Diagnostic Performance of Cyclophilin A in Cardiac Surgery-Associated Acute Kidney Injury
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Clinical Assessment
2.3. Sampling and Quantifying Urine Neutrophil Gelatinase-Associated Lipocalin (uNGAL) and Cyclophilin A (CypA)
2.4. Statistical Analysis
3. Results
3.1. Study Population Characteristics
3.2. Discrimination Abilities of Serum CypA and Normalized uNGAL in Detecting AKI, Dialysis-Requiring AKI, and 90-Day Mortality
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hobson, C.E.; Yavas, S.; Segal, M.S.; Schold, J.D.; Tribble, C.G.; Layon, A.J.; Bihorac, A. Acute Kidney Injury Is Associated With Increased Long-Term Mortality After Cardiothoracic Surgery. Circulation 2009, 119, 2444–2453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rydén, L.; Ahnve, S.; Bell, M.; Hammar, N.; Ivert, T.; Holzmann, M.J. Acute kidney injury following coronary artery bypass grafting: Early mortality and postoperative complications. Scand. Cardiovasc. J. 2012, 46, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Chertow, G.M.; Levy, E.M.; Hammermeister, K.E.; Grover, F.; Daley, J. Independent Association between Acute Renal Failure and Mortality following Cardiac Surgery. Am. J. Med. 1998, 104, 343–348. [Google Scholar] [CrossRef]
- Zanardo, G.; Michielon, P.; Paccagnella, A.; Rosi, P.; Caló, M.; Salandin, V.; Da Ros, A.; Michieletto, F.; Simini, G. Acute renal failure in the patient undergoing cardiac operation. Prevalence, mortality rate, and main risk factors. J. Thorac. Cardiovasc. Surg. 1994, 107, 1489–1495. [Google Scholar] [CrossRef]
- Mangano, C.M.; Diamondstone, L.S.; Ramsay, J.G.; Aggarwal, A.; Herskowitz, A.; Mangano, D.T. Renal dysfunction after myocardial revascularization: Risk factors, adverse outcomes, and hospital resource utilization. The Multicenter Study of Perioperative Ischemia Research Group. Ann. Intern. Med. 1998, 128, 194–203. [Google Scholar] [CrossRef] [PubMed]
- Liotta, M.; Olsson, D.; Sartipy, U.; Holzmann, M.J. Minimal changes in postoperative creatinine values and early and late mortality and cardiovascular events after coronary artery bypass grafting. Am. J. Cardiol. 2014, 113, 70–75. [Google Scholar] [CrossRef] [Green Version]
- Olsson, D.; Sartipy, U.; Braunschweig, F.; Holzmann, M.J. Acute Kidney Injury Following Coronary Artery Bypass Surgery and Long-term Risk of Heart Failure. Circ. Heart Fail. 2013, 6, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Rydén, L.; Ahnve, S.; Bell, M.; Hammar, N.; Ivert, T.; Sartipy, U.; Holzmann, M.J. Acute kidney injury after coronary artery bypass grafting and long-term risk of myocardial infarction and death. Int. J. Cardiol. 2014, 172, 190–195. [Google Scholar] [CrossRef]
- Pickering, J.W.; James, M.T.; Palmer, S.C. Acute Kidney Injury and Prognosis After Cardiopulmonary Bypass: A Meta-analysis of Cohort Studies. Am. J. Kidney Dis. 2015, 65, 283–293. [Google Scholar] [CrossRef]
- Nigro, P.; Satoh, K.; O’Dell, M.R.; Soe, N.N.; Cui, Z.; Mohan, A.; Abe, J.-I.; Alexis, J.D.; Sparks, J.D.; Berk, B.C. Cyclophilin A is an inflammatory mediator that promotes atherosclerosis in apolipoprotein E–deficient mice. J. Exp. Med. 2011, 208, 53–66. [Google Scholar] [CrossRef] [Green Version]
- Rezzani, R.; Favero, G.; Stacchiotti, A.; Rodella, L.F. Endothelial and vascular smooth muscle cell dysfunction mediated by cyclophylin A and the atheroprotective effects of melatonin. Life Sci. 2013, 92, 875–882. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Zang, X.; Chen, R.; Yuan, W.; Gong, J.; Wang, C.; Li, Y. The clinical implications of increased cyclophilin A levels in patients with acute coronary syndromes. Clin. Chim. Acta 2012, 413, 691–695. [Google Scholar] [CrossRef] [PubMed]
