Tachykinins and Kisspeptins in the Regulation of Human Male Fertility
Abstract
:1. Introduction
2. Tachykinins
3. Kisspeptins
4. Tachykinins and Kisspeptins as Regulators of the Hypothalamic–Pituitary–Gonadal Axis
5. Expression of Tachykinins and Kisspeptins in Testicular Tissues
6. Peripheral Roles of Tachykinins and Kisspeptins in Male Fertility Regulation
6.1. Spermatogenesis
6.2. Spermatozoa Function
6.3. Testicular Steroidogenesis
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Agarwal, A.; Majzoub, A.; Parekh, N.; Henkel, R. A Schematic Overview of the Current Status of Male Infertility Practice. World J. Men’s Health 2019, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duca, Y.; Calogero, A.E.; Cannarella, R.; Condorelli, R.A.; La Vignera, S. Current and emerging medical therapeutic agents for idiopathic male infertility. Expert Opin. Pharmacother. 2019, 20, 55–67. [Google Scholar] [CrossRef] [PubMed]
- Auger, J.; Eustache, F.; Andersen, A.G.; Irvine, D.S.; Jorgensen, N.; Skakkebaek, N.E.; Suominen, J.; Toppari, J.; Vierula, M.; Jouannet, P. Sperm morphological defects related to environment, lifestyle and medical history of 1001 male partners of pregnant women from four European cities. Hum. Reprod. 2001, 16, 2710–2717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kefer, J.C.; Agarwal, A.; Sabanegh, E. Role of antioxidants in the treatment of male infertility. Int. J. Urol. 2009, 16, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Kenkel, S.; Rolf, C.; Nieschlag, E. Occupational risks for male fertility: An analysis of patients attending a tertiary referral centre. Int. J. Androl. 2001, 24, 318–326. [Google Scholar] [CrossRef] [PubMed]
- Sharlip, I.D.; Jarow, J.P.; Belker, A.M.; Lipshultz, L.I.; Sigman, M.; Thomas, A.J.; Schlegel, P.N.; Howards, S.S.; Nehra, A.; Damewood, M.D.; et al. Best practice policies for male infertility. J. Urol. 2002, 77, 873–882. [Google Scholar] [CrossRef]
- Vine, M.F. Smoking and male reproduction: A review. Int. J. Androl. 1996, 19, 323–337. [Google Scholar] [CrossRef]
- Almeida, T.A.; Rojo, J.; Nieto, P.M.; Pinto, F.M.; Hernandez, M.; Martin, J.D.; Candenas, M.L. Tachykinins and tachykinin receptors: Structure and activity relationships. Curr. Med. Chem. 2004, 11, 2045–2081. [Google Scholar] [CrossRef]
- Severini, C.; Improta, G.; Falconieri-Erspamer, G.; Salvadori, S.; Erspamer, V. The tachykinin peptide family. Pharmacol. Rev. 2002, 54, 285–322. [Google Scholar] [CrossRef]
- Greco, S.J.; Corcoran, K.E.; Cho, K.J.; Rameshwar, P. Tachykinins in the emerging immune system: Relevance to bone marrow homeostasis and maintenance of hematopoietic stem cells. Front. Biosci. 2004, 9, 1782–1793. [Google Scholar] [CrossRef] [Green Version]
- Lai, J.P.; Douglas, S.D.; Zhao, M.; Ho, W.Z. Quantification of substance P mRNA in human mononuclear phagocytes and lymphocytes using a mimic-based RT-PCR. J. Immunol. Methods 1999, 230, 149–157. [Google Scholar] [CrossRef]
- Page, N.M. Hemokinins and endokinins. Cell. Mol. Life Sci. 2004, 61, 1652–1663. [Google Scholar] [CrossRef] [PubMed]
- Patacchini, R.; Lecci, A.; Holzer, P.; Maggi, C.A. Newly discovered tachykinins raise new questions about their peripheral roles and the tachykinin nomenclature. Trends Pharmacol. Sci. 2004, 25, 1–3. [Google Scholar] [CrossRef]
