The Effect of Proton Pump Inhibitor Use on Renal Function in Kidney Transplanted Patients
Abstract
:1. Introduction
2. Patients and Methods
2.1. Patients
2.2. Proton Pump Inhibitors—Data Collection
2.3. Group Formation
2.4. Outcome Measures
2.5. Statistical Analysis
3. Results
3.1. Patients
3.2. Group Comparison
3.3. >30% and >50% eGFR Decline
3.4. Secondary Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lazarus, B.; Chen, Y.; Wilson, F.P.; Sang, Y.; Chang, A.R.; Coresh, J.; Grams, M.E. Proton Pump Inhibitor Use and the Risk of Chronic Kidney Disease. JAMA Intern. Med. 2016, 176, 238–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, Y.; Bowe, B.; Li, T.; Xian, H.; Balasubramanian, S.; Al-Aly, Z. Proton Pump Inhibitors and Risk of Incident CKD and Progression to ESRD. J. Am. Soc. Nephrol. 2016, 27, 3153–3163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, Y.; Bowe, B.; Li, T.; Xian, H.; Yan, Y.; Al-Aly, Z. Long-term kidney outcomes among users of proton pump inhibitors without intervening acute kidney injury. Kidney Int. 2017, 91, 1482–1494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klatte, D.C.F.; Gasparini, A.; Xu, H.; de Deco, P.; Trevisan, M.; Johansson, A.L.; Wettermark, B.; Ärnlöv, J.; Janmaat, C.J.; Dekker, F.W.; et al. Association between Proton Pump Inhibitor Use and Risk of Progression of Chronic Kidney Disease. Gastroenterology 2017, 153, 702–710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arora, P.; Gupta, A.; Golzy, M.; Patel, N.; Carter, R.L.; Jalal, K.; Lohr, J.W. Proton pump inhibitors are associated with increased risk of development of chronic kidney disease. BMC Nephrol. 2016, 17, 112. [Google Scholar] [CrossRef] [Green Version]
- Product Monograph: CellCept, Mycophenolate Mofetil; Hoffmann-La Roche Ltd.: Mississauga, ON, Canada, 2017; Available online: https://www.rochecanada.com/PMs/CellCept/CellCept_PM_E.pdf (accessed on 5 May 2018).
- Schaier, M.; Scholl, C.; Scharpf, D.; Hug, F.; Bönisch-Schmidt, S.; Dikow, R.; Schmitt, W.H.; Schwenger, V.; Zeier, M.; Sommerer, C. Proton pump inhibitors interfere with the immunosuppressive potency of mycophenolate mofetil. Rheumatology 2010, 49, 2061–2067. [Google Scholar] [CrossRef] [Green Version]
- Rupprecht, K.; Schmidt, C.; Raspé, A.; Schweda, F.; Shipkova, M.; Fischer, W.; Bucher, M.; Kees, F.; Faerber, L. Bioavailability of mycophenolate mofetil and enteric-coated mycophenolate sodium is differentially affected by pantoprazole in healthy volunteers. J. Clin. Pharmacol. 2009, 49, 1196–1201. [Google Scholar] [CrossRef]
- Kofler, S.; Shvets, N.; Bigdeli, A.K.; König, M.A.; Kaczmarek, P.; Deutsch, M.A.; Vogeser, M.; Steinbeck, G.; Reichart, B.; Kaczmarek, I. Proton pump inhibitors reduce mycophenolate exposure in heart transplant recipients: A prospective case-controlled study. Am. J. Transplant. 2009, 9, 1650–1656. [Google Scholar] [CrossRef]
