.K. Galectin-3 levels are associated with right ventricular functional and morphologic changes in pulmonary arterial hypertension. Heart Vessels 2016, 31, 939–946. [Google Scholar] [CrossRef] [PubMed]
- Yoshinaga, R.; Doi, Y.; Ayukawa, K.; Ishikawa, S. High-sensitivity C reactive protein as a predictor of inhospital mortality in patients with cardiovascular disease at an emergency department: a retrospective cohort study. BMJ Open 2017, 7, e015112. [Google Scholar] [CrossRef] [PubMed]
- Harhay, M.O.; Tracy, R.P.; Bagiella, E.; Barr, R.G.; Pinder, D.; Hundley, W.G.; Bluemke, D.A.; Kronmal, R.A.; Lima, J.A.C.; Kawut, S.M. Relationship of CRP, IL-6, and Fibrinogen with Right Ventricular Structure and Function: The MESA-Right Ventricle Study. Int. J. Cardiol. 2013, 168, 3818–3824. [Google Scholar] [CrossRef] [Green Version]
- Quarck, R.; Nawrot, T.; Meyns, B.; Delcroix, M. C-reactive protein: A new predictor of adverse outcome in pulmonary arterial hypertension. J. Am. Coll. Cardiol. 2009, 53, 1211–1218. [Google Scholar] [CrossRef] [PubMed]
- Abul, Y.; Karakurt, S.; Ozben, B.; Toprak, A.; Celikel, T. C-Reactive Protein in Acute Pulmonary Embolism. J. Investig. Med. 2011, 59, 8–14. [Google Scholar] [CrossRef]
- Papageorgiou, N.; Tousoulis, D.; Androulakis, E.; Antoniades, C.; Tentolouris, C.; Stefanadis, C. Inflammation and right ventricle: The hunting of the missing link. Int. J. Cardiol. 2013, 168, 3152–3154. [Google Scholar] [CrossRef]
- Omland, T.; Rosjo, H.; Giannitsis, E.; Agewall, S. Troponins in heart failure. Clin. Chim. Acta 2015, 443, 78–84. [Google Scholar] [CrossRef]
- Kaczyńska, A.; Szulc, M.; Styczynski, G.; Kostrubiec, M.; Pacho, R.; Pruszczyk, P. Right ventricle injury during acute pulmonary embolism leads to its remodeling. Int. J. Cardiol. 2008, 125, 120–121. [Google Scholar] [CrossRef]
- Kline, J.A.; Zeitouni, R.; Marchick, M.R.; Hernandez-Nino, J.; Rose, G.A. Comparison of 8 biomarkers for prediction of right ventricular hypokinesis 6 months after submassive pulmonary embolism. Am. Hear. J. 2008, 156, 308–314. [Google Scholar] [CrossRef]
- Saunders, J.T.; Nambi, V.; de Lemos, J.A.; Chambless, L.E.; Virani, S.S.; Boerwinkle, E.; Hoogeveen, R.C.; Liu, X.; Astor, B.C.; Mosley, T.H.; et al. Cardiac Troponin T Measured by a Highly Sensitive Assay Predicts Coronary Heart Disease, Heart Failure, and Mortality in the Atherosclerosis Risk in Communities Study. Circulation 2011, 123, 1367–1376. [Google Scholar] [CrossRef]
- Becattini, C.; Vedovati, M.C.; Agnelli, G. Prognostic value of troponins in acute pulmonary embolism: A meta-analysis. Circulation 2007, 116, 427–433. [Google Scholar] [CrossRef]
- Parissis, J.T.; Ikonomidis, I.; Rafouli-Stergiou, P.; Mebazaa, A.; Delgado, J.; Farmakis, D.; Vilas-Boas, F.; Paraskevaidis, I.; Anastasiou-Nana, M.; Follath, F. Clinical Characteristics and Predictors of In-Hospital Mortality in Acute Heart Failure With Preserved Left Ventricular Ejection Fraction. Am. J. Cardiol. 2011, 107, 79–84. [Google Scholar] [CrossRef]
- Daquarti, G.; Vecchio, N.M.; Mitrione, C.S.; Furmento, J.; Ametrano, M.C.; Pace, M.P.D.; Costabel, J.P.; Gustavo, D.; Nicolás, M.V.; Soledad, M.C.; et al. High-sensitivity troponin and right ventricular function in acute pulmonary embolism. Am. J. Emerg. Med. 2016, 34, 1579–1582. [Google Scholar] [CrossRef]
- Filusch, A.; Giannitsis, E.; Katus, H.A.; Meyer, FJ. High-sensitive troponin T: A novel biomarker for prognosis and disease severity in patients with pulmonary arterial hypertension. Clin. Sci. 2010, 119, 207–213. [Google Scholar] [CrossRef]
- Lai, C.T.M.; Wong, S.J.; Ip, J.J.K.; Wong, W.-K.; Tsang, K.-C.; Lam, W.W.M.; Cheung, Y.-F. Plasma Levels of High Sensitivity Cardiac Troponin T in Adults with Repaired Tetralogy of Fallot. Sci. Rep. 2015, 5, 14050. [Google Scholar] [CrossRef] [Green Version]
