The Serum Cell-Free microRNA Expression Profile in MCTD, SLE, SSc, and RA Patients
Abstract
:1. Introduction
Key Message
2. Materials and Methods
2.1. Patients and Clinical Characteristics
2.2. microRNA Relative Expression
2.3. Statistical Analysis
3. Results
3.1. miRNA Expression Level of Circulating microRNA in ACTD Patients and Healthy Subjects
3.2. Differences in Circulating microRNA Expression Level between ACTD Patients
3.3. Correlation between miRNAs Expression Levels and ACTDs Clinical Phenotype
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Didier, K.; Bolko, L.; Giusti, D.; Toquet, S.; Robbins, A.; Antonicelli, F.; Servettaz, A. Autoantibodies Associated With Connective Tissue Diseases: What Meaning for Clinicians? Front. Immunol. 2018, 9, 541. [Google Scholar] [CrossRef] [Green Version]
- Gunnarsson, R.; Hetlevik, S.O.; Lilleby, V.; Molberg, Ø. Mixed connective tissue disease. Best Pract. Res. Clin. Rheumatol. 2016, 30, 95–111. [Google Scholar] [CrossRef]
- Reiseter, S.; Gunnarsson, R.; Corander, J.; Haydon, J.; Lund, M.B.; Aaløkken, T.M.; Taraldsrud, E.; Hetlevik, S.O.; Molberg, Ø. Disease evolution in mixed connective tissue disease: Results from a long-term nationwide prospective cohort study. Arthritis Res. Ther. 2017, 19, 284. [Google Scholar] [CrossRef] [Green Version]
- Venables, P.J.W. Mixed connective tissue disease. Lupus 2006, 15, 132–137. [Google Scholar] [CrossRef]
- Hoffman, R.W.; Maldonado, M.E. Immune pathogenesis of Mixed Connective Tissue Disease: A short analytical review. Clin. Immunol. 2008, 128, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Jiang, K.; Guo, S.; Zhang, T.; Yang, Y.; Zhao, G.; Shaukat, A.; Wu, H.; Deng, G. Downregulation of TLR4 by miR-181a Provides Negative Feedback Regulation to Lipopolysaccharide-Induced Inflammation. Front. Pharmacol. 2018, 9, 142. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Gong, J.; Xu, B. miR-143 down-regulates TLR2 expression in hepatoma cells and inhibits hepatoma cell proliferation and invasion. Int. J. Clin. Exp. Pathol. 2015, 8, 12738. [Google Scholar] [PubMed]
- O’Neill, L.A.; Sheedy, F.J.; McCoy, C.E. MicroRNAs: The fine-tuners of Toll-like receptor signalling. Nat. Rev. Immunol. 2011, 11, 163–175. [Google Scholar] [CrossRef]
- Zhou, X.; Li, X.; Wu, M. miRNAs reshape immunity and inflammatory responses in bacterial infection. Signal Transduct. Target. Ther. 2018, 3, 14. [Google Scholar] [CrossRef] [Green Version]
- Baulina, N.M.; Kulakova, O.G.; Favorova, O.O. MicroRNAs: The Role in Autoimmune Inflammation. Acta Nat. 2016, 8, 21–33. [Google Scholar] [CrossRef]
- Xin, Q.; Li, J.; Dang, J.; Bian, X.; Shan, S.; Yuan, J.; Qian, Y.; Liu, Z.; Liu, G.; Yuan, Q.; et al. miR-155 Deficiency Ameliorates Autoimmune Inflammation of Systemic Lupus Erythematosus by Targeting S1pr1 in Faslpr/lpr Mice. J. Immunol. 2015, 194, 5437–5445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nahid, M.A.; Yao, B.; Dominguez-Gutierrez, P.R.; Kesavalu, L.; Satoh, M.; Chan, E.K.L. Regulation of TLR2-mediated tolerance and cross-tolerance through IRAK4 modulation by miR-132 and miR-212. J. Immunol. 2013, 190, 1250–1263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casciaro, M.; Di Salvo, E.; Brizzi, T.; Rodolico, C.; Gangemi, S. Involvement of miR-126 in autoimmune disorders. Clin. Mol. Allergy 2018, 16, 11. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Song, L.-T.; Li, J.-S.; Zhu, D.-W.; Jiang, S.-Y.; Deng, J.-Y. MicroRNA-126 Regulates Inflammatory Cytokine Secretion in Human Gingival Fibroblasts Under High Glucose via Targeting Tumor Necrosis Factor Receptor Associated Factor 6. J. Periodontol. 2017, 88, e179–e187. [Google Scholar] [CrossRef]