- Zhang, Y.; Berger, A.; Milne, C.D.; Paige, C.J. Tachykinins in the immune system. Curr. Drug Targets 2006, 7, 1011–1020. [Google Scholar] [CrossRef]
- Brown, E.R.; Harlan, R.E.; Krause, J.E. Gonadal steroid regulation of substance P (SP) and SP-encoding messenger ribonucleic acids in the rat anterior pituitary and hypothalamus. Endocrinology 1990, 126, 330–340. [Google Scholar] [CrossRef]
- Page, N.M. Neurokinin B and pre-eclampsia: A decade of discovery. Reprod. Biol. Endocrinol. 2010, 8, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pennefather, J.N.; Lecci, A.; Candenas, M.L.; Patak, E.; Pinto, F.M.; Maggi, C.A. Tachykinins and tachykinin receptors: A growing family. Life Sci. 2004, 74, 1445–1463. [Google Scholar] [CrossRef] [PubMed]
- Gerard, N.P.; Bao, L.; Xiao-Ping, H.; Gerard, C. Molecular aspects of the tachykinin receptors. Regul. Pept. 1993, 43, 21–35. [Google Scholar] [CrossRef]
- Lecci, A.; Maggi, C.A. Peripheral tachykinin receptors as potential therapeutic targets in visceral diseases. Expert Opin. Ther. Targets 2003, 7, 343–362. [Google Scholar] [CrossRef]
- Nakanishi, S. Mammalian tachykinin receptors. Ann. Rev. Neurosci. 1991, 14, 123–136. [Google Scholar] [CrossRef]
- Tuluc, F.; Lai, J.P.; Kilpatrick, L.E.; Evans, D.L.; Douglas, S.D. Neurokinin 1 receptor isoforms and the control of innate immunity. Trends Immunol. 2009, 30, 271–276. [Google Scholar] [CrossRef]
- Maggi, C.A. Principles of tachykininergic co-transmission in the peripheral and enteric nervous system. Regul. Pept. 2000, 93, 53–64. [Google Scholar] [CrossRef]
- Moussaoui, S.M.; Le Prado, N.; Bonici, B.; Faucher, D.C.; Cuine, F.; Laduron, P.M.; Garret, C. Distribution of neurokinin B in rat spinal cord and peripheral tissues: Comparison with neurokinin A and substance P and effects of neonatal capsaicin treatment. Neuroscience 1992, 48, 969–978. [Google Scholar] [CrossRef]
- Klassert, T.E.; Pinto, F.; Hernandez, M.; Candenas, M.L.; Hernandez, M.C.; Abreu, J.; Almeida, T.A. Differential expression of neurokinin B and hemokinin-1 in human immune cells. J. Neuroimmunol. 2008, 196, 27–34. [Google Scholar] [CrossRef]
- Maghni, K.; Michoud, M.C.; Alles, M.; Rubin, A.; Govindaraju, V.; Meloche, C.; Martin, J.G. Airway smooth muscle cells express functional neurokinin-1 receptors and the nerve-derived preprotachykinin-a gene: Regulation by passive sensitization. Am. J. Respir. Cell Mol. Biol. 2003, 28, 103–110. [Google Scholar] [CrossRef]
- Cejudo Roman, A.; Pinto, F.M.; Dorta, I.; Almeida, T.A.; Hernandez, M.; Illanes, M.; Tena-Sempere, M.; Candenas, L. Analysis of the expression of neurokinin B, kisspeptin, and their cognate receptors NK3R and KISS1R in the human female genital tract. Fertil. Steril. 2012, 97, 1213–1219. [Google Scholar] [CrossRef]
- Garcia-Ortega, J.; Pinto, F.M.; Fernandez-Sanchez, M.; Prados, N.; Cejudo-Roman, A.; Almeida, T.A.; Hernandez, M.; Romero, M.; Tena-Sempere, M.; Candenas, L. Expression of neurokinin B/NK3 receptor and kisspeptin/KISS1 receptor in human granulosa cells. Hum. Reprod. 2014, 29, 2736–2746. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Ortega, J.; Pinto, F.M.; Prados, N.; Bello, A.R.; Almeida, T.A.; Fernandez-Sanchez, M.; Candenas, L. Expression of Tachykinins and Tachykinin Receptors and Interaction with Kisspeptin in Human Granulosa and Cumulus Cells. Biol. Reprod. 2016, 94, 124. [Google Scholar] [CrossRef] [Green Version]
