Female Specific Association of Low Insulin-Like Growth Factor 1 (IGF1) Levels with Increased Risk of Premature Mortality in Renal Transplant Recipients
Abstract
:1. Introduction
2. Experimental Section
2.1. Study Population
2.2. Data and Sample Collection
2.3. Laboratory Procedures
2.4. Outcome Ascertainment
2.5. Statistical Analyses
3. Results
3.1. RTR Characteristics
3.2. Association of Plasma IGF1 with Selected Variables in RTR
3.3. Association of Plasma IGF1 with All-Cause Mortality in RTR
3.4. Association of Plasma IGF1 with Cause-Specific Mortality in RTR
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sowers, M.R.; Zheng, H.; McConnell, D.; Nan, B.; Harlow, S.; Randolph, J.F., Jr. Follicle stimulating hormone and its rate of change in defining menopause transition stages. J. Clin. Endocrinol. Metab. 2008, 93, 3958–3964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ketha, H.; Singh, R.J. Clinical assays for quantitation of insulin-like-growth-factor-1 (IGF1). Methods 2015, 81, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Laron, Z. Insulin-like growth factor 1 (IGF-1): A growth hormone. Mol. Pathol. 2001, 54, 311–316. [Google Scholar] [CrossRef]
- Bidlingmaier, M. Pitfalls of insulin-like growth factor I assays. Horm. Res. 2009, 71 (Suppl. S1), 30–33. [Google Scholar] [CrossRef]
- Mao, K.; Quipildor, G.F.; Tabrizian, T.; Novaj, A.; Guan, F.; Walters, R.O.; Delahaye, F.; Hubbard, G.B.; Ikeno, Y.; Ejima, K.; et al. Late-Life targeting of the IGF-1 receptor improves healthspan and lifespan in female mice. Nat. Commun. 2018, 9, 2394. [Google Scholar] [CrossRef] [Green Version]
- Holzenberger, M.; Dupont, J.; Ducos, B.; Leneuve, P.; Geloen, A.; Even, P.C.; Cervera, P.; Le Bouc, Y. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 2003, 421, 182–187. [Google Scholar] [CrossRef]
- Bokov, A.F.; Garg, N.; Ikeno, Y.; Thakur, S.; Musi, N.; DeFronzo, R.A.; Zhang, N.; Erickson, R.C.; Gelfond, J.; Hubbard, G.B.; et al. Does reduced IGF-1R signaling in Igf1r+/− mice alter aging? PLoS ONE 2011, 6, e26891. [Google Scholar] [CrossRef]
- Xu, J.; Gontier, G.; Chaker, Z.; Lacube, P.; Dupont, J.; Holzenberger, M. Longevity effect of IGF-1R(+/−) mutation depends on genetic background-specific receptor activation. Aging Cell 2014, 13, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Suh, Y.; Atzmon, G.; Cho, M.O.; Hwang, D.; Liu, B.; Leahy, D.J.; Barzilai, N.; Cohen, P. Functionally significant insulin-like growth factor I receptor mutations in centenarians. Proc. Natl. Acad. Sci. USA 2008, 105, 3438–3442. [Google Scholar] [CrossRef] [Green Version]
- Tazearslan, C.; Huang, J.; Barzilai, N.; Suh, Y. Impaired IGF1R signaling in cells expressing longevity-associated human IGF1R alleles. Aging Cell 2011, 10, 551–554. [Google Scholar] [CrossRef] [Green Version]
- Milman, S.; Huffman, D.M.; Barzilai, N. The somatotropic axis in human aging: Framework for the current state of knowledge and future research. Cell. Metab. 2016, 23, 980–989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milman, S.; Atzmon, G.; Huffman, D.M.; Wan, J.; Crandall, J.P.; Cohen, P.; Barzilai, N. Low insulin-like growth factor-1 level predicts survival in humans with exceptional longevity. Aging Cell 2014, 13, 769–771. [Google Scholar] [CrossRef]