- Miura, M.; Satoh, S.; Inoue, K.; Kagaya, H.; Saito, M.; Suzuki, T.; Habuchi, T. Influence of lansoprazole and rabeprazole on mycophenolic acid pharmacokinetics one year after renal transplantation. Ther. Drug Monit. 2008, 30, 46–51. [Google Scholar] [CrossRef]
- Kofler, S.; Wolf, C.; Shvets, N.; Sisic, Z.; Müller, T.; Behr, J.; Sohn, H.-Y.; Vogeser, M.; Shipkova, M.; Steinbeck, G.; et al. The proton pump inhibitor pantoprazole and its interaction with enteric-coated mycophenolate sodium in transplant recipients. J. Heart Lung Transplant. 2011, 30, 565–571. [Google Scholar] [CrossRef]
- Xu, L.; Cai, M.; Shi, B.-Y.; Li, Z.-L.; Li, X.; Jin, H.-L. A prospective analysis of the effects of enteric-coated mycophenolate sodium and mycophenolate mofetil co-medicated with a proton pump inhibitor in kidney transplant recipients at a single institute in China. Transplant. Proc. 2014, 46, 1362–1365. [Google Scholar] [CrossRef] [PubMed]
- van Gelder, T.; Hilbrands, L.B.; Vanrenterghem, Y.; Weimar, W.; De Fijter, J.W.; Squifflet, J.P.; Hené, R.J.; Verpooten, G.A.; Navarro, M.T.; Nicholls, A.J.; et al. A randomized double-blind, multicenter plasma concentration controlled study of the safety and efficacy of oral mycophenolate mofetil for the prevention of acute rejection after kidney transplantation. Transplantation 1999, 68, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Langone, A.; Doria, C.; Greenstein, S.; Narayanan, M.; Ueda, K.; Sankari, B.; Pankewycz, O.; Shihab, F.; Chan, L. Does reduction in mycophenolic acid dose compromise efficacy regardless of tacrolimus exposure level? An analysis of prospective data from the Mycophenolic Renal Transplant (MORE) Registry. Clin. Transplant. 2013, 27, 15–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, M.; Deering, K.L.; Slakey, D.P.; Harshaw, Q.; Arcona, S.; McCann, E.L.; Rasetto, F.A.; Florman, S.S. Comparing outcomes associated with dose manipulations of enteric-coated mycophenolate sodium versus mycophenolate mofetil in renal transplant recipients. Transplantation 2009, 88, 514–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knoll, G.A.; Macdonald, I.; Khan, A.; van Walraven, C. Mycophenolate Mofetil Dose Reduction and the Risk of Acute Rejection after Renal Transplantation. J. Am. Soc. Nephrol. 2003, 14, 2381–2386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Itagaki, F.; Homma, M.; Yuzawa, K.; Nishimura, M.; Naito, S.; Ueda, N.; Ohkohchi, N.; Kohda, Y. Effect of lansoprazole and rabeprazole on tacrolimus pharmacokinetics in healthy volunteers with CYP2C19 mutations. J. Pharm. Pharmacol. 2004, 56, 1055–1059. [Google Scholar] [CrossRef] [PubMed]
- Product Monograph: Sandoz Tacrolimus; Sandoz Canada Inc.: Boucherville, QC, Canada, 2016; Available online: https://www.sandoz.ca/sites/www.sandoz.ca/files/Tacrolimus%20Cap%20Product%20Monograph.pdf (accessed on 12 April 2018).