- Patak, E.; Candenas, M.L.; Pennefather, J.N.; Ziccone, S.; Lilley, A.; Martin, J.D.; Flores, C.; Mantecon, A.G.; Story, M.E.; Pinto, F.M. Tachykinins and tachykinin receptors in human uterus. Br. J. Pharmacol. 2003, 139, 523–532. [Google Scholar] [CrossRef]
- Pintado, C.O.; Pinto, F.M.; Pennefather, J.N.; Hidalgo, A.; Baamonde, A.; Sanchez, T.; Candenas, M.L. A role for tachykinins in female mouse and rat reproductive function. Biol. Reprod. 2003, 69, 940–946. [Google Scholar] [CrossRef] [Green Version]
- Chiwakata, C.; Brackmann, B.; Hunt, N.; Davidoff, M.; Schulze, W.; Ivell, R. Tachykinin (substance-P) gene expression in Leydig cells of the human and mouse testis. Endocrinology 1991, 128, 2441–2448. [Google Scholar] [CrossRef] [PubMed]
- Schulze, W.; Davidoff, M.S.; Holstein, A.F. Are Leydig cells of neural origin? Substance P-like immunoreactivity in human testicular tissue. Eur. J. Endocrinol. 1987, 115, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Topaloglu, A.K.; Reimann, F.; Guclu, M.; Yalin, A.S.; Kotan, L.D.; Porter, K.M.; Serin, A.; Mungan, N.O.; Cook, J.R.; Imamoglu, S.; et al. TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism reveal a key role for Neurokinin B in the central control of reproduction. Nat. Genet. 2009, 41, 354–358. [Google Scholar] [CrossRef] [Green Version]
- Navarro, V.M.; Tena-Sempere, M. Neuroendocrine control by kisspeptins: Role in metabolic regulation of fertility. Nat. Rev. Endocrinol. 2011, 8, 40–53. [Google Scholar] [CrossRef]
- Oakley, A.E.; Clifton, D.K.; Steiner, R.A. Kisspeptin signaling in the brain. Endocr. Rev. 2009, 30, 713–743. [Google Scholar] [CrossRef]
- Pinilla, L.; Aguilar, E.; Dieguez, C.; Millar, R.P.; Tena-Sempere, M. Kisspeptins and reproduction: Physiological roles and regulatory mechanisms. Physiol. Rev. 2012, 92, 1235–1316. [Google Scholar] [CrossRef]
- De Roux, N.; Genin, E.; Carel, J.C.; Matsuda, F.; Chaussain, J.L.; Milgrom, E. Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc. Natl. Acad. Sci. USA 2003, 100, 10972–10976. [Google Scholar] [CrossRef] [Green Version]
- Dungan, H.M.; Gottsch, M.L.; Zeng, H.; Gragerov, A.; Bergmann, J.E.; Vassilatis, D.K.; Clifton, D.K.; Steiner, R.A. The role of kisspeptin-GPR54 signaling in the tonic regulation and surge release of gonadotropin-releasing hormone/luteinizing hormone. J. Neurosci. 2007, 27, 12088–12095. [Google Scholar] [CrossRef] [Green Version]
- Funes, S.; Hedrick, J.A.; Vassileva, G.; Markowitz, L.; Abbondanzo, S.; Golovko, A.; Yang, S.; Monsma, F.J.; Gustafson, E.L. The KiSS-1 receptor GPR54 is essential for the development of the murine reproductive system. Biochem. Biophys. Res. Commun. 2003, 312, 1357–1363. [Google Scholar] [CrossRef]
- Seminara, S.B.; Messager, S.; Chatzidaki, E.E.; Thresher, R.R.; Acierno, J.S., Jr.; Shagoury, J.K.; Bo-Abbas, Y.; Kuohung, W.; Schwinof, K.M.; Hendrick, A.G.; et al. The GPR54 gene as a regulator of puberty. N. Engl. J. Med. 2003, 349, 1614–1627. [Google Scholar] [CrossRef] [Green Version]
- Tena-Sempere, M. The roles of kisspeptins and G protein-coupled receptor-54 in pubertal development. Curr. Opin. Pediatr. 2006, 18, 442–447. [Google Scholar] [CrossRef] [PubMed]
