Increased Arterial Stiffness in Prediabetic Subjects Recognized by Hemoglobin A1c with Postprandial Glucose but Not Fasting Glucose Levels
Abstract
:1. Introduction
2. Experimental Section
2.1. Study Population
2.2. Clinical Parameter Assessment
2.3. Vascular Assessment
2.4. Statistical Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tancredi, M.; Rosengren, A.; Svensson, A.M.; Kosiborod, M.; Pivodic, A.; Gudbjornsdottir, S.; Wedel, H.; Clements, M.; Dahlqvist, S.; Lind, M. Excess mortality among persons with Type 2 diabetes. N. Engl. J. Med. 2015, 373, 1720–1732. [Google Scholar] [CrossRef] [PubMed]
- Brannick, B.; Wynn, A.; Dagogo-Jack, S. Prediabetes as a toxic environment for the initiation of microvascular and macrovascular complications. Exp. Biol. Med. 2016, 241, 1323–1331. [Google Scholar] [CrossRef]
- International expert committee report on the role of the A1c assay in the diagnosis of diabetes. Diabetes Care. 2009, 32, 1327–1334. [CrossRef] [PubMed]
- American Diabetes Association. Standards of medical care in diabetes—2011. Diabetes Care 2011, 34, S11–S61. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M.L. Prediabetes: Beyond the borderline. Nurs. Clin. N. Am. 2017, 52, 665–677. [Google Scholar] [CrossRef] [PubMed]
- Aronson, D. Cross-linking of glycated collagen in the pathogenesis of arterial and myocardial stiffening of aging and diabetes. J. Hypertens. 2003, 21, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Schram, M.T.; Henry, R.M.; van Dijk, R.A.; Kostense, P.J.; Dekker, J.M.; Nijpels, G.; Heine, R.J.; Bouter, L.M.; Westerhof, N.; Stehouwer, C.D. Increased central artery stiffness in impaired glucose metabolism and type 2 diabetes: The hoorn study. Hypertension 2004, 43, 176–181. [Google Scholar] [CrossRef]
- Stephen, E.; Venkatasubramaniam, A.; Good, T.; Topoleski, L.D.T. The effect of glycation on arterial microstructure and mechanical response. J. Biomed. Mater. Res. A 2014, 102, 2565–2572. [Google Scholar] [CrossRef]
- Vlachopoulos, C.; Aznaouridis, K.; Stefanadis, C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: A systematic review and meta-analysis. J. Am. Coll. Cardiol. 2010, 55, 1318–1327. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Khera, R.; Corrales-Medina, V.F.; Townsend, R.R.; Chirinos, J.A. Inflammation and arterial stiffness in humans. Atherosclerosis 2014, 237, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Munakata, M.; Kawano, Y.; Ohishi, M.; Shoji, T.; Sugawara, J.; Tomiyama, H.; Yamashina, A.; Yasuda, H.; Sawayama, T.; et al. Comparison between carotid-femoral and brachial-ankle pulse wave velocity as measures of arterial stiffness. J. Hypertens. 2009, 27, 2022–2027. [Google Scholar] [CrossRef] [PubMed]
- Cavalcante, J.L.; Lima, J.A.; Redheuil, A.; Al-Mallah, M.H. Aortic stiffness current understanding and future directions. J. Am. Coll. Cardiol. 2011, 57, 1511–1522. [Google Scholar] [CrossRef] [PubMed]