- Satoh, K.; Fukumoto, Y.; Sugimura, K.; Miura, Y.; Aoki, T.; Nochioka, K.; Tatebe, S.; Miyamichi-Yamamoto, S.; Shimizu, T.; Osaki, S.; et al. Plasma Cyclophilin A Is a Novel Biomarker for Coronary Artery Disease. Circ. J. 2013, 77, 447–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satoh, K.; Nigro, P.; Matoba, T.; O’Dell, M.R.; Cui, Z.; Shi, X.; Mohan, A.; Yan, C.; Abe, J.; Illig, K.A.; et al. Cyclophilin A enhances vascular oxidative stress and the development of angiotensin II-induced aortic aneurysms. Nat. Med. 2009, 15, 649–656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dear, J.W.; Simpson, K.J.; Nicolai, M.P.; Catterson, J.H.; Street, J.; Huizinga, T.; Craig, D.G.; Dhaliwal, K.; Webb, S.; Bateman, D.N.; et al. Cyclophilin A is a damage-associated molecular pattern molecule that mediates acetaminophen-induced liver injury. J. Immunol. 2011, 187, 3347–3352. [Google Scholar] [CrossRef] [Green Version]
- Seizer, P.; Geisler, T.; Bigalke, B.; Schneider, M.; Klingel, K.; Kandolf, R.; Stellos, K.; Schreieck, J.; Gawaz, M.; May, A.E. EMMPRIN and its ligand cyclophilin A as novel diagnostic markers in inflammatory cardiomyopathy. Int. J. Cardiol. 2013, 163, 299–304. [Google Scholar] [CrossRef]
- Dear, J.W.; Leelahavanichkul, A.; Aponte, A.; Hu, X.; Constant, S.L.; Hewitt, S.M.; Yuen, P.S.; Star, R.A. Liver proteomics for therapeutic drug discovery: Inhibition of the cyclophilin receptor CD147 attenuates sepsis-induced acute renal failure. Crit. Care Med. 2007, 35, 2319–2328. [Google Scholar] [CrossRef] [Green Version]
- Tsai, S.F.; Su, C.W.; Wu, M.J.; Chen, C.H.; Fu, C.P.; Liu, C.S.; Hsieh, M. Urinary Cyclophilin A as a New Marker for Diabetic Nephropathy: A Cross-Sectional Analysis of Diabetes Mellitus. Medicine 2015, 94, e1802. [Google Scholar] [CrossRef]
- Palevsky, P.M.; Liu, K.D.; Brophy, P.D.; Chawla, L.S.; Parikh, C.R.; Thakar, C.V.; Tolwani, A.J.; Waikar, S.S.; Weisbord, S.D. KDOQI US Commentary on the 2012 KDIGO Clinical Practice Guideline for Acute Kidney Injury. Am. J. Kidney Dis. 2013, 61, 649–672. [Google Scholar] [CrossRef]
- Nashef, S.A.M.; Roques, F.; Sharples, L.D.; Nilsson, J.; Smith, C.; Goldstone, A.R.; Lockowandt, U. EuroSCORE II. Eur. J. Cardio-Thorac. Surg. 2012, 41, 734–745. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.C.; Chang, C.H.; Chen, S.W.; Fan, P.C.; Chang, S.W.; Chen, Y.T.; Nan, Y.Y.; Lin, P.J.; Tsai, F.C. Preoperative risk assessment improves biomarker detection for predicting acute kidney injury after cardiac surgery. PLoS ONE 2018, 13, e0203447. [Google Scholar] [CrossRef] [PubMed]
- Ho, J.; Tangri, N.; Komenda, P.; Kaushal, A.; Sood, M.; Brar, R.; Gill, K.; Walker, S.; MacDonald, K.; Hiebert, B.M.; et al. Urinary, Plasma, and Serum Biomarkers’ Utility for Predicting Acute Kidney Injury Associated With Cardiac Surgery in Adults: A Meta-analysis. Am. J. Kidney Dis. 2015, 66, 993–1005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, P.; Heitman, J. The cyclophilins. Genome Biol. 2005, 6. [Google Scholar] [CrossRef] [Green Version]
- Dornan, J.; Taylor, P.; Walkinshaw, M.D. Structures of immunophilins and their ligand complexes. Curr. Top. Med. Chem. 2003, 3, 1392–1409. [Google Scholar] [CrossRef] [PubMed]
- Handschumacher, R.E.; Harding, M.W.; Rice, J.; Drugge, R.J.; Speicher, D.W. Cyclophilin: A specific cytosolic binding protein for cyclosporin A. Science 1984, 226, 544–547. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.-G.; Melaragno, M.G.; Liao, D.-F.; Yan, C.; Haendeler, J.; Suh, Y.-A.; Lambeth, J.D.; Berk, B.C. Cyclophilin A Is a Secreted Growth Factor Induced by Oxidative Stress. Circ. Res. 2000, 87, 789–796. [Google Scholar] [CrossRef] [Green Version]
- Sherry, B.; Yarlett, N.; Strupp, A.; Cerami, A. Identification of cyclophilin as a proinflammatory secretory product of lipopolysaccharide-activated macrophages. 1992, 89, 3511–3515. Proc. Natl. Acad. Sci. USA.