- Irfan, S.; Ehmcke, J.; Shahab, M.; Wistuba, J.; Schlatt, S. Immunocytochemical localization of kisspeptin and kisspeptin receptor in the primate testis. J. Med. Primatol. 2016, 45, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Pinto, F.M.; Cejudo-Roman, A.; Ravina, C.G.; Fernandez-Sanchez, M.; Martin-Lozano, D.; Illanes, M.; Tena-Sempere, M.; Candenas, M.L. Characterization of the kisspeptin system in human spermatozoa. Int. J. Androl. 2012, 35, 63–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canete, H.; Dorta, I.; Hernandez, M.; Cejudo Roman, A.; Candenas, L.; Pinto, F.M.; Valladares, F.; Baez, D.; Montes de Oca, F.; Bello, A.R.; et al. Differentially regulated expression of neurokinin B (NKB)/NK3 receptor system in uterine leiomyomata. Hum. Reprod. 2013, 28, 1799–1808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinto, F.M.; Armesto, C.P.; Magraner, J.; Trujillo, M.; Martin, J.D.; Candenas, M.L. Tachykinin receptor and neutral endopeptidase gene expression in the rat uterus: Characterization and regulation in response to ovarian steroid treatment. Endocrinology 1999, 140, 2526–2532. [Google Scholar] [CrossRef] [PubMed]
- Pinto, F.M.; Pintado, C.O.; Pennefather, J.N.; Patak, E.; Candenas, L. Ovarian steroids regulate tachykinin and tachykinin receptor gene expression in the mouse uterus. Reprod. Biol. Endocrinol. 2009, 7, 77. [Google Scholar] [CrossRef] [Green Version]
- Gaytan, M.; Castellano, J.M.; Roa, J.; Sanchez-Criado, J.E.; Tena-Sempere, M.; Gaytan, F. Expression of KiSS-1 in rat oviduct: Possible involvement in prevention of ectopic implantation? Cell Tissue Res. 2007, 329, 571–579. [Google Scholar] [CrossRef]
- Castellano, J.M.; Gaytan, M.; Roa, J.; Vigo, E.; Navarro, V.M.; Bellido, C.; Dieguez, C.; Aguilar, E.; Sanchez-Criado, J.E.; Pellicer, A.; et al. Expression of KiSS-1 in rat ovary: Putative local regulator of ovulation? Endocrinology 2006, 147, 4852–4862. [Google Scholar] [CrossRef]
- Gaytan, F.; Gaytan, M.; Castellano, J.M.; Romero, M.; Roa, J.; Aparicio, B.; Garrido, N.; Sanchez-Criado, J.E.; Millar, R.P.; Pellicer, A.; et al. KiSS-1 in the mammalian ovary: Distribution of kisspeptin in human and marmoset and alterations in KiSS-1 mRNA levels in a rat model of ovulatory dysfunction. Am. J. Physiol. Endocrinol. Metab. 2009, 296, E520–E531. [Google Scholar] [CrossRef]
- Lasaga, M.; Debeljuk, L. Tachykinins and the hypothalamo-pituitary-gonadal axis: An update. Peptides 2011, 32, 1972–1978. [Google Scholar] [CrossRef]
- Loffler, S.; Schulz, A.; Brylla, E.; Nieber, K.; Spanel-Borowski, K. Transcripts of neurokinin B and neurokinin 3 receptor in superovulated rat ovaries and increased number of corpora lutea as a non-specific effect of intraperitoneal agonist application. Regul. Pept. 2004, 122, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Tang, M.; Zhang, B.P.; Zhang, P.; Zhong, T.; Zong, T.; Yang, B.; Kuang, H.B. Kisspeptin stimulates progesterone secretion via the Erk1/2 mitogen-activated protein kinase signaling pathway in rat luteal cells. Fertil. Steril. 2013, 99, 1436–1443. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.L.; Chang, H.M.; Zhao, H.C.; Yu, Y.; Li, R.; Qiao, J. Potential roles for the kisspeptin/kisspeptin receptor system in implantation and placentation. Hum. Reprod. Update 2019, 25, 326–343. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Li, Z.; Jiang, W.; Ling, Y.; Kuang, H. Reproductive functions of Kisspeptin/KISS1R Systems in the Periphery. Reprod. Biol. Endocrinol. 2019, 17, 65. [Google Scholar] [CrossRef] [PubMed]