- Ohnishi, H.; Saitoh, S.; Takagi, S.; Ohata, J.; Isobe, T.; Kikuchi, Y.; Takeuchi, H.; Shimamoto, K. Pulse wave velocity as an indicator of atherosclerosis in impaired fasting glucose: The Tanno and Sobetsu study. Diabetes Care 2003, 26, 437–440. [Google Scholar] [CrossRef]
- Li, C.H.; Wu, J.S.; Yang, Y.C.; Shih, C.C.; Lu, F.H.; Chang, C.J. Increased arterial stiffness in subjects with impaired glucose tolerance and newly diagnosed diabetes but not isolated impaired fasting glucose. J. Clin. Endocrinol. Metab. 2012, 97, E658–E662. [Google Scholar] [CrossRef]
- Liang, J.; Zhou, N.; Teng, F.; Zou, C.; Xue, Y.; Yang, M.; Song, H.; Qi, L. Hemoglobin A1c levels and aortic arterial stiffness: The cardiometabolic risk in Chinese (CRC) study. PLoS ONE 2012, 7, e38485. [Google Scholar] [CrossRef] [PubMed]
- Di Pino, A.; Scicali, R.; Calanna, S.; Urbano, F.; Mantegna, C.; Rabuazzo, A.M.; Purrello, F.; Piro, S. Cardiovascular risk profile in subjects with prediabetes and new-onset type 2 diabetes identified by HbA(1c) according to American Diabetes Association criteria. Diabetes Care 2014, 37, 1447–1453. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Sanchez, L.; Garcia-Ortiz, L.; Patino-Alonso, M.C.; Recio-Rodriguez, J.I.; Feuerbach, N.; Marti, R.; Agudo-Conde, C.; Rodriguez-Sanchez, E.; Maderuelo-Fernandez, J.A.; Ramos, R.; et al. Glycemic markers and relation with arterial stiffness in Caucasian subjects of the MARK study. PLoS ONE 2017, 12, e0175982. [Google Scholar] [CrossRef] [PubMed]
- Marini, M.A.; Succurro, E.; Castaldo, E.; Cufone, S.; Arturi, F.; Sciacqua, A.; Lauro, R.; Hribal, M.L.; Perticone, F.; Sesti, G. Cardiometabolic risk profiles and carotid atherosclerosis in individuals with prediabetes identified by fasting glucose, postchallenge glucose, and hemoglobin A1c criteria. Diabetes Care 2012, 35, 1144–1149. [Google Scholar] [CrossRef]
- Ji, A.; Lou, P.; Dong, Z.; Xu, C.; Zhang, P.; Chang, G.; Li, T. The prevalence of alcohol dependence and its association with hypertension: A population-based cross-sectional study4 in Xuzhou city, China. BMC Public Health 2018, 18, 364. [Google Scholar] [CrossRef]
- Lippi, G.; Targher, G. Glycated hemoglobin (HbA1c): Old dogmas, a new perspective? Clin. Chem. Lab. Med. 2010, 48, 609–614. [Google Scholar] [CrossRef]
- Motobe, K.; Tomiyama, H.; Koji, Y.; Yambe, M.; Gulinisa, Z.; Arai, T.; Ichihashi, H.; Nagae, T.; Ishimaru, S.; Yamashina, A. Cut-off value of the ankle-brachial pressure index at which the accuracy of brachial-ankle pulse wave velocity measurement is diminished. Circ. J. 2005, 69, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Whaley, M.H.; Brubaker, P.H.; Otto, R.M.; Armstrong, L.E.; American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription, 7th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2006. [Google Scholar] [CrossRef]
- Nathan, D.M.; Davidson, M.B.; DeFronzo, R.A.; Heine, R.J.; Henry, R.R.; Pratley, R.; Zinman, B. Impaired fasting glucose and impaired glucose tolerance: Implications for care. Diabetes Care 2007, 30, 753–759. [Google Scholar] [CrossRef] [PubMed]