- Miura, M.; Niioka, T.; Kagaya, H.; Saito, M.; Hayakari, M.; Habuchi, T.; Satoh, S. Pharmacogenetic determinants for interindividual difference of tacrolimus pharmacokinetics 1 year after renal transplantation. J. Clin. Pharm. Ther. 2011, 36, 208–216. [Google Scholar] [CrossRef]
- Telkes, G.; Peter, A.; Tulassay, Z.; Asderakis, A. High frequency of ulcers, not associated with Helicobacter pylori, in the stomach in the first year after kidney transplantation. Nephrol. Dial. Transplant. 2011, 26, 727–732. [Google Scholar] [CrossRef] [Green Version]
- Hardinger, K.L.; Brennan, D.C.; Lowell, J.; Schnitzler, M.A. Long-term outcome of gastrointestinal complications in renal transplant patients treated with mycophenolate mofetil. Transpl. Int. 2004, 17, 609–616. [Google Scholar] [CrossRef]
- van Boekel, G.A.J.; Kerkhofs, C.H.H.; van de Logt, F.; Hilbrands, L.B. Proton pump inhibitors do not increase the risk of acute rejection. Neth. J. Med. 2014, 72, 86–90. [Google Scholar]
- Courson, A.Y.; Lee, J.R.; Aull, M.J.; Lee, J.H.; Kapur, S.; McDermott, J.K. Routine prophylaxis with proton pump inhibitors and post-transplant complications in kidney transplant recipients undergoing early corticosteroid withdrawal. Clin. Transplant. 2016, 30, 694–702. [Google Scholar] [CrossRef] [PubMed]
- Knorr, J.P.; Sjeime, M.; Braitman, L.E.; Jawa, P.; Zaki, R.; Ortiz, J. Concomitant proton pump inhibitors with mycophenolate mofetil and the risk of rejection in kidney transplant recipients. Transplantation 2014, 97, 518–524. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.S.; Stephany, B.R.; Barnes, J.F.; Bauer, S.R.; Spinner, M.L. Renal Transplant Acute Rejection with Lower Mycophenolate Mofetil Dosing and Proton Pump Inhibitors or Histamine-2 Receptor Antagonists. Pharmacotherapy 2017, 37, 1507–1515. [Google Scholar] [CrossRef] [PubMed]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Wu, C.; Evans, I.; Joseph, R.; Shapiro, R.; Tan, H.; Basu, A.; Smetanka, C.; Khan, A.; McCauley, J.; Unruh, M. Comorbid conditions in kidney transplantation: Association with graft and patient survival. J. Am. Soc. Nephrol. 2005, 16, 3437–3444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wedemeyer, R.-S.; Blume, H. Pharmacokinetic drug interaction profiles of proton pump inhibitors: An update. Drug Saf. 2014, 37, 201–211. [Google Scholar] [CrossRef] [Green Version]
- McAuley, D. Drug Comparisons—Proton Pump Inhibitors: Equivalent Dosages [Internet]. 2017. Available online: http://www.globalrph.com/proton_pump_inhibitors.htm (accessed on 25 July 2017).
- Abbreviated Drug Class Review: Proton Pump Inhibitors VHA Pharmacy Benefits Management Strategic Healthcare Group and the Medical Advisory Panel. 2006. Available online: https://www.pbm.va.gov/PBM/clinicalguidance/drugclassreviews/ProtonPumpInhibitorsAbbreviatedDrugClassReview.pdf (accessed on 6 February 2018).
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F.; Feldman, H.I.; Coresh, J. A New Equation to Estimate Glomerular Filtration Rate. Ann. Intern. Med. 2009, 150, 604. [Google Scholar] [CrossRef]