- Jayasena, C.N.; Abbara, A.; Comninos, A.N.; Nijher, G.M.; Christopoulos, G.; Narayanaswamy, S.; Izzi-Engbeaya, C.; Sridharan, M.; Mason, A.J.; Warwick, J.; et al. Kisspeptin-54 triggers egg maturation in women undergoing in vitro fertilization. J. Clin. Investig. 2014, 124, 3667–3677. [Google Scholar] [CrossRef] [Green Version]
- Romero-Ruiz, A.; Avendano, M.S.; Dominguez, F.; Lozoya, T.; Molina-Abril, H.; Sangiao-Alvarellos, S.; Gurrea, M.; Lara-Chica, M.; Fernandez-Sanchez, M.; Torres-Jimenez, E.; et al. Deregulation of miR-324/KISS1/kisspeptin in early ectopic pregnancy: Mechanistic findings with clinical and diagnostic implications. Am. J. Obstet. Gynecol. 2019, 220, e480–e481. [Google Scholar] [CrossRef] [Green Version]
- Lehman, M.N.; Coolen, L.M.; Goodman, R.L. Minireview: Kisspeptin/neurokinin B/dynorphin (KNDy) cells of the arcuate nucleus: A central node in the control of gonadotropin-releasing hormone secretion. Endocrinology 2010, 151, 3479–3489. [Google Scholar] [CrossRef]
- Moore, A.M.; Coolen, L.M.; Porter, D.T.; Goodman, R.L.; Lehman, M.N. KNDy Cells Revisited. Endocrinology 2018, 159, 3219–3234. [Google Scholar] [CrossRef] [Green Version]
- Narayanaswamy, S.; Prague, J.K.; Jayasena, C.N.; Papadopoulou, D.A.; Mizamtsidi, M.; Shah, A.J.; Bassett, P.; Comninos, A.N.; Abbara, A.; Bloom, S.R.; et al. Investigating the KNDy Hypothesis in Humans by Coadministration of Kisspeptin, Neurokinin B, and Naltrexone in Men. J. Clin. Endocrinol. Metab. 2016, 101, 3429–3436. [Google Scholar] [CrossRef] [Green Version]
- Candenas, L.; Lecci, A.; Pinto, F.M.; Patak, E.; Maggi, C.A.; Pennefather, J.N. Tachykinins and tachykinin receptors: Effects in the genitourinary tract. Life Sci. 2005, 76, 835–862. [Google Scholar] [CrossRef]
- Debeljuk, L.; Rao, J.N.; Bartke, A. Tachykinins and their possible modulatory role on testicular function: A review. Int. J. Androl. 2003, 26, 202–210. [Google Scholar] [CrossRef]
- Pinto, F.M.; Almeida, T.A.; Hernandez, M.; Devillier, P.; Advenier, C.; Candenas, M.L. mRNA expression of tachykinins and tachykinin receptors in different human tissues. Eur. J. Pharmacol. 2004, 494, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Angelova, P.; Davidoff, M.; Kanchev, L.; Baleva-Ivanova, K. Substance P: Immunocytochemical localization and biological role in hamster gonads during ontogenesis. Funct. Dev. Morphol. 1991, 1, 3–8. [Google Scholar] [PubMed]
- Kulkarni, S.A.; Garde, S.V.; Sheth, A.R. Immunocytochemical localization of bioregulatory peptides in marmoset testes. Arch. Androl. 1992, 29, 87–102. [Google Scholar] [CrossRef] [PubMed]
- Artico, M.; Bronzetti, E.; Saso, L.; Felici, L.M.; D’Ambrosio, A.; Forte, F.; Grande, C.; Ortolani, F. Immunohistochemical profile of some neurotransmitters and neurotrophins in the seminiferous tubules of rats treated by lonidamine. Eur. J. Histochem. 2007, 51, 19–24. [Google Scholar]
- Pinto, F.M.; Ravina, C.G.; Subiran, N.; Cejudo-Roman, A.; Fernandez-Sanchez, M.; Irazusta, J.; Garrido, N.; Candenas, L. Autocrine regulation of human sperm motility by tachykinins. Reprod. Biol. Endocrinol. 2010, 8, 104. [Google Scholar] [CrossRef] [Green Version]