- Pietra, C.; Takeda, Y.; Tazawa-Ogata, N.; Minami, M.; Yuanfeng, X.; Duus, E.M.; Northrup, R. Anamorelin HCl (ONO-7643), a novel ghrelin receptor agonist, for the treatment of cancer anorexia-cachexia syndrome: Preclinical profile. J. Cachexia Sarcopenia Muscle 2014, 5, 329–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esposito, A.; Criscitiello, C.; Gelao, L.; Pravettoni, G.; Locatelli, M.; Minchella, I.; Di Leo, M.; Liuzzi, R.; Milani, A.; Massaro, M.; et al. Mechanisms of anorexia-cachexia syndrome and rational for treatment with selective ghrelin receptor agonist. Cancer Treat. Rev. 2015, 41, 793–797. [Google Scholar] [CrossRef] [PubMed]
- Borner, T.; Loi, L.; Pietra, C.; Giuliano, C.; Lutz, T.A.; Riediger, T. The ghrelin receptor agonist HM01 mimics the neuronal effects of ghrelin in the arcuate nucleus and attenuates anorexia-cachexia syndrome in tumor-bearing rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2016, 311, R89–R96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campbell, G.A.; Patrie, J.T.; Gaylinn, B.D.; Thorner, M.O.; Bolton, W.K. Oral ghrelin receptor agonist MK-0677 increases serum insulin-like growth factor 1 in hemodialysis patients: A randomized blinded study. Nephrol. Dial. Transplant. 2018, 33, 523–530. [Google Scholar] [CrossRef]
- Florini, J.R.; Ewton, D.Z.; Magri, K.A. Hormones, growth factors, and myogenic differentiation. Annu. Rev. Physiol. 1991, 53, 201–216. [Google Scholar] [CrossRef]
- Molnar, M.Z.; Czira, M.E.; Rudas, A.; Ujszaszi, A.; Haromszeki, B.; Kosa, J.P.; Lakatos, P.; Beko, G.; Sarvary, E.; Varga, M.; et al. Association between the malnutrition-inflammation score and post-transplant anaemia. Nephrol. Dial. Transplant. 2011, 26, 2000–2006. [Google Scholar] [CrossRef] [Green Version]
- Molnar, M.Z.; Czira, M.E.; Rudas, A.; Ujszaszi, A.; Lindner, A.; Fornadi, K.; Kiss, I.; Remport, A.; Novak, M.; Kennedy, S.H.; et al. Association of the malnutrition-inflammation score with clinical outcomes in kidney transplant recipients. Am. J. Kidney Dis. 2011, 58, 101–108. [Google Scholar] [CrossRef]
- Stam, S.P.; Eisenga, M.F.; Gomes Neto, A.W.; Van Londen, M.; De Meijer, V.E.; Van Beek, A.P.; Gansevoort, R.T.; Bakker, S.J.L. Muscle mass determined from urinary creatinine excretion rate, and muscle performance in renal transplant recipients. J. Cachexia Sarcopenia Muscle 2019, 10, 621–629. [Google Scholar] [CrossRef] [Green Version]
- Oterdoom, L.H.; de Vries, A.P.; van Ree, R.M.; Gansevoort, R.T.; van Son, W.J.; van der Heide, J.J.; Navis, G.; de Jong, P.E.; Gans, R.O.; Bakker, S.J. N-terminal pro-B-type natriuretic peptide and mortality in renal transplant recipients versus the general population. Transplantation 2009, 87, 1562–1570. [Google Scholar] [CrossRef] [PubMed]
- Oterdoom, L.H.; van Ree, R.M.; de Vries, A.P.; Gansevoort, R.T.; Schouten, J.P.; van Son, W.J.; Homan van der Heide, J.J.; Navis, G.; de Jong, P.E.; Gans, R.O.; et al. Urinary creatinine excretion reflecting muscle mass is a predictor of mortality and graft loss in renal transplant recipients. Transplantation 2008, 86, 391–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Said, M.Y.; Deetman, P.E.; de Vries, A.P.; Zelle, D.M.; Gans, R.O.; Navis, G.; Joosten, M.M.; Bakker, S.J. Causal path analyses of the association of protein intake with risk of mortality and graft failure in renal transplant recipients. Clin. Transplant. 2015, 29, 447–457. [Google Scholar] [CrossRef] [PubMed]