- Sierra, F.; Suarez, M.; Rey, M.; Vela, M.F. Systematic review: Proton pump inhibitor-associated acute interstitial nephritis. Aliment. Pharmacol. Ther. 2007, 26, 545–553. [Google Scholar] [CrossRef]
- Leonard, C.E.; Freeman, C.P.; Newcomb, C.W.; Reese, P.P.; Herlim, M.; Bilker, W.B.; Hennessy, S.; Strom, B.L. Proton pump inhibitors and traditional nonsteroidal anti-inflammatory drugs and the risk of acute interstitial nephritis and acute kidney injury. Pharmacoepidemiol. Drug Saf. 2012, 21, 1155–1172. [Google Scholar] [CrossRef]
- Blank, M.-L.; Parkin, L.; Paul, C.; Herbison, P. A nationwide nested case-control study indicates an increased risk of acute interstitial nephritis with proton pump inhibitor use. Kidney Int. 2014, 86, 837–844. [Google Scholar] [CrossRef] [Green Version]
- Antoniou, T.; Macdonald, E.M.; Hollands, S.; Gomes, T.; Mamdani, M.M.; Garg, A.X.; Paterson, J.M.; Juurlink, D.N. Proton pump inhibitors and the risk of acute kidney injury in older patients: A population-based cohort study. CMAJ Open 2015, 3, E166–E171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klepser, D.G.; Collier, D.S.; Cochran, G.L. Proton pump inhibitors and acute kidney injury: A nested case-control study. BMC Nephrol. 2013, 14, 150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghebremariam, Y.T.; LePendu, P.; Lee, J.C.; Erlanson, D.A.; Slaviero, A.; Shah, N.H.; Leiper, J.; Cooke, J.P. Unexpected effect of proton pump inhibitors: Elevation of the cardiovascular risk factor asymmetric dimethylarginine. Circulation 2013, 128, 845–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramezani, A.; Raj, D.S. The gut microbiome, kidney disease, and targeted interventions. J. Am. Soc. Nephrol. 2014, 25, 657–670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yepuri, G.; Sukhovershin, R.; Nazari-Shafti, T.Z.; Petrascheck, M.; Ghebre, Y.T.; Cooke, J.P. Proton Pump Inhibitors Accelerate Endothelial Senescence. Circ. Res. 2016, 118, e36–e42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boonpheng, B.; Thongprayoon, C.; Bathini, T.; Sharma, K.; Mao, M.A.; Cheungpasitporn, W. Proton pump inhibitors and adverse effects in kidney transplant recipients: A meta-analysis. World J. Transplant. 2019, 9, 35–47. [Google Scholar] [CrossRef]
- Douwes, R.M.; Gomes-Neto, A.W.; Eisenga, M.F.; Vinke, J.S.J.; de Borst, M.H.; van den Berg, E.; Berger, S.P.; Touw, D.J.; Hak, E.; Navis, G.; et al. Chronic Use of Proton-Pump Inhibitors and Iron Status in Renal Transplant Recipients. J Clin. Med. 2019, 8, 1382. [Google Scholar] [CrossRef] [Green Version]
- Douwes, R.M.; Gomes-Neto, A.W.; Schutten, J.C.; van den Berg, E.; de Borst, M.H.; Berger, S.P.; Touw, D.J.; Hak, E.; Blokzijl, H.; Bakker, S.J.; et al. Proton-Pump Inhibitors and Hypomagnesaemia in Kidney Transplant Recipients. J Clin. Med. 2019, 8, 2162. [Google Scholar] [CrossRef] [Green Version]
- Kidney Disease: Improving Global Outcomes (KDIGO) Transplant Work Group. KDIGO clinical practice guideline for the care of kidney transplant recipients. Am. J. Transplant. 2009, 9, S1–S157. [Google Scholar] [CrossRef]