- Ravina, C.G.; Seda, M.; Pinto, F.M.; Orea, A.; Fernandez-Sanchez, M.; Pintado, C.O.; Candenas, M.L. A role for tachykinins in the regulation of human sperm motility. Hum. Reprod. 2007, 22, 1617–1625. [Google Scholar] [CrossRef] [Green Version]
- Sastry, B.V.; Janson, V.E.; Owens, L.K. Significance of substance P- and enkephalin-peptide systems in the male genital tract. Ann. N. Y. Acad. Sci. 1991, 632, 339–353. [Google Scholar] [CrossRef]
- Fernandez, D.; Valdivia, A.; Irazusta, J.; Ochoa, C.; Casis, L. Peptidase activities in human semen. Peptides 2002, 23, 461–468. [Google Scholar] [CrossRef]
- Siems, W.E.; Maul, B.; Wiesner, B.; Becker, M.; Walther, T.; Rothe, L.; Winkler, A. Effects of kinins on mammalian spermatozoa and the impact of peptidolytic enzymes. Andrologia 2003, 35, 44–54. [Google Scholar] [CrossRef]
- Subiran, N.; Agirregoitia, E.; Valdivia, A.; Ochoa, C.; Casis, L.; Irazusta, J. Expression of enkephalin-degrading enzymes in human semen and implications for sperm motility. Fertil. Steril. 2008, 89, 1571–1577. [Google Scholar] [CrossRef] [PubMed]
- Mei, H.; Doran, J.; Kyle, V.; Yeo, S.H.; Colledge, W.H. Does Kisspeptin Signaling have a Role in the Testes? Front. Endocrinol. 2013, 4, 198. [Google Scholar] [CrossRef] [PubMed]
- Anjum, S.; Krishna, A.; Sridaran, R.; Tsutsui, K. Localization of gonadotropin-releasing hormone (GnRH), gonadotropin-inhibitory hormone (GnIH), kisspeptin and GnRH receptor and their possible roles in testicular activities from birth to senescence in mice. J. Exp. Zool. A Ecol. Genet. Physiol. 2012, 317, 630–644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chianese, R.; Ciaramella, V.; Fasano, S.; Pierantoni, R.; Meccariello, R. Kisspeptin regulates steroidogenesis and spermiation in anuran amphibian. Reproduction 2017, 154, 403–414. [Google Scholar] [CrossRef] [Green Version]
- Noritake, K.; Suzuki, J.; Matsuoka, T.; Makino, T.; Ohnishi, H.; Shimomura, K.; Uenoyama, Y.; Tsukamura, H.; Maeda, K.; Sanbuissho, A. Testicular toxicity induced by a triple neurokinin receptor antagonist in male dogs. Reprod. Toxicol. 2011, 31, 440–446. [Google Scholar] [CrossRef]
- Yang, J.J.; Caligioni, C.S.; Chan, Y.M.; Seminara, S.B. Uncovering novel reproductive defects in neurokinin B receptor null mice: Closing the gap between mice and men. Endocrinology 2012, 153, 1498–1508. [Google Scholar] [CrossRef]
- True, C.; Nasrin Alam, S.; Cox, K.; Chan, Y.M.; Seminara, S.B. Neurokinin B is critical for normal timing of sexual maturation but dispensable for adult reproductive function in female mice. Endocrinology 2015, 156, 1386–1397. [Google Scholar] [CrossRef] [Green Version]
- Selvaraj, S.; Ohga, H.; Nyuji, M.; Kitano, H.; Nagano, N.; Yamaguchi, A.; Matsuyama, M. Subcutaneous administration of Kiss1 pentadecapeptide accelerates spermatogenesis in prepubertal male chub mackerel (Scomber japonicus). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2013, 166, 228–236. [Google Scholar] [CrossRef]
- Chianese, R.; Ciaramella, V.; Fasano, S.; Pierantoni, R.; Meccariello, R. Kisspeptin drives germ cell progression in the anuran amphibian Pelophylax esculentus: A study carried out in ex vivo testes. Gen. Comp. Endocrinol. 2015, 211, 81–91. [Google Scholar] [CrossRef]