- Suzuki, J.; Jin, Z.-G.; Meoli, D.F.; Matoba, T.; Berk, B.C. Cyclophilin A Is Secreted by a Vesicular Pathway in Vascular Smooth Muscle Cells. Circ. Res. 2006, 98, 811–817. [Google Scholar] [CrossRef] [Green Version]
- Billich, A.; Winkler, G.; Aschauer, H.; Rot, A.; Peichl, P. Presence of cyclophilin A in synovial fluids of patients with rheumatoid arthritis. J. Exp. Med. 1997, 185, 975–980. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Wang, C.H.; Jia, J.F.; Ma, X.K.; Li, Y.; Zhu, H.B.; Tang, H.; Chen, Z.N.; Zhu, P. Contribution of cyclophilin A to the regulation of inflammatory processes in rheumatoid arthritis. J. Clin. Immunol. 2010, 30, 24–33. [Google Scholar] [CrossRef]
- Tegeder, I.; Schumacher, A.; John, S.; Geiger, H.; Geisslinger, G.; Bang, H.; Brune, K. Elevated serum cyclophilin levels in patients with severe sepsis. J. Clin. Immunol. 1997, 17, 380–386. [Google Scholar] [CrossRef] [PubMed]
- O’Neal, J.B.; Shaw, A.D.; Billings, F.T. Acute kidney injury following cardiac surgery: Current understanding and future directions. Crit. Care 2016, 20, 187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demeule, M.; Laplante, A.; Sepehr-Arae, A.; Murphy, G.M.; Wenger, R.M.; Beliveau, R. Association of cyclophilin A with renal brush border membranes: Redistribution by cyclosporine A. Kidney Int. 2000, 57, 1590–1598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seizer, P.; Schönberger, T.; Schött, M.; Lang, M.R.; Langer, H.F.; Bigalke, B.; Krämer, B.F.; Borst, O.; Daub, K.; Heidenreich, O.; et al. EMMPRIN and its ligand cyclophilin A regulate MT1-MMP, MMP-9 and M-CSF during foam cell formation. Atherosclerosis 2010, 209, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Ohtsuki, T.; Satoh, K.; Omura, J.; Kikuchi, N.; Satoh, T.; Kurosawa, R.; Nogi, M.; Sunamura, S.; Yaoita, N.; Aoki, T.; et al. Prognostic Impacts of Plasma Levels of Cyclophilin A in Patients with Coronary Artery Disease. Arter. Thromb. Vasc. Biol. 2017, 37, 685–693. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.-H.; Chang, C.-C.; Kuo, C.-L.; Huang, C.-S.; Lin, C.-S.; Liu, C.-S. Decrease in Plasma Cyclophilin A Concentration at 1 Month after Myocardial Infarction Predicts Better Left Ventricular Performance and Synchronicity at 6 Months: A Pilot Study in Patients with ST Elevation Myocardial Infarction. Int. J. Biol. Sci. 2015, 11, 38–47. [Google Scholar] [CrossRef] [Green Version]
- Zuern, C.S.; Müller, K.A.L.; Seizer, P.; Geisler, T.; Banya, W.; Klingel, K.; Kandolf, R.; Bauer, A.; Gawaz, M.; May, A.E. Cyclophilin A predicts clinical outcome in patients with congestive heart failure undergoing endomyocardial biopsy. Eur. J. Heart Fail. 2013, 15, 176–184. [Google Scholar] [CrossRef]