- Peloso, L.J.; Faria, P.N.; Bossolani, M.V.; Oliveira, H.B.; Filho Sebastiao, R.F. The Serum Concentration of Tacrolimus after Ingesting Omeprazole: A Pilot Study. Transplantation 2014, 98, e63–e64. [Google Scholar] [CrossRef]
- Schütte-Nütgen, K.; Thölking, G.; Suwelack, B.; Reuter, S. Tacrolimus—Pharmacokinetic Considerations for Clinicians. Curr. Drug Metab. 2018, 19, 342–350. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, P.A.; Schladt, D.; Israni, A.; Oetting, W.S.; Lin, Y.C.; Leduc, R.; Guan, W.; Lamba, V.; Matas, A.J. Genetic and clinical determinants of early, acute calcineurin inhibitor-related nephrotoxicity: Results from a kidney transplant consortium. Transplantation 2012, 93, 624–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mo, H.; Kim, S.-Y.; Min, S.; Han, A.; Ahn, S.; Min, S.K.; Lee, H.; Ahn, C.; Kim, Y.; Ha, J. Association of Intrapatient Variability of Tacrolimus Concentration with Early Deterioration of Chronic Histologic Lesions in Kidney Transplantation. Transplant. Direct 2019, 5, e455. [Google Scholar] [CrossRef] [PubMed]
- Shuker, N.; van Gelder, T.; Hesselink, D.A. Intra-patient variability in tacrolimus exposure: Causes, consequences for clinical management. Transplant. Rev. 2015, 29, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Rissling, O.; Glander, P.; Hambach, P.; Mai, M.; Brakemeier, S.; Klonower, D.; Halleck, F.; Singer, E.; Schrezenmeier, E.-V.; Neumayer, H.H.; et al. No relevant pharmacokinetic interaction between pantoprazole and mycophenolate in renal transplant patients: A randomized crossover study. Br. J. Clin. Pharmacol. 2015, 80, 1086–1096. [Google Scholar] [CrossRef] [PubMed]
- Bril, F.; Castro, V.; Centurion, G.I.; Espinosa, J.; Keller, A.G.; Gonzalez, D.C.; Soler, R.M.; Saubidet, L.C.; Di Girolamo, D.G.; Pujol, S.G.; et al. A Systematic Approach to Assess the Burden of Drug Interactions in Adult Kidney Transplant Patients. Curr. Drug Saf. 2016, 11, 156–163. [Google Scholar] [CrossRef]
- Polypharmacy and Medicines Optimisation: Making It Safe and Sound. The King’s Fund: London, UK, 2013. Available online: https://www.kingsfund.org.uk/sites/default/files/field/field_publication_file/polypharmacy-and-medicines-optimisation-kingsfund-nov13.pdf (accessed on 17 January 2020).
Patient Characteristic | All Patients (n = 455) | PPI Group (n = 363) | No PPI Group (n = 82) | p-Value of Group Comparison |
---|---|---|---|---|
Recipient age, mean ± SD (years) | 52.6 ± 14.2 | 53.1 ± 13.9 | 49.3 ± 14.5 | 0.026 |
Recipient male gender, n (%) | 279 (61.3) | 219 (60.3) | 52 (63.4) | 0.707 |
Recipient BMI, mean ± SD (kg/m2) | 25.9 ± 4.4 | 26.0 ± 4.3 | 24.9 ± 4.5 | 0.053 |
Prior renal transplantation, n (%) | 64 (14.1) | 45 (12.4) | 16 (19.5) | 0.109 |
Age of donor, mean ± SD (years) | 53.1 ± 14.0 | 53.3 ± 14.4 | 51.4 ± 11.9 | 0.204 |
Living donor, n (%) | 153 (33.6) | 112 (30.9) | 41 (50.0) | 0.001 |
Male donor, n (%) | 208 (45.7) | 170 (46.8) | 33 (40.2) | 0.326 |
Delayed graft function, n (%) | 79 (17.4) | 59 (16.3) | 11 (13.4) | 0.616 |
European Senior Program, n (%) | 76 (16.7) | 62 (17.1) | 10 (12.2) | 0.322 |