- Zou, P.; Wang, X.; Chen, Q.; Yang, H.; Zhou, N.; Sun, L.; Chen, H.; Liu, J.; Ao, L.; Cui, Z.; et al. Kisspeptin Protein in Seminal Plasma Is Positively Associated with Semen Quality: Results from the MARHCS Study in Chongqing, China. Biomed. Res. Int. 2019, 2019, 5129263. [Google Scholar] [CrossRef]
- Thompson, E.L.; Murphy, K.G.; Patterson, M.; Bewick, G.A.; Stamp, G.W.; Curtis, A.E.; Cooke, J.H.; Jethwa, P.H.; Todd, J.F.; Ghatei, M.A.; et al. Chronic subcutaneous administration of kisspeptin-54 causes testicular degeneration in adult male rats. Am. J. Physiol. Endocrinol. Metab. 2006, 291, E1074–E1082. [Google Scholar] [CrossRef] [PubMed]
- Thompson, E.L.; Amber, V.; Stamp, G.W.; Patterson, M.; Curtis, A.E.; Cooke, J.H.; Appleby, G.F.; Dhillo, W.S.; Ghatei, M.A.; Bloom, S.R.; et al. Kisspeptin-54 at high doses acutely induces testicular degeneration in adult male rats via central mechanisms. Br. J. Pharmacol. 2009, 156, 609–625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramzan, F.; Qureshi, I.Z. Intraperitoneal kisspeptin-10 administration induces dose-dependent degenerative changes in maturing rat testes. Life Sci. 2011, 88, 246–256. [Google Scholar] [CrossRef] [PubMed]
- Mei, H.; Walters, C.; Carter, R.; Colledge, W.H. Gpr54-/-mice show more pronounced defects in spermatogenesis than Kiss1-/-mice and improved spermatogenesis with age when exposed to dietary phytoestrogens. Reproduction 2011, 141, 357–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wahab, F.; Quinton, R.; Seminara, S.B. The kisspeptin signaling pathway and its role in human isolated GnRH deficiency. Mol. Cell. Endocrinol. 2011, 346, 29–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hooper, N.M.; Kenny, A.J.; Turner, A.J. The metabolism of neuropeptides. Neurokinin A (substance K) is a substrate for endopeptidase-24.11 but not for peptidyl dipeptidase A (angiotensin-converting enzyme). Biochem. J. 1985, 231, 357–361. [Google Scholar] [CrossRef] [Green Version]
- Hooper, N.M.; Turner, A.J. Neurokinin B is hydrolysed by synaptic membranes and by endopeptidase-24.11 (enkephalinase) but not by angiotensin converting enzyme. FEBS Lett. 1985, 190, 133–136. [Google Scholar] [CrossRef] [Green Version]
- Malfroy, B.; Kuang, W.J.; Seeburg, P.H.; Mason, A.J.; Schofield, P.R. Molecular cloning and amino acid sequence of human enkephalinase (neutral endopeptidase). FEBS Lett. 1988, 229, 206–210. [Google Scholar] [CrossRef] [Green Version]
- Pennefather, J.N.; Patak, E.; Pinto, F.M.; Candenas, M.L. Mammalian tachykinins and uterine smooth muscle: The challenge escalates. Eur. J. Pharmacol. 2004, 500, 15–26. [Google Scholar] [CrossRef]
- Turner, A.J.; Isaac, R.E.; Coates, D. The neprilysin (NEP) family of zinc metalloendopeptidases: Genomics and function. Bioessays 2001, 23, 261–269. [Google Scholar] [CrossRef]
- Carpentier, M.; Guillemette, C.; Bailey, J.L.; Boileau, G.; Jeannotte, L.; DesGroseillers, L.; Charron, J. Reduced fertility in male mice deficient in the zinc metallopeptidase NL1. Mol. Cell. Biol. 2004, 24, 4428–4437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Achikanu, C.; Correia, J.; Guidobaldi, H.A.; Giojalas, L.C.; Barratt, C.L.R.; Da Silva, S.M.; Publicover, S. Continuous behavioural ‘switching’ in human spermatozoa and its regulation by Ca2+-mobilising stimuli. Mol. Hum. Reprod. 2019, 25, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Darszon, A.; Nishigaki, T.; Beltran, C.; Trevino, C.L. Calcium channels in the development, maturation, and function of spermatozoa. Physiol. Rev. 2011, 91, 1305–1355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suarez, S.S.; Pacey, A.A. Sperm transport in the female reproductive tract. Hum. Reprod. Update 2006, 12, 23–37. [Google Scholar] [CrossRef] [Green Version]