- Barr, R.G.; Nathan, D.M.; Meigs, J.B.; Singer, D.E. Tests of glycemia for the diagnosis of type 2 diabetes mellitus. Ann. Int. Med. 2002, 137, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Basta, G.; Sironi, A.M.; Lazzerini, G.; Del Turco, S.; Buzzigoli, E.; Casolaro, A.; Natali, A.; Ferrannini, E.; Gastaldelli, A. Circulating soluble receptor for advanced glycation end products is inversely associated with glycemic control and S100A12 protein. J. Clin. Endocrinol. Metab. 2006, 91, 4628–4634. [Google Scholar] [CrossRef] [PubMed]
- Di Pino, A.; Urbano, F.; Zagami, R.M.; Filippello, A.; Di Mauro, S.; Piro, S.; Purrello, F.; Rabuazzo, A.M. Low endogenous secretory receptor for advanced glycation end-products levels are associated with inflammation and carotid atherosclerosis in prediabetes. J. Clin. Endocrinol. Metab. 2016, 101, 1701–1709. [Google Scholar] [CrossRef] [PubMed]
- Tahara, N.; Yamagishi, S.; Matsui, T.; Takeuchi, M.; Nitta, Y.; Kodama, N.; Mizoguchi, M.; Imaizumi, T. Serum levels of advanced glycation end products (AGEs) are independent correlates of insulin resistance in nondiabetic subjects. Cardiovasc. Ther. 2012, 30, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.A.; Montagnani, M.; Koh, K.K.; Quon, M.J. Reciprocal relationships between insulin resistance and endothelial dysfunction: Molecular and pathophysiological mechanisms. Circulation 2006, 113, 1888–1904. [Google Scholar] [CrossRef] [PubMed]
- Arcaro, G.; Cretti, A.; Balzano, S.; Lechi, A.; Muggeo, M.; Bonora, E.; Bonadonna, R.C. Insulin causes endothelial dysfunction in humans: Sites and mechanisms. Circulation 2002, 105, 576–582. [Google Scholar] [CrossRef]
- Cubbon, R.M.; Kahn, M.B.; Wheatcroft, S.B. Effects of insulin resistance on endothelial progenitor cells and vascular repair. Clin. Sci. 2009, 117, 173–190. [Google Scholar] [CrossRef]
- Libman, I.M.; Barinas-Mitchell, E.; Bartucci, A.; Chaves-Gnecco, D.; Robertson, R.; Arslanian, S. Fasting and 2-hour plasma glucose and insulin: Relationship with risk factors for cardiovascular disease in overweight nondiabetic children. Diabetes Care 2010, 33, 2674–2676. [Google Scholar] [CrossRef]
- Festa, A.; D’Agostino, R., Jr.; Hanley, A.J.; Karter, A.J.; Saad, M.F.; Haffner, S.M. Differences in insulin resistance in nondiabetic subjects with isolated impaired glucose tolerance or isolated impaired fasting glucose. Diabetes 2004, 53, 1549–1555. [Google Scholar] [CrossRef] [PubMed]
- Cecelja, M.; Chowienczyk, P. Dissociation of aortic pulse wave velocity with risk factors for cardiovascular disease other than hypertension: A systematic review. Hypertension 2009, 54, 1328–1336. [Google Scholar] [CrossRef] [PubMed]
- Tomiyama, H.; Hashimoto, H.; Tanaka, H.; Matsumoto, C.; Odaira, M.; Yamada, J.; Yoshida, M.; Shiina, K.; Nagata, M.; Yamashina, A. Continuous smoking and progression of arterial stiffening: A prospective study. J. Am. Coll. Cardiol. 2010, 55, 1979–1987. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.Y.; Oh, B.H. Aging and arterial stiffness. Circ. J. 2010, 74, 2257–2262. [Google Scholar] [CrossRef] [PubMed]