- Tyrovolas, S.; Koyanagi, A.; Olaya, B.; Ayuso-Mateos, J.L.; Miret, M.; Chatterji, S.; Tobiasz-Adamczyk, B.; Koskinen, S.; Leonardi, M.; Haro, J.M. Factors associated with skeletal muscle mass, sarcopenia, and sarcopenic obesity in older adults: A multi-continent study. J. Cachexia Sarcopenia Muscle 2016, 7, 312–321. [Google Scholar] [CrossRef]
- Chu, M.P.; Lieffers, J.; Ghosh, S.; Belch, A.; Chua, N.S.; Fontaine, A.; Sangha, R.; Turner, R.A.; Baracos, V.E.; Sawyer, M.B. Skeletal muscle density is an independent predictor of diffuse large B-cell lymphoma outcomes treated with rituximab-based chemoimmunotherapy. J. Cachexia Sarcopenia Muscle 2017, 8, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Makizako, H.; Shimada, H.; Doi, T.; Tsutsumimoto, K.; Lee, S.; Lee, S.C.; Harada, K.; Hotta, R.; Nakakubo, S.; Bae, S.; et al. Age-dependent changes in physical performance and body composition in community-dwelling Japanese older adults. J. Cachexia Sarcopenia Muscle 2017, 8, 607–614. [Google Scholar] [CrossRef] [Green Version]
- Van den Berg, E.; Pasch, A.; Westendorp, W.H.; Navis, G.; Brink, E.J.; Gans, R.O.; van Goor, H.; Bakker, S.J. Urinary sulfur metabolites associate with a favorable cardiovascular risk profile and survival benefit in renal transplant recipients. J. Am. Soc. Nephrol. 2014, 25, 1303–1312. [Google Scholar] [CrossRef] [Green Version]
- Wendel-Vos, G.C.; Schuit, A.J.; Saris, W.H.; Kromhout, D. Reproducibility and relative validity of the short questionnaire to assess health-enhancing physical activity. J. Clin. Epidemiol. 2003, 56, 1163–1169. [Google Scholar] [CrossRef] [Green Version]
- Inker, L.A.; Schmid, C.H.; Tighiouart, H.; Eckfeldt, J.H.; Feldman, H.I.; Greene, T.; Kusek, J.W.; Manzi, J.; Van Lente, F.; Zhang, Y.L.; et al. Estimating glomerular filtration rate from serum creatinine and cystatin C. N. Engl. J. Med. 2012, 367, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Klont, F.; Ten Hacken, N.H.T.; Horvatovich, P.; Bakker, S.J.L.; Bischoff, R. Assuring consistent performance of an insulin-like growth factor 1 MALDImmunoassay by monitoring measurement quality indicators. Anal. Chem. 2017, 89, 6188–6195. [Google Scholar] [CrossRef] [Green Version]
- Food and Drug Administration (FDA). Guidance for Industry: Bioanalytical Method Validation; The United States Department of Health and Human Services: Washington, DC, USA, 2001.
- Tubben, A.; Sotomayor, C.G.; Post, A.; Minovic, I.; Frelink, T.; de Borst, M.H.; Said, M.Y.; Douwes, R.M.; van den Berg, E.; Rodrigo, R.; et al. Urinary oxalate excretion and long-term outcomes in kidney transplant recipients. J. Clin. Med. 2019, 8, 2104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minović, I.; van der Veen, A.; van Faassen, M.; Riphagen, I.J.; van den Berg, E.; van der Ley, C.; Gomes-Neto, A.W.; Geleijnse, J.M.; Eggersdorfer, M.; Navis, G.J.; et al. Functional vitamin B-6 status and long-term mortality in renal transplant recipients. Am. J. Clin. Nutr. 2017, 106, 1366–1374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Preacher, K.J.; Hayes, A.F. SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behav. Res. Methods Instrum. Comput. 2004, 36, 717–731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burkitt, W.; Domann, P.; O’Connor, G. Conformational changes in oxidatively stressed monoclonal antibodies studied by hydrogen exchange mass spectrometry. Protein Sci. 2010, 19, 826–835. [Google Scholar] [CrossRef] [Green Version]