- Bennett, M.; Dent, C.L.; Ma, Q.; Dastrala, S.; Grenier, F.; Workman, R.; Syed, H.; Ali, S.; Barasch, J.; Devarajan, P. Urine NGAL predicts severity of acute kidney injury after cardiac surgery: A prospective study. Clin. J. Am. Soc. Nephrol. 2008, 3, 665–673. [Google Scholar] [CrossRef] [Green Version]
- Parikh, C.R.; Coca, S.G.; Thiessen-Philbrook, H.; Shlipak, M.G.; Koyner, J.L.; Wang, Z.; Edelstein, C.L.; Devarajan, P.; Patel, U.D.; Zappitelli, M.; et al. Postoperative biomarkers predict acute kidney injury and poor outcomes after adult cardiac surgery. J. Am. Soc. Nephrol. 2011, 22, 1748–1757. [Google Scholar] [CrossRef] [Green Version]
- Paragas, N.; Qiu, A.; Zhang, Q.; Samstein, B.; Deng, S.X.; Schmidt-Ott, K.M.; Viltard, M.; Yu, W.; Forster, C.S.; Gong, G.; et al. The Ngal reporter mouse detects the response of the kidney to injury in real time. Nat. Med. 2011, 17, 216–222. [Google Scholar] [CrossRef] [Green Version]
- Chawla, L.S.; Bellomo, R.; Bihorac, A.; Goldstein, S.L.; Siew, E.D.; Bagshaw, S.M.; Bittleman, D.; Cruz, D.; Endre, Z.; Fitzgerald, R.L.; et al. Acute kidney disease and renal recovery: Consensus report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup. Nat. Rev. Nephrol. 2017, 13, 241–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | All Patients | AKI | Non-AKI | p |
---|---|---|---|---|
Patient number | 186 | 92 | 94 | - |
Age, year | 60.0 ± 14.6 | 60.7 ± 14.8 | 59.3 ± 14.5 | 0.504 |
Male gender, n (%) | 116 (62.4) | 55 (59.8) | 61 (64.9) | 0.545 |
Diabetes mellitus, n (%) | 61 (32.8) | 33 (35.9) | 28 (29.8) | 0.436 |
CHF NYHA III/IV, n (%) | 37 (19.9) | 22 (23.9) | 15 (16.0) | 0.201 |
Mean arterial pressure, mmHg | 90.3 ± 14.4 | 89.5 ± 15.4 | 91.0 ± 13.3 | 0.475 |
LVEF, % | 60.9 ± 15.5 | 59.9 ± 15.9 | 61.8 ± 15.3 | 0.394 |
Preoperative laboratory data | ||||
Leukocyte count, 1000/mL | 7.8 ± 3.4 | 7.7 ± 3.6 | 7.9 ± 3.2 | 0.730 |
Hemoglobin, g/dL | 12.6 ± 2.4 | 12.3 ± 2.7 | 12.9 ± 2.0 | 0.083 |
Platelet count, 1000/mL | 201 ± 75 | 189 ± 81 | 212 ± 66 | 0.038 |
ALT, u/L | 30.2 ± 34.8 | 31.2 ± 43.3 | 29.1 ± 24.0 | 0.691 |
Serum creatinine, mg/dL | 1.1 ± 1.0 | 1.3 ± 1.3 | 0.9 ± 0.4 | 0.013 |
Albumin, mg/dL | 3.9 ± 0.5 | 3.9 ± 0.6 | 4.0 ± 0.4 | 0.044 |
EuroSCORE II | 6.7 (6.1) | 8.0 (7.2) | 5.5 (4.5) | 0.018 |
Surgical detail, n (%) | 0.162 | |||
CABG | 61 (32.8) | 24 (26.1) | 37 (39.4) | |
Valve surgery | 64 (34.4) | 33 (35.9) | 31 (33.0) | |
CABG + valve surgery | 17 (9.1) | 12 (13.0) | 5 (5.3) | |
Aorta | 34 (18.3) | 19 (20.7) | 15 (16.0) | |
Others | 10 (5.4) | 4 (4.3) | 6 (6.4) |
Characteristics | All Patients | AKI | Non-AKI | p |
---|---|---|---|---|
Patient number | 186 | 92 | 94 | - |
Postoperative biomarkers | ||||
Urine NGAL, ng/mL | 44 (104) | 91 (141) | 31 (39) | <0.001 |
Urine NGAL/urine creatinine | 0.73 (1.9) | 1.73 (6.51) | 0.43 (0.65) | <0.001 |
CypA, ng/mL | 5.2 (3.3) | 5.8 (3.9) | 4.0 (4.3) | <0.001 |
Urine CypA, ng/mL | 0.19 (0.29) | 0.24 (0.40) | 0.17 (0.24) | 0.035 |