- Yiming, G.; Zhou, X.; Lv, W.; Peng, Y.; Zhang, W.; Cheng, X.; Li, Y.; Xing, Q.; Zhang, J.; Zhou, Q.; et al. Reference values of brachial-ankle pulse wave velocity according to age and blood pressure in a central Asia population. PLoS ONE 2017, 12, e0171737. [Google Scholar] [CrossRef] [PubMed]
- Tomiyama, H.; Yamashina, A.; Arai, T.; Hirose, K.; Koji, Y.; Chikamori, T.; Hori, S.; Yamamoto, Y.; Doba, N.; Hinohara, S. Influences of age and gender on results of noninvasive brachial-ankle pulse wave velocity measurement—A survey of 12517 subjects. Atherosclerosis 2003, 166, 303–309. [Google Scholar] [CrossRef]
- Corden, B.; Keenan, N.G.; de Marvao, A.S.; Dawes, T.J.; Decesare, A.; Diamond, T.; Durighel, G.; Hughes, A.D.; Cook, S.A.; O’Regan, D.P. Body fat is associated with reduced aortic stiffness until middle age. Hypertension 2013, 61, 1322–1327. [Google Scholar] [CrossRef] [PubMed]
- Thomas, G.N.; Lao, X.Q.; Jiang, C.Q.; McGhee, S.M.; Zhang, W.S.; Adab, P.; Lam, T.H.; Cheng, K.K. Implications of increased weight and waist circumference on vascular risk in an older Chinese population: The guangzhou biobank cohort study. Atherosclerosis 2008, 196, 682–688. [Google Scholar] [CrossRef] [PubMed]
Normoglycemic 1 | Prediabetes | NDD 5 | p * | Post Hoc Test ** | |||
---|---|---|---|---|---|---|---|
Isolated A1c 5.7–6.4% 2 | IFG without IGT 3 | IGT 4 | |||||
Variables | (n = 2583) | (n = 1188) | (n = 211) | (n = 704) | (n = 252) | ||
Age (years) | 42.3 ± 10.7 | 49.6 ± 10.5 | 50.0 ± 11.0 | 50.8 ± 11.2 | 53.6 ± 11.1 | <0.001 | a, b, c, d, g, i, j |
Gender, male (%) | 59.5 | 62.4 | 65.9 | 69.7 | 66.3 | <0.001 | - |
Body mass index (kg/m2) | 23.3 ± 3.3 | 24.4 ± 3.3 | 25.5 ± 2.9 | 25.0 ± 3.5 | 25.7 ± 3.6 | <0.001 | a, b, c, d, e, f, g |
Former/Current smoking (%) | 5.2/9.6 | 5.8/9.8 | 7.1/10.9 | 8.0/9.8 | 9.1/9.1 | 0.115 | - |
Current alcohol drinking (%) | 10.5 | 9.6 | 12.3 | 14.1 | 12.3 | 0.029 | - |
Habitual exercise (%) | 7.0 | 8.0 | 6.2 | 6.1 | 4.4 | 0.230 | - |
SBP (mmHg) | 113.5 ± 12.8 | 118.1 ± 13.6 | 122.4 ± 13.8 | 121.9 ± 15.2 | 125.8 ± 14.8 | <0.001 | a, b, c, d, e, f, g, j |
DBP (mmHg) | 67.4 ± 9.8 | 70.9 ± 9.8 | 73.8 ± 9.9 | 73.4 ± 10.3 | 76.1 ± 10.1 | <0.001 | a, b, c, d, e, f, g, j |
FPG (mmol/L) | 4.67 ± 0.37 | 4.84 ± 0.37 | 5.77 ± 0.22 | 4.96 ± 0.63 | 6.92 ± 2.99 | <0.001 | a, b, c, d, e, f, g, h, i, j |
2hPG (mmol/L) | 5.29 ± 1.13 | 5.64 ± 1.16 | 5.98 ± 1.13 | 8.93 ± 0.87 | 13.78 ± 4.97 | <0.001 | a, b, c, d, e, f, g, h, i, j |
Cholesterol (mmol/L) | 4.96 ± 0.89 | 5.27 ± 0.96 | 5.34 ± 0.92 | 5.28 ± 0.90 | 5.58 ± 1.06 | <0.001 | a, b, c, d, g, j |
Triglyceride (mmol/L) | 1.24 ± 0.74 | 1.43 ± 0.86 | 1.75 ± 1.22 | 1.69 ± 1.11 | 1.90 ± 1.19 | <0.001 | a, b, c, d, e, f, g, j |
HDL-C (mmol/L) | 1.39 ± 0.38 | 1.31 ± 0.36 | 1.28 ± 0.34 | 1.23 ± 0.33 | 1.22 ± 0.34 | <0.001 | a, b, c, d, f, g |
baPWV (cm/sec) | 1253.1 ± 187.6 | 1353.7 ± 223.9 | 1376.9 ± 227.8 | 1406.3 ± 251.7 | 1491.6 ± 276.6 | <0.001 | a, b, c, d, f, g, i, j |
Independent Variables | Model 1 | Model 2 | ||