- Harrell, F.E., Jr.; Lee, K.L.; Califf, R.M.; Pryor, D.B.; Rosati, R.A. Regression modelling strategies for improved prognostic prediction. Stat. Med. 1984, 3, 143–152. [Google Scholar] [CrossRef]
- Teppala, S.; Shankar, A.; Sabanayagam, C. Association between IGF-1 and chronic kidney disease among US adults. Clin. Exp. Nephrol. 2010, 14, 440–444. [Google Scholar] [CrossRef]
- Wennberg, A.M.V.; Hagen, C.E.; Petersen, R.C.; Mielke, M.M. Trajectories of plasma IGF-1, IGFBP-3, and their ratio in the Mayo Clinic study of aging. Exp. Gerontol. 2018, 106, 67–73. [Google Scholar] [CrossRef]
- Chew, J.; Tay, L.; Lim, J.P.; Leung, B.P.; Yeo, A.; Yew, S.; Ding, Y.Y.; Lim, W.S. Serum myostatin and IGF-1 as gender-specific biomarkers of frailty and low muscle mass in community-dwelling older adults. J. Nutr. Health Aging 2019, 23, 979–986. [Google Scholar] [CrossRef]
- Kong, A.P.; Wong, G.W.; Choi, K.C.; Ho, C.S.; Chan, M.H.; Lam, C.W.; Tong, P.C.; Ozaki, R.; So, W.Y.; Ma, R.C.; et al. Reference values for serum levels of insulin-like growth factor (IGF-1) and IGF-binding protein 3 (IGFBP-3) and their ratio in Chinese adolescents. Clin. Biochem. 2007, 40, 1093–1099. [Google Scholar] [CrossRef]
- Friedrich, N.; Alte, D.; Volzke, H.; Spilcke-Liss, E.; Ludemann, J.; Lerch, M.M.; Kohlmann, T.; Nauck, M.; Wallaschofski, H. Reference ranges of serum IGF-1 and IGFBP-3 levels in a general adult population: Results of the study of health in Pomerania (SHIP). Growth Horm. IGF Res. 2008, 18, 228–237. [Google Scholar] [CrossRef]
- Alberti, C.; Chevenne, D.; Mercat, I.; Josserand, E.; Armoogum-Boizeau, P.; Tichet, J.; Leger, J. Serum concentrations of insulin-like growth factor (IGF)-1 and IGF binding protein-3 (IGFBP-3), IGF-1/IGFBP-3 ratio, and markers of bone turnover: Reference values for French children and adolescents and z-score comparability with other references. Clin. Chem. 2011, 57, 1424–1435. [Google Scholar] [CrossRef] [PubMed]
- Chanson, P.; Arnoux, A.; Mavromati, M.; Brailly-Tabard, S.; Massart, C.; Young, J.; Piketty, M.L.; Souberbielle, J.C.; VARIETE Investigators. Reference values for IGF-I serum concentrations: Comparison of six immunoassays. J. Clin. Endocrinol. Metab. 2016, 101, 3450–3458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonert, V.; Carmichael, J.; Wu, Z.; Mirocha, J.; Perez, D.A.; Clarke, N.J.; Reitz, R.E.; McPhaul, M.J.; Mamelak, A. Discordance between mass spectrometry and immunometric IGF-1 assay in pituitary disease: A prospective study. Pituitary 2018, 21, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Endogenous Hormones and Breast Cancer Collaborative Group; Key, T.J.; Appleby, P.N.; Reeves, G.K.; Roddam, A.W. Insulin-like growth factor 1 (IGF1), IGF binding protein 3 (IGFBP3), and breast cancer risk: Pooled individual data analysis of 17 prospective studies. Lancet Oncol. 2010, 11, 530–542. [Google Scholar] [CrossRef] [Green Version]
- Heijboer, A.C.; Blankenstein, M.A.; Kema, I.P.; Buijs, M.M. Accuracy of 6 routine 25-hydroxyvitamin D assays: Influence of vitamin D binding protein concentration. Clin. Chem. 2012, 58, 543–548. [Google Scholar] [CrossRef] [Green Version]