- Liu, Y.-J.; Fan, W.-J.; Bai, J.-Z. microRNA-126 expression and its mechanism of action in patients with systemic lupus erythematosus. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 3838–3842. [Google Scholar]
- Ma, F.; Xu, S.; Liu, X.; Zhang, Q.; Xu, X.; Liu, M.; Hua, M.; Li, N.; Yao, H.; Cao, X. The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon-γ. Nat. Immunol. 2011, 12, 861–869. [Google Scholar] [CrossRef]
- Mitchell, P.S.; Parkin, R.K.; Kroh, E.M.; Fritz, B.R.; Wyman, S.K.; Pogosova-Agadjanyan, E.L.; Peterson, A.; Noteboom, J.; O’Briant, K.C.; Allen, A.; et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. USA 2008, 105, 10513–10518. [Google Scholar] [CrossRef] [Green Version]
- Gilad, S.; Meiri, E.; Yogev, Y.; Benjamin, S.; Lebanony, D.; Yerushalmi, N.; Benjamin, H.; Kushnir, M.; Cholakh, H.; Melamed, N.; et al. Serum MicroRNAs Are Promising Novel Biomarkers. PLoS ONE 2008, 3, e3148. [Google Scholar] [CrossRef] [Green Version]
- Cortez, M.A.; Calin, G.A. MicroRNA identification in plasma and serum: A new tool to diagnose and monitor diseases. Expert Opin. Biol. Ther. 2009, 9, 703–711. [Google Scholar] [CrossRef]
- Ogle, D.H.; Wheeler, P.; Dinno, A. FSA: Fisheries Stock Analysis. R package version 0.8.22. 2018.
- Wickham, H. ggplot2: Elegant Graphics for Data AnalysisTitle; Springer: New York, NY, USA, 2016. [Google Scholar]
- Kassambara, A. ggpubr: “ggplot2” Based Publication Ready Plots. 2018. [Google Scholar]
- Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Frédérique, L.; Jean-Charles, S.; Markus, M. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinf. 2011, 12, 77. [Google Scholar] [CrossRef]
- Liakouli, V.; Cipriani, P.; Di Benedetto, P.; Panzera, N.; Ruscitti, P.; Pantano, I.; Berardicurti, O.; Carubbi, F.; Esteves, F.; Mavria, G.; et al. Epidermal Growth Factor Like-domain 7 and miR-126 are abnormally expressed in diffuse Systemic Sclerosis fibroblasts. Sci. Rep. 2019, 9, 4589. [Google Scholar] [CrossRef] [Green Version]
- Murata, K.; Furu, M.; Yoshitomi, H.; Ishikawa, M.; Shibuya, H.; Hashimoto, M.; Imura, Y.; Fujii, T.; Ito, H.; Mimori, T.; et al. Comprehensive microRNA analysis identifies miR-24 and miR-125a-5p as plasma biomarkers for rheumatoid arthritis. PLoS ONE 2013, 8, e69118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Peng, W.; Ouyang, X.; Li, W.; Dai, Y. Circulating microRNAs as candidate biomarkers in patients with systemic lupus erythematosus. Transl. Res. 2012, 160, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Wu, J.; Deng, J.-X.; Zhang, Y.-P.; Liang, W.-Y.; Jiang, Z.-L.; Yu, Q.-H.; Li, J. MicroRNA-126 affects rheumatoid arthritis synovial fibroblast proliferation and apoptosis by targeting PIK3R2 and regulating PI3K-AKT signal pathway. Oncotarget 2016, 7, 74217–74226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, S.; Wang, Y.; Liang, Y.; Zhao, M.; Long, H.; Ding, S.; Yin, H.; Lu, Q. MicroRNA-126 regulates DNA methylation in CD4+ T cells and contributes to systemic lupus erythematosus by targeting DNA methyltransferase 1. Arthritis Rheumtol. 2011, 63, 1376–1386. [Google Scholar] [CrossRef]
- Yang, G.; Wu, D.; Zeng, G.; Jiang, O.; Yuan, P.; Huang, S.; Zhu, J.; Tian, J.; Weng, Y.; Rao, Z. Correlation between miR-126 expression and DNA hypomethylation of CD4+ T cells in rheumatoid arthritis patients. Int. J. Clin. Exp. Pathol. 2015, 8, 8929–8936. [Google Scholar]