- Omar, A.S.; Sudarsanan, S.; Hanoura, S.; Osman, H.; Sivadasan, P.C.; Shouman, Y.; Tuli, A.K.; Singh, R.; Al Khulaifi, A. Kinetics of Highly Sensitive Troponin T after Cardiac Surgery. BioMed Res. Int. 2015, 2015, 574546. [Google Scholar] [CrossRef]
- Yan, A.T.; Liu, P.P. Narrative Review: Pharmacotherapy for Chronic Heart Failure: Evidence from Recent Clinical Trials. Ann. Intern. Med. 2005, 142, 132–145. [Google Scholar] [CrossRef]
- Hogenhuis, J.; Voors, A.A.; Jaarsma, T.; Hoes, A.W.; Hillege, H.L.; Kragten, J.A.; Van Veldhuisen, D.J. Anaemia and renal dysfunction are independently associated with BNP and NT-proBNP levels in patients with heart failure. Eur. J. Hear. Fail. 2007, 9, 787–794. [Google Scholar] [CrossRef] [Green Version]
- Mukoyama, M.; Nakao, K.; Hosoda, K.; Suga, S.; Saito, Y.; Ogawa, Y.; Shirakami, G.; Jougasaki, M.; Obata, K.; Yasue, H. Brain natriuretic peptide as a novel cardiac hormone in humans. Evidence for an exquisite dual natriuretic peptide system, atrial natriuretic peptide and brain natriuretic peptide. J. Clin. Investig. 1991, 87, 1402–1412. [Google Scholar] [CrossRef]
- Levin, E.R.; Gardner, D.G.; Samson, W.K. Natriuretic peptides. N. Engl. J. Med. 1998, 339, 321–328. [Google Scholar]
- Hunt, P.J.; Doughty, R.N.; Richards, A.M.; Nicholls, M.G.; Yandle, T.G.; Espiner, E.A. Immunoreactive amino-terminal pro-brain natriuretic peptide (NT-PROBNP): a new marker of cardiac impairment. Clin. Endocrinol. 1997, 47, 287–296. [Google Scholar] [CrossRef]
- Maisel, A.S.; Krishnaswamy, P.; Nowak, R.M.; McCord, J.; Hollander, J.E.; Duc, P.; Omland, T.; Storrow, A.B.; Abraham, W.T.; Wu, A.H.; et al. Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N. Engl. J. Med. 2002, 347, 161–167. [Google Scholar] [CrossRef]
- Leuchte, H.H.; El Nounou, M.; Tuerpe, J.C.; Hartmann, B.; Baumgartner, R.A.; Vogeser, M.; Muehling, O.; Behr, J. N-terminal Pro-Brain Natriuretic Peptide and Renal Insufficiency as Predictors of Mortality in Pulmonary Hypertension. Chest 2007, 131, 402–409. [Google Scholar] [CrossRef] [Green Version]
- Ganem, F.; Serrano, C.V.; Fernandes, J.L.; Blotta, M.H.S.; Souza, J.A.; Nicolau, J.C.; Ramires, J.A.; Hueb, W.A. Preoperative B-type natriuretic peptide, and not the inflammation status, predicts an adverse outcome for patients undergoing heart surgery. Interact. Cardiovasc. Thorac. Surg. 2011, 12, 778–783. [Google Scholar] [CrossRef] [PubMed]
- Cuthbertson, B.; Croal, B.; Rae, D.; Gibson, P.; McNeilly, J.; Jeffrey, R.; Smith, W.C.; Prescott, G.; Buchan, K.; El-Shafei, H.; et al. N-terminal pro-B-type natriuretic peptide levels and early outcome after cardiac surgery: a prospective cohort study. Br. J. Anaesth. 2009, 103, 647–653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fellahi, J.-L.; Daccache, G.; Rubes, D.; Massetti, M.; Gérard, J.-L.; Hanouz, J.-L. Does Preoperative B-Type Natriuretic Peptide Better Predict Adverse Outcome and Prolonged Length of Stay Than the Standard European System for Cardiac Operative Risk Evaluation After Cardiac Surgery? J. Cardiothorac. Vasc. Anesthesia 2011, 25, 256–262. [Google Scholar] [CrossRef]
- Holm, J.; Vidlund, M.; Vanky, F.; Friberg, Ö.; Håkanson, E.; Walther, S.; Svedjeholm, R. EuroSCORE II and N-terminal pro-B-type natriuretic peptide for risk evaluation: an observational longitudinal study in patients undergoing coronary artery bypass graft surgery. Br. J. Anaesth. 2014, 113, 75–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Salvo, T.G.; Mathier, M.; Semigran, M.J.; Dec, G.W. Preserved right ventricular ejection fraction predicts exercise capacity and survival in advanced heart failure. J. Am. Cardiol. 1995, 25, 1143–1153. [Google Scholar] [CrossRef] [Green Version]