- Di Micco, L.; Quinn, R.R.; Ronksley, P.E.; Bellizzi, V.; Lewin, A.M.; Cianciaruso, B.; Ravani, P.; Alberta Kidney Disease Network (AKDN). Urine creatinine excretion and clinical outcomes in CKD. Clin. J. Am. Soc. Nephrol. 2013, 8, 1877–1883. [Google Scholar] [CrossRef]
- Kalantari, K.; Bolton, W.K. A good reason to measure 24-h urine creatinine excretion, but not to assess kidney function. Clin. J. Am. Soc. Nephrol. 2013, 8, 1847–1849. [Google Scholar] [CrossRef] [Green Version]
- Oterdoom, L.H.; Gansevoort, R.T.; Schouten, J.P.; de Jong, P.E.; Gans, R.O.; Bakker, S.J. Urinary creatinine excretion, an indirect measure of muscle mass, is an independent predictor of cardiovascular disease and mortality in the general population. Atherosclerosis 2009, 207, 534–540. [Google Scholar] [CrossRef]
- Yakar, S.; Isaksson, O. Regulation of skeletal growth and mineral acquisition by the GH/IGF-1 axis: Lessons from mouse models. Growth Horm. IGF Res. 2016, 28, 26–42. [Google Scholar] [CrossRef] [Green Version]
- Clemmons, D.R. Role of IGF-I in skeletal muscle mass maintenance. Trends Endocrinol. Metab. 2009, 20, 349–356. [Google Scholar] [CrossRef]
- Zelle, D.M.; Corpeleijn, E.; Stolk, R.P.; de Greef, M.H.; Gans, R.O.; van der Heide, J.J.; Navis, G.; Bakker, S.J. Low physical activity and risk of cardiovascular and all-cause mortality in renal transplant recipients. Clin. J. Am. Soc. Nephrol. 2011, 6, 898–905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosas, S.E.; Reese, P.P.; Huan, Y.; Doria, C.; Cochetti, P.T.; Doyle, A. Pretransplant physical activity predicts all-cause mortality in kidney transplant recipients. Am. J. Nephrol. 2012, 35, 17–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellizzi, V.; Cupisti, A.; Capitanini, A.; Calella, P.; D’Alessandro, C. Physical activity and renal transplantation. Kidney Blood Press. Res. 2014, 39, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Dunn, S.E.; Burns, J.L.; Michel, R.N. Calcineurin is required for skeletal muscle hypertrophy. J. Biol. Chem. 1999, 274, 21908–21912. [Google Scholar] [CrossRef] [Green Version]
- Michel, R.N.; Dunn, S.E.; Chin, E.R. Calcineurin and skeletal muscle growth. Proc. Nutr. Soc. 2004, 63, 341–349. [Google Scholar] [CrossRef]
- Hudson, M.B.; Price, S.R. Calcineurin: A poorly understood regulator of muscle mass. Int. J. Biochem. Cell Biol. 2013, 45, 2173–2178. [Google Scholar] [CrossRef] [Green Version]
Tertiles of Plasma IGF1 Levels for 277 Female RTR | Tertiles of Plasma IGF1 Levels for 343 Male RTR | |||||||
---|---|---|---|---|---|---|---|---|
Variable | <131 ng/mL | 131–181 ng/mL | >181 ng/mL | p-Value for Trend 2 | <141 ng/mL | 141–202 ng/mL | >202 ng/mL | p-Value for Trend 2 |
Age, y | 56 (48–64) | 54 (44–63) | 54 (41–60) | 0.42 | 59 (48–65) | 55 (46–61) | 49 (38–61) | <0.001 |
BMI, kg/m2 | 25 (22–30) | 26 (23–30) | 27 (23–30) | 0.31 | 25 (23–28) | 26 (24–30) | 26 (23–28) | 0.07 |
Body weight, kg | 67 (61–84) | 73 (65–81) | 74 (65–86) | 0.20 | 80 (73–90) | 86 (76–97) | 84 (74–93) | 0.03 |
Body length, cm | 167 (161–171) | 167 (162–173) | 168 (163–171) | 0.49 | 179 (174–183) | 180 (174–184) | 180 (174–185) | 0.29 |