- Ormseth, M.J.; Solus, J.F.; Vickers, K.C.; Oeser, A.M.; Raggi, P.; Stein, C.M. Utility of Select Plasma MicroRNA for Disease and Cardiovascular Risk Assessment in Patients with Rheumatoid Arthritis. J. Rheumatol. 2015, 42, 1746–1751. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Zhang, Y.; Zhu, B.; Duan, T.; Xu, Q.; Wang, R.; Lu, L.; Jiao, Z. Plasma microRNA expression profiles in Chinese patients with rheumatoid arthritis. Oncotarget 2015, 6, 42557–42568. [Google Scholar] [CrossRef]
- Wang, G.; Tam, L.-S.; Li, E.K.-M.; Kwan, B.C.-H.; Chow, K.-M.; Luk, C.C.-W.; Li, P.K.-T.; Szeto, C.-C. Serum and urinary cell-free MiR-146a and MiR-155 in patients with systemic lupus erythematosus. J. Rheumatol. 2010, 37, 2516–2522. [Google Scholar] [CrossRef]
- Carlsen, A.L.; Schetter, A.J.; Nielsen, C.T.; Lood, C.; Knudsen, S.; Voss, A.; Harris, C.C.; Hellmark, T.; Segelmark, M.; Jacobsen, S.; et al. Circulating MicroRNA Expression Profiles Associated With Systemic Lupus Erythematosus. Arthritis Rheumtol. 2013, 65, 1324–1334. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, X.; Ye, L.; Guo, G.; Li, X.; Chen, C.; Sun, L.; Li, B.; Chen, N.; Xue, X. B Cell-Related Circulating MicroRNAs With the Potential Value of Biomarkers in the Differential Diagnosis, and Distinguishment Between the Disease Activity and Lupus Nephritis for Systemic Lupus Erythematosus. Front. Immunol. 2018, 9, 1473. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Zhao, X.; Wang, C.; Geng, Y.; Zhao, J.; Xu, J.; Zuo, B.; Zhao, C.; Wang, C.; Zhang, X. MicroRNA-145 attenuates TNF-α-driven cartilage matrix degradation in osteoarthritis via direct suppression of MKK4. Cell Death Dis. 2017, 8, e3140. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Yao, K.; Guo, J.; Shi, H.; Ma, L.; Wang, Q.; Liu, H.; Gao, W.; Sun, A.; Zou, Y.; et al. miR-181a and miR-150 regulate dendritic cell immune inflammatory responses and cardiomyocyte apoptosis via targeting JAK1-STAT1/c-Fos pathway. J. Cell. Mol. Med. 2017, 21, 2884–2895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurowska-Stolarska, M.; Alivernini, S.; Ballantine, L.E.; Asquith, D.L.; Millar, N.L.; Gilchrist, D.S.; Reilly, J.; Ierna, M.; Fraser, A.R.; Stolarski, B.; et al. MicroRNA-155 as a proinflammatory regulator in clinical and experimental arthritis. Proc. Natl. Acad. Sci. USA 2011, 108, 11193–11198. [Google Scholar] [CrossRef] [Green Version]
- Vickers, K.C.; Palmisano, B.T.; Shoucri, B.M.; Shamburek, R.D.; Remaley, A.T. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell Biol. 2011, 13, 423–433. [Google Scholar] [CrossRef] [Green Version]
- Tabet, F.; Vickers, K.C.; Cuesta Torres, L.F.; Wiese, C.B.; Shoucri, B.M.; Lambert, G.; Catherinet, C.; Prado-Lourenco, L.; Levin, M.G.; Thacker, S.; et al. HDL-transferred microRNA-223 regulates ICAM-1 expression in endothelial cells. Nat. Commun. 2014, 5, 3292. [Google Scholar] [CrossRef] [Green Version]
Parameters | MCTD n = 15 | SLE n = 24 | RA n = 18 | SSc n = 37 |
---|---|---|---|---|
age | 48.5 (58.75–33.25) | 36 (46.5–32.75) | 58 (68–49) | 52.5 (57.5–41) |
sex (female) | 12 (85.71%) | 19 (95%) | 11 (64.7112%) | 23 (63.89%) |
disease duration (months) | 126 (192–63) | 72 (135–30.75) | 54 (153–12) | |
damage index | 1 (3–0) | 1 (1–0) | 5.37 (5.76–4.2) | |
CRP | 5 (7–3) | 4 (6–1.5) | 32 (47.5–23.5) | 2 (7–1) |
ESR [mm/h] | 10 (20–8) | 11.7 (14.15–7.85) | 45 (54–29) | 11 (1–52) |
Autoantibody profile | ||||