- Zornoff, L.A.; Skali, H.; Pfeffer, M.A.; Sutton, M.S.J.; Rouleau, J.L.; Lamas, G.A.; Plappert, T.; Rouleau, J.R.; Moye, L.A.; Lewis, S.J.; et al. Right ventricular dysfunction and risk of heart failure and mortality after myocardial infarction. J. Am. Cardiol. 2002, 39, 1450–1455. [Google Scholar] [CrossRef] [Green Version]
- Kruger, S.; Graf, J.; Merx, M.W.; Koch, K.C.; Kunz, D.; Hanrath, P.; Janssens, U. Brain natriuretic peptide predicts right heart failure in patients with acute pulmonary embolism. Am. Heart J. 2004, 147, 60–65. [Google Scholar] [CrossRef]
- Klok, F.A.; Van Der Bijl, N.; Eikenboom, H.C.J.; Van Rooden, C.J.; De Roos, A.; Kroft, L.J.M.; Huisman, M.V. Comparison of CT assessed right ventricular size and cardiac biomarkers for predicting short-term clinical outcome in normotensive patients suspected of having acute pulmonary embolism. J. Thromb. Haemost. 2010, 8, 853–856. [Google Scholar] [CrossRef] [Green Version]
- Blyth, K.G.; Groenning, B.A.; Mark, P.B.; Martin, T.N.; Foster, J.E.; Steedman, T.; Morton, J.J.; Dargie, H.J.; Peacock, A.J.; Mark, P. NT-proBNP can be used to detect right ventricular systolic dysfunction in pulmonary hypertension. Eur. Respir. J. 2007, 29, 737–744. [Google Scholar] [CrossRef] [Green Version]
- Nagaya, N.; Nishikimi, T.; Okano, Y.; Uematsu, M.; Satoh, T.; Kyotani, S.; Kuribayashi, S.; Hamada, S.; Kakishita, M.; Nakanishi, N.; et al. Plasma Brain Natriuretic Peptide Levels Increase in Proportion to the Extent of Right Ventricular Dysfunction in Pulmonary Hypertension. J. Am. Cardiol. 1998, 31, 202–208. [Google Scholar] [CrossRef] [Green Version]
- Clerico, A.; Iervasi, G.; Pilo, A. Turnover Studies on Cardiac Natriuretic Peptides: Methodological, Pathophysiological and Therapeutical Considerations. Curr. Drug Metab. 2000, 1, 85–105. [Google Scholar] [CrossRef]
- Hara, H.; Ogihara, T.; Shima, J.; Saito, H.; Rakugi, H.; Iinuma, K.; Kumahara, Y.; Minamino, T. Plasma Atrial Natriuretic Peptide Level As an Index for the Severity of Congestive Heart Failure. Clin. Cardiol. 1987, 10, 437–442. [Google Scholar] [CrossRef]
- Nagaya, N.; Nishikimi, T.; Uematsu, M.; Satoh, T.; Kyotani, S.; Sakamaki, F.; Kakishita, M.; Fukushima, K.; Okano, Y.; Nakanishi, N.; et al. Plasma Brain Natriuretic Peptide as a Prognostic Indicator in Patients With Primary Pulmonary Hypertension. Circulation 2000, 102, 865–870. [Google Scholar] [CrossRef] [Green Version]
- Gutte, H.; Mortensen, J.; Jensen, C.V.; Von Der Recke, P.; Petersen, C.L.; Kristoffersen, U.S.; Kjaer, A. ANP, BNP and D-dimer predict right ventricular dysfunction in patients with acute pulmonary embolism. Clin. Physiol. Funct. Imaging 2010, 30, 466–472. [Google Scholar] [CrossRef]
- Groenning, B.A.; Nilsson, J.C.; Sondergaard, L.; Kjaer, A.; Larsson, H.B.; Hildebrandt, P.R. Evaluation of impaired left ventricular ejection fraction and increased dimensions by multiple neurohumoral plasma concentrations. Eur. J. Hear. Fail. 2001, 3, 699–708. [Google Scholar] [CrossRef] [Green Version]
- Weir, R.A.; Petrie, C.J.; Murphy, C.A.; Clements, S.; Steedman, T.; Miller, A.M.; McInnes, I.B.; Squire, I.B.; Ng, L.L.; Dargie, H.J.; et al. Galectin-3 and Cardiac Function in Survivors of Acute Myocardial Infarction. Circ. Hear. Fail. 2013, 6, 492–498. [Google Scholar] [CrossRef] [Green Version]
- Milting, H.; Kramer, F.; Ellinghaus, P.; Çakar, H.; Bohms, B.; Kassner, A.; Kastning, H.; Lauenroth, V.; Krahn, T.; Kruska, L.; et al. 376: Novel Plasma Biomarkers of Myocardial Fibrosis and Remodeling in Terminal Heart Failure Patients Supported by Mechanical Circulatory Support Devices. J. Hear. Lung Transplant. 2008, 27, S196–S197. [Google Scholar] [CrossRef]
- Diagnostics, C. Aspect–LF™ ST2 Test. Available online: http://www.criticaldiagnostics.com/OUS/products/aspect.htm (accessed on 1 January 2019).