Waist circumference, cm | 90 (78–104) | 95 (87–106) | 95 (88–105) | 0.04 | 100 (91–108) | 104 (94–112) | 99 (89–107) | 0.01 |
Blood pressure, systolic, mmHg | 133 (121–147) | 131 (120–142) | 132 (124–145) | 0.47 | 138 (127–151) | 135 (124–145) | 136 (125–145) | 0.46 |
Blood pressure, diastolic, mmHg | 80 ± 11 | 80 ± 12 | 82 ± 10 | 0.15 | 83 ± 10 | 84 ± 12 | 84 ± 10 | 0.27 |
Lifestyle: | ||||||||
Smoking status, current, % | 11.6 | 8.7 | 9.0 | 0.56 | 9.8 | 17.4 | 16.4 | 0.19 |
Alcohol consumption, yes, % | 87.2 | 83.3 | 79.3 | 0.18 | 88.0 | 91.3 | 92.5 | 0.28 |
SQUASH score, ×1000 | 4.9 (2.6–7.6) | 4.3 (1.7–7.1) | 5.0 (2.0–6.7) | 0.60 | 5.2 (1.8–7.3) | 6.4 (3.0–10.7) | 5.4 (2.5–9.6) | 0.02 |
Primary renal disease: | ||||||||
Primary glomerulosclerosis, % | 23.9 | 20.4 | 27.2 | 0.60 | 28.9 | 39.5 | 32.2 | 0.61 |
Glomerulonephritis, % | 10.9 | 8.6 | 4.3 | 0.10 | 9.6 | 4.4 | 8.7 | 0.79 |
Polycystic kidney disease, % | 19.6 | 24.7 | 27.2 | 0.23 | 14.0 | 19.3 | 18.3 | 0.40 |
Renal hypoplasia/dysplasia, % | 4.3 | 5.4 | 2.2 | 0.45 | 2.6 | 3.5 | 5.2 | 0.31 |
Diabetes mellitus, % | 8.7 | 5.4 | 0.0 | 0.005 | 11.4 | 4.4 | 1.7 | 0.002 |
Other primary renal diseases, % | 32.6 | 35.5 | 39.1 | 0.36 | 32.5 | 28.9 | 33.9 | 0.81 |
Kidney and transplantation related variables: | ||||||||
eGFR, mL/min per 1.73 m² | 42 (27–57) | 45 (32–57) | 39 (25–51) | 0.31 | 45 (32–61) | 43 (29–55) | 41 (31–55) | 0.19 |
Serum creatinine, µmol/L | 110 (87–148) | 107 (87–140) | 118 (96–162) | 0.23 | 128 (102–167) | 137 (115–171) | 148 (116–175) | 0.04 |
Living donor, % | 28.3 | 40.2 | 39.1 | 0.13 | 26.3 | 31.9 | 42.6 | 0.009 |
Graft rejection, % | 21.7 | 22.6 | 18.5 | 0.59 | 37.7 | 32.5 | 27.0 | 0.08 |
Dialysis before transplantation, % | 87.0 | 75.3 | 78.3 | 0.14 | 91.2 | 89.5 | 79.1 | 0.007 |
Time between transplantation and baseline visit, y | 7.5 (3.4–12.5) | 5.0 (1.9–14.6) | 3.7 (1.1–7.9) | 0.003 | 7.5 (4.2–13.7) | 7.0 (2.9–13.9) | 2.6 (1.0–7.5) | <0.001 |
Blood markers: | ||||||||
ALT, U/L | 18 (13–25) | 18 (13–22) | 18 (13–23) | 0.81 | 21 (16–29) | 20 (16–27) | 19 (14–27) | 0.32 |
AST, U/L | 23 (18–29) | 22 (18–26) | 20 (18–25) | 0.08 | 24 (20–31) | 22 (19–26) | 21 (17–25) | <0.001 |
GGT, U/L | 29 (19–49) | 25 (16–37) | 25 (18–34) | 0.09 | 32 (21–48) | 27 (19–43) | 24 (18–33) | 0.004 |
Albumin, g/L | 42 (40–45) | 42 (41–45) | 43 (42–45) | 0.10 | 42 (41–45) | 43 (41–44) | 44 (42–45) | 0.003 |
Glucose, mmol/L | 5.0 (4.6–6.2) | 5.2 (4.7–5.9) | 5.2 (4.7–5.6) | 0.66 | 5.4 (4.9–6.2) | 5.3 (4.9–6.2) | 5.3 (5.0–5.9) | 0.86 |
HbA1c, % | 5.7 (5.4–6.0) | 5.9 (5.5–6.3) | 5.9 (5.5–6.3) | 0.39 | 5.8 (5.5–6.2) | 5.8 (5.5–6.3) | 5.8 (5.5–6.2) | 0.68 |
Triglycerides, mmol/L | 1.7 (1.2–2.6) | 1.7 (1.3–2.1) | 1.7 (1.3–2.3) | 0.97 | 1.6 (1.1–2.2) | 1.7 (1.2–2.9) | 1.8 (1.4–2.3) | 0.03 |
Total cholesterol, mmol/L | 5.5 (4.6–6.4) | 5.1 (4.4–6.1) | 5.2 (4.6–5.9) | 0.32 | 5.1 (4.3–5.9) | 4.8 (4.2–5.6) | 4.8 (4.3–5.6) | 0.29 |
HDL cholesterol, mmol/L | 1.6 (1.1–1.9) | 1.4 (1.2–1.8) | 1.4 (1.2–1.8) | 0.22 | 1.3 (1.1–1.6) | 1.2 (0.9–1.4) | 1.2 (1.0–1.4) | 0.05 |
LDL cholesterol, mmol/L | 3.0 (2.3–3.7) | 3.0 (2.2–3.9) | 3.0 (2.5–3.5) | 0.94 | 2.9 (2.3–3.7) | 2.8 (2.3–3.5) | 2.8 (2.3–3.5) | 0.43 |
hs-CRP, mg/L | 1.8 (0.9–5.2) | 2.0 (0.9–5.4) | 1.7 (0.8–3.0) | 0.23 | 1.8 (0.8–5.5) | 1.9 (0.8–5.1) | 1.3 (0.5–3.4) | 0.03 |
Follicle-stimulating hormone, U/L | 52