---|---|---|---|---|
β (95% CI) | p Value | β (95% CI) | p Value | |
Age (years) | − | <0.001 | 8.27 (7.89~8.65) | <0.001 |
Gender (female vs. male) | 5.39 (−4.00~14.77) | 0.260 | 5.02 (−4.36~14.39) | 0.294 |
Body mass index (kg/m2) | −8.09 (−9.41~−6.77) | <0.001 | −8.20 (−9.52~−6.87) | <0.001 |
Smoking (former vs. never) | 8.16 (−8.77~25.08) | 0.345 | 8.60 (−8.32~25.52) | 0.319 |
Smoking (current vs. never) | 20.56 (6.42~34.71) | 0.004 | 19.73 (5.59~33.87) | 0.006 |
Current alcohol drinking (yes vs. no) | -8.51 (−22.03~5.01) | 0.217 | −8.13 (−21.65~5.39) | 0.238 |
Habitual exercise (≥3 times/week vs. <3 times/week) | −22.12 (−37.26~−6.98) | 0.004 | −22.47 (−37.61~−7.34) | 0.004 |
Cholesterol (mmol/L) | 1.81 (−2.84~6.45) | 0.445 | 1.59 (−3.04~6.24) | 0.500 |
Triglyceride (mmol/L) | 3.98 (−1.23~9.19) | 0.134 | 3.81 (−1.41~9.02) | 0.152 |
HDL-C (mmol/L) | −9.96 (−23.79~3.87) | 0.158 | −9.47 (−23.92~4.36) | 0.180 |
SBP (mmHg) | 9.06 (8.74~9.37) | <0.001 | 9.04 (8.72~9.36) | <0.001 |
Isolated A1c 5.7–6.4% * vs. normoglycemic | 4.84 (−5.08~14.75) | 0.339 | 5.56 (−4.36~15.47) | 0.272 |
IFG without IGT vs. normoglycemic | −7.52 (−27.21~12.17) | 0.454 | − | − |
Isolated IFG vs. normoglycemic | − | − | −14.36 (−46.13~17.40) | 0.375 |
IFG with A1c 5.7–6.4% vs. normoglycemic | − | − | −2.32 (−26.41~21.78) | 0.851 |
IGT vs. normoglycemic | 16.59 (4.41~28.76) | 0.008 | − | − |
Isolated IGT vs. normoglycemic | − | − | −6.90 (−24.55~10.74) | 0.443 |
Combined IGT and IFG with A1c <5.7% vs. normoglycemic | − | − | 4.51 (−45.88~54.91) | 0.861 |
IGT with A1c 5.7–6.4% vs. normoglycemic | − | − | 36.02 (19.08~52.95) | <0.001 |
Combined IGT and IFG with A1c 5.7–6.4% vs. normoglycemic | − | − | 27.72 (0.68~54.76) | 0.044 |
NDD vs. normoglycemic | 46.35 (27.18~65.04) | <0.001 | 47.69 (29.02~66.37) | <0.001 |
Adjusted R2 (%) | 63.2 | 63.3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.-H.; Lu, F.-H.; Yang, Y.-C.; Wu, J.-S.; Chang, C.-J. Increased Arterial Stiffness in Prediabetic Subjects Recognized by Hemoglobin A1c with Postprandial Glucose but Not Fasting Glucose Levels. J. Clin. Med. 2019, 8, 603. https://doi.org/10.3390/jcm8050603
Li C-H, Lu F-H, Yang Y-C, Wu J-S, Chang C-J. Increased Arterial Stiffness in Prediabetic Subjects Recognized by Hemoglobin A1c with Postprandial Glucose but Not Fasting Glucose Levels. Journal of Clinical Medicine. 2019; 8(5):603. https://doi.org/10.3390/jcm8050603
Chicago/Turabian StyleLi, Chung-Hao, Feng-Hwa Lu, Yi-Ching Yang, Jin-Shang Wu, and Chih-Jen Chang. 2019. "Increased Arterial Stiffness in Prediabetic Subjects Recognized by Hemoglobin A1c with Postprandial Glucose but Not Fasting Glucose Levels" Journal of Clinical Medicine 8, no. 5: 603. https://doi.org/10.3390/jcm8050603
APA StyleLi, C. -H., Lu, F. -H., Yang, Y. -C., Wu, J. -S., & Chang, C. -J. (2019). Increased Arterial Stiffness in Prediabetic Subjects Recognized by Hemoglobin A1c with Postprandial Glucose but Not Fasting Glucose Levels. Journal of Clinical Medicine, 8(5), 603. https://doi.org/10.3390/jcm8050603