Mechanism | Etiologies |
---|---|
Intrinsic RV failure (normal afterload) | Ischemia/infarction Coronary embolism (air or thrombus) Occlusive CAD Bypass graft dysfunction/thrombosis Postoperative RV dysfunction Suboptimal myocardial protection intraoperatively Inflammatory CPB effects (long CPB times) Arrhythmias (AVNRT or loss of AV synchrony) Cardiotomy |
RV failure secondary to increased afterload | LVF MVD with PH Protamine induced PH Ischemia-reperfusion injury PE ARDS Pre-existing PH or OSA |
RV failure secondary to increased volume overload | Excessive blood transfusions Excessive fluid administration Severe TR or PR |
Cardiac anatomical abnormalities | CHD ASD VSD |
Miscellaneous | OHT PH Prolonged donor ischemic time Obstruction of PA anastomotic site Acute rejection LVAD Acute LV unloading with institution of LVAD support Sepsis |
Diagnostic Tool | Indication | Information Provided | Current Perioperative Use in Cardiac Surgery | Role in Perioperative Risk Stratification of RVF in Cardiac Surgery Patients |
---|---|---|---|---|
Cardiac MRI |
|
|
|
|
RHC |
|
|
|
|
Chest X-ray |
|
|
| |
RAP (or CVP) |
|
|
| |
ECHO |
|
|
|
|
Natriuretic Peptides (BNP and NT-proBNP) |
|
|
|
|
Serum Markers (transaminases) |
|
|
|
|
Criteria | Details |
---|---|
Is the biomarker measurable? |
|
Does the biomarker provide new information? |
|
Will the biomarker assist clinical decisions making? |
|
Biomarker | RV Specific Uses | Non-RV Uses |
---|---|---|
Biomarkers of Inflammation | ||
ST2 and sST2 |
|
|
Galectin 3 |
|
|
CRP |
|
|
Biomarkers of Myocyte Injury & Stress | ||
High Sensitivity Troponins |
|
|
BNP and NT-proBNP |
|
|
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jabagi, H.; Mielniczuk, L.M.; Liu, P.P.; Ruel, M.; Sun, L.Y. Biomarkers in the Diagnosis, Management, and Prognostication of Perioperative Right Ventricular Failure in Cardiac Surgery—Are We There Yet? J. Clin. Med. 2019, 8, 559. https://doi.org/10.3390/jcm8040559
Jabagi H, Mielniczuk LM, Liu PP, Ruel M, Sun LY. Biomarkers in the Diagnosis, Management, and Prognostication of Perioperative Right Ventricular Failure in Cardiac Surgery—Are We There Yet? Journal of Clinical Medicine. 2019; 8(4):559. https://doi.org/10.3390/jcm8040559
Chicago/Turabian StyleJabagi, Habib, Lisa M. Mielniczuk, Peter P. Liu, Marc Ruel, and Louise Y. Sun. 2019. "Biomarkers in the Diagnosis, Management, and Prognostication of Perioperative Right Ventricular Failure in Cardiac Surgery—Are We There Yet?" Journal of Clinical Medicine 8, no. 4: 559. https://doi.org/10.3390/jcm8040559
APA StyleJabagi, H., Mielniczuk, L. M., Liu, P. P., Ruel, M., & Sun, L. Y. (2019). Biomarkers in the Diagnosis, Management, and Prognostication of Perioperative Right Ventricular Failure in Cardiac Surgery—Are We There Yet? Journal of Clinical Medicine, 8(4), 559. https://doi.org/10.3390/jcm8040559