Cold ischemia time (hours), median (IQR) | 7.8 (2.5–11.6) | 7.8 (2.7–11.7) | 5.2 (2.3–11.1) | 0.053 |
Pre-Tx time dialyzed (months), median (IQR) | 45.3 (21.0–86.0) | 48.2 (23.2–88.5) | 32.4 (8.6–67.2) | 0.002 |
Tacrolimus therapy at primary discharge, n (%) | 432 (94.9) | 347 (95.6) | 76 (92.7) | 0.265 |
Cyclosporin therapy at primary discharge, n (%) | 23 (5.1) | 16 (4.4) | 6 (7.3) | 0.265 |
MPS therapy at primary discharge, n (%) | 76 (16.7) | 57 (15.7) | 18 (22.0) | 0.191 |
MMF therapy at primary discharge, n (%) | 341 (74.9) | 278 (76.6) | 57 (69.5) | 0.200 |
MMF mean daily dosage (mg), median (IQR) | 1000 (500–1000) | 1000 (500–1000) | 1000 (0–1063) | 0.851 |
Cortisone intake at primary discharge, n (%) | 444 (97.6) | 353 (97.2) | 81 (98.8) | 0.698 |
CCI, median (IQR) | 2 (2–4) | 3 (2–4) | 2 (2–3) | <0.001 |
HLA mismatch on A, B and DR, mean ± SD | 2.9 ± 1.7 | 2.9 ± 1.7 | 2.9 ± 1.7 | 0.875 |
Basiliximab induction, n (%) | 363 (79.8) | 293 (80.7) | 61 (74.4) | 0.272 |
ATG induction, n (%) | 14 (3.1) | 13 (3.6) | 1 (1.2) | 0.482 |
ABO blood type incompatible transplant, n (%) | 37 (8.1) | 26 (7.2) | 11 (13.4) | 0.077 |
PRA >20%, n (%) | 60 (13.2) | 48 (13.2) | 10 (12.2) | 1.000 |
Time Period of Analyzed eGFR Change | Groups 1 = PPI 0 = No PPI | n | Mean Change in the eGFR ± SD (mL/min/1.73 m2) | Median (IQR) Change in the eGFR | p-Value in Univariable Analysis | p-Value (CI) in Multivariable Linear Regression Model |
---|---|---|---|---|---|---|
0.5–1 year | 1 | 323 | −0.6 ± 12.0 | 1.0 (−6.0–6.5) | 0.488 | 0.498 (−1.9–3.8) |
0 | 78 | −0.5 ± 8.3 | −0.5 (−5.6–4.4) | |||
0.5–2 years | 1 | 310 | −1.6 ± 14.2 | 0.2 (−9.0–7.5) | 0.274 | 0.542 (−2.3–4.5) |
0 | 74 | −2.4 ± 10.2 | −1.5 (−9.2–5.2) | |||
0.5–3 years | 1 | 202 | −0.8 ± 15.1 | 0.35 (−8.0–8.4) | 0.331 | 0.452 (−2.6–5.8) |
0 | 58 | −2.5 ± 11.0 | −1.3 (−7.0–5.4) | |||
0.5–4 years | 1 | 125 | −0.1 ± 14.5 | −0.1 (−7.3–8.6) | 0.101 | 0.228 (−2.2–9.1) |
0 | 28 | −4.2 ± 9.1 | −1.7 (−10.5–2.9) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flothow, D.J.G.; Suwelack, B.; Pavenstädt, H.; Schütte-Nütgen, K.; Reuter, S. The Effect of Proton Pump Inhibitor Use on Renal Function in Kidney Transplanted Patients. J. Clin. Med. 2020, 9, 258. https://doi.org/10.3390/jcm9010258
Flothow DJG, Suwelack B, Pavenstädt H, Schütte-Nütgen K, Reuter S. The Effect of Proton Pump Inhibitor Use on Renal Function in Kidney Transplanted Patients. Journal of Clinical Medicine. 2020; 9(1):258. https://doi.org/10.3390/jcm9010258
Chicago/Turabian StyleFlothow, Dominik J. G., Barbara Suwelack, Hermann Pavenstädt, Katharina Schütte-Nütgen, and Stefan Reuter. 2020. "The Effect of Proton Pump Inhibitor Use on Renal Function in Kidney Transplanted Patients" Journal of Clinical Medicine 9, no. 1: 258. https://doi.org/10.3390/jcm9010258
APA StyleFlothow, D. J. G., Suwelack, B., Pavenstädt, H., Schütte-Nütgen, K., & Reuter, S. (2020). The Effect of Proton Pump Inhibitor Use on Renal Function in Kidney Transplanted Patients. Journal of Clinical Medicine, 9(1), 258. https://doi.org/10.3390/jcm9010258