Urine CypA/urine creatinine | 0.003 (0.007) | 0.004 (0.013) | 0.002 (0.005) | 0.003 |
Peak serum creatinine, mg/dL | 1.6 ± 1.3 | 2.3 ± 1.8 | 1.0 ± 0.4 | <0.001 |
Outcome | ||||
AKI stage 1/2/3 | - | 48/23/21 | - | - |
Renal replacement therapy, n (%) | 12 (6.5) | 11 (12.0) | 1 (1.1) | 0.002 |
Postoperative bleeding, n (%) | 8 (4.3) | 7 (7.6) | 1 (1.1) | 0.034 |
Postoperative sepsis, n (%) | 6 (3.2) | 5 (5.4) | 1 (1.1) | 0.116 |
Stay of hospital, days | 21.4 (15.0) | 28.0 (18.5) | 14.9 (11.0) | <0.001 |
Mortality in 90 days, n (%) | 12 (6.5) | 10 (10.9) | 2 (2.1) | 0.018 |
Outcome/Marker | AUC (95% CI) | Cut-Off # | Sensitivity (95% CI) | Specificity (95% CI) |
---|---|---|---|---|
Acute kidney injury | ||||
CypA | 68.9 (61.8–75.5) | >4.36 | 76.1 (66.1–84.4) | 58.5 (47.9–68.6) |
Urine NGAL/Cr | 75.2 (68.4–81.2) | >0.85 | 68.5 (58.0–77.8) | 76.6 (66.7–84.7) |
CypA + (urine NGAL/Cr) | 78.7 (72.1–84.3) | NA | NA | NA |
Urine CypA/Cr | 63.0 (55.3–70.2) | >0.003 | 59.1 (48.1–69.5) | 65.9 (54.8–75.8) |
Dialysis-requiring AKI | ||||
CypA | 73.8 (66.8–79.9) | >4.84 | 91.7 (61.5–99.8) | 50.0 (42.3–57.7) |
Urine NGAL/Cr | 83.5 (77.3–88.5) | >3.09 | 75.0 (42.8–94.5) | 85.1 (78.9–90.0) |
CypA + (urine NGAL/Cr) | 84.8 (78.8–89.6) | NA | NA | NA |
Urine CypA/Cr | 76.2 (69.2–82.3) | >0.012 | 72.7 (39.0–94.0) | 83.9 (77.4–89.2) |
90-day mortality | ||||
CypA | 67.0 (59.7–73.7) | >4.84 | 83.3 (51.6–97.9) | 49.4 (41.8–57.1) |
Urine NGAL/Cr | 75.4 (68.5–81.4) | >1.12 | 83.3 (51.6–97.9) | 62.6 (55.0–69.8) |
CypA + (urine NGAL/Cr) | 73.1 (66.2–79.4) | NA | NA | NA |
Urine CypA/Cr | 61.1 (53.4–68.4) | >0.0016 | 90.0 (55.5–99.7) | 39.9 (32.3–47.8) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.-C.; Chang, C.-H.; Cheng, Y.-L.; Kuo, G.; Chen, S.-W.; Li, Y.-J.; Chen, Y.-T.; Tian, Y.-C. Diagnostic Performance of Cyclophilin A in Cardiac Surgery-Associated Acute Kidney Injury. J. Clin. Med. 2020, 9, 108. https://doi.org/10.3390/jcm9010108
Lee C-C, Chang C-H, Cheng Y-L, Kuo G, Chen S-W, Li Y-J, Chen Y-T, Tian Y-C. Diagnostic Performance of Cyclophilin A in Cardiac Surgery-Associated Acute Kidney Injury. Journal of Clinical Medicine. 2020; 9(1):108. https://doi.org/10.3390/jcm9010108
Chicago/Turabian StyleLee, Cheng-Chia, Chih-Hsiang Chang, Ya-Lien Cheng, George Kuo, Shao-Wei Chen, Yi-Jung Li, Yi-Ting Chen, and Ya-Chung Tian. 2020. "Diagnostic Performance of Cyclophilin A in Cardiac Surgery-Associated Acute Kidney Injury" Journal of Clinical Medicine 9, no. 1: 108. https://doi.org/10.3390/jcm9010108
APA StyleLee, C. -C., Chang, C. -H., Cheng, Y. -L., Kuo, G., Chen, S. -W., Li, Y. -J., Chen, Y. -T., & Tian, Y. -C. (2020). Diagnostic Performance of Cyclophilin A in Cardiac Surgery-Associated Acute Kidney Injury. Journal of Clinical Medicine, 9(1), 108. https://doi.org/10.3390/jcm9010108