anti–CCP | 3 (23.08%) | 11 (73.33%) | ||
RF | 3 (25%) | 8 (53.33%) | 4 (13.79%) | |
anti-U1-RNP | 10 (76.92%) | 2 (12.5%) | ||
anti-A | 8 (61.54%) | 4 (25%) | ||
anti-C | 5 (38.46%) | 3 (18.75%) | ||
anti-70kD | 9 (69.23%) | |||
ANA titer: | ||||
<1280 | 4 (30%) | 9 (37.5%) | 10 (27%) | |
≥1280 | 9 (60%) | 15 (62.5%) | 27 (68%) | |
anti–dsDNA | 1 (7.69%) | 13 (81.25%) | 0 (0%) | |
SSA – Ro52 | 2 (15.38%) | 5 (31.25%) | 7 (23.33%) | |
SSA – Ro60 | 0 (0%) | 5 (31.25%) | 1 (5.56%) | |
anti-SmB | 4 (30.77%) | 5 (31.25%) | 0 (0%) | |
anti-SmD | 0 (0%) | 5 (31.25%) | 0 (0%) | |
anti-Scl70 | 1 (7.69%) | 0 (0%) | 16 (57.14%) | |
Therapeutic profile | Azathioprine – 6% | Ciclosporin – 6% | Anti-IL–6%– 11% | Azathioprine – 13% |
Methotrexate – 23% | Azathioprine – 24% | Glucocorticoids – 61% | Cyclophosphamide – 7% | |
Steroids(prednizon) – 77% | Cyclophosphamide – 10% | Anti-TNF – 39% | Other immunosuppressive drugs – 52% | |
Chloroquine – 59% | Methotrexate – 10% | Methotrexate – 61% | methotrexate – 27% | |
Steroids (prednizon) – 94% | Corticosteroids – 7% | |||
Chloroquine –52% | Vasodilators – 84% | |||
Hydroksychloroquine – 42% |
SLE | |||||
Upregulated microRNA | Fold change | p-value | Downregulated microRNA | Fold change | p-value |
miR-29a | 9.15 | <0.0001 | |||
miR-155 | 8.57 | 0.0002 | |||
miR-143 | 6.15 | 0.0003 | |||
miR-181a | 7.959 | 0.0009 | |||
miR-126 | 4.15 | 0.009 | |||
miR-132 | 3.03 | 0.02 | |||
miR-145 | 4.12 | 0.03 | |||
MCTD | |||||
Upregulated microRNA | Fold change | p value | Down regulated microRNA | Fold change | p value |
miR-143 | 10.50 | 0.06 | miR-126 | 4.35 | 0.09 |
miR-29a | 8.98 | 0.1 | miR-145 | 5.73 | 0.2 |
miR-132 | 7.08 | 0.3 | miR-155 | 2.8 | 0.5 |
miR-181a | 1.08 | 0.7 | |||
RA | |||||
Upregulated microRNA | Fold change | p-value | Downregulated microRNA | Fold change | p value |
miR-181a | 222.01 | <0.0001 | |||
miR-145 | 16.67 | <0.0001 | |||
miR-29a | 97.99 | 0.004 | |||
miR-132 | 12.04 | 0.007 | |||
miR-126 | 334.43 | 0.01 | |||
miR-155 | 2.86 | 0.03 | |||
miR-143 | 3.31 | 0.2 | |||
SSc | |||||
Upregulated microRNA | Fold change | p value | Down regulated microRNA | Fold change | p value |
miR-155 | 3 | 0.06 | miR-181a | 2.55 | 0.5 |
miR-126 | 2.68 | 0.2 | miR-29a | 1.12 | 0.7 |
miR-145 | 2.88 | 0.3 | miR-143 | 2.45 | 0.9 |
miR-132 | 1.35 | 0.9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stypinska, B.; Wajda, A.; Walczuk, E.; Olesinska, M.; Lewandowska, A.; Walczyk, M.; Paradowska-Gorycka, A. The Serum Cell-Free microRNA Expression Profile in MCTD, SLE, SSc, and RA Patients. J. Clin. Med. 2020, 9, 161. https://doi.org/10.3390/jcm9010161
Stypinska B, Wajda A, Walczuk E, Olesinska M, Lewandowska A, Walczyk M, Paradowska-Gorycka A. The Serum Cell-Free microRNA Expression Profile in MCTD, SLE, SSc, and RA Patients. Journal of Clinical Medicine. 2020; 9(1):161. https://doi.org/10.3390/jcm9010161
Chicago/Turabian StyleStypinska, Barbara, Anna Wajda, Ewa Walczuk, Marzena Olesinska, Aleksandra Lewandowska, Marcela Walczyk, and Agnieszka Paradowska-Gorycka. 2020. "The Serum Cell-Free microRNA Expression Profile in MCTD, SLE, SSc, and RA Patients" Journal of Clinical Medicine 9, no. 1: 161. https://doi.org/10.3390/jcm9010161
APA StyleStypinska, B., Wajda, A., Walczuk, E., Olesinska, M., Lewandowska, A., Walczyk, M., & Paradowska-Gorycka, A. (2020). The Serum Cell-Free microRNA Expression Profile in MCTD, SLE, SSc, and RA Patients. Journal of Clinical Medicine, 9(1), 161. https://doi.org/10.3390/jcm9010161