- Bedu-Addo, K.; Costello, S.; Harper, C.; Machado-Oliveira, G.; Lefievre, L.; Ford, C.; Barratt, C.; Publicover, S. Mobilisation of stored calcium in the neck region of human sperm—A mechanism for regulation of flagellar activity. Int. J. Dev. Biol. 2008, 52, 615–626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tavares, R.S.; Escada-Rebelo, S.; Correia, M.; Mota, P.C.; Ramalho-Santos, J. The non-genomic effects of endocrine-disrupting chemicals on mammalian sperm. Reproduction 2016, 151, R1–R13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, H.; Suarez, S.S. Rethinking the relationship between hyperactivation and chemotaxis in mammalian sperm. Biol. Reprod. 2010, 83, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Mortimer, S.T. A critical review of the physiological importance and analysis of sperm movement in mammals. Hum. Reprod. Update 1997, 3, 403–439. [Google Scholar] [CrossRef] [Green Version]
- Whyteside, A.R.; Turner, A.J. Human neprilysin-2 (NEP2) and NEP display distinct subcellular localisations and substrate preferences. FEBS Lett. 2008, 582, 2382–2386. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.H. Essential Reproduction, 8th ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2018. [Google Scholar]
- Angelova, P.A.; Davidoff, M.S.; Kanchev, L.N. Substance P-induced inhibition of Leydig cell steroidogenesis in primary culture. Andrologia 1991, 23, 325–327. [Google Scholar] [CrossRef]
- Ayturk, N.; Firat, T.; Kukner, A.; Ozogul, C.; Tore, F.; Kandirali, I.E.; Yilmaz, B. The effect of kisspeptin on spermatogenesis and apoptosis in rats. Turk. J. Med. Sci. 2017, 47, 334–342. [Google Scholar] [CrossRef] [PubMed]
- Samir, H.; Nagaoka, K.; Watanabe, G. Effect of kisspeptin antagonist on goat in vitro Leydig cell steroidogenesis. Theriogenology 2018, 121, 134–140. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blasco, V.; Pinto, F.M.; González-Ravina, C.; Santamaría-López, E.; Candenas, L.; Fernández-Sánchez, M. Tachykinins and Kisspeptins in the Regulation of Human Male Fertility. J. Clin. Med. 2020, 9, 113. https://doi.org/10.3390/jcm9010113
Blasco V, Pinto FM, González-Ravina C, Santamaría-López E, Candenas L, Fernández-Sánchez M. Tachykinins and Kisspeptins in the Regulation of Human Male Fertility. Journal of Clinical Medicine. 2020; 9(1):113. https://doi.org/10.3390/jcm9010113
Chicago/Turabian StyleBlasco, Víctor, Francisco M. Pinto, Cristina González-Ravina, Esther Santamaría-López, Luz Candenas, and Manuel Fernández-Sánchez. 2020. "Tachykinins and Kisspeptins in the Regulation of Human Male Fertility" Journal of Clinical Medicine 9, no. 1: 113. https://doi.org/10.3390/jcm9010113
APA StyleBlasco, V., Pinto, F. M., González-Ravina, C., Santamaría-López, E., Candenas, L., & Fernández-Sánchez, M. (2020). Tachykinins and Kisspeptins in the Regulation of Human Male Fertility. Journal of Clinical Medicine, 9(1), 113. https://doi.org/10.3390/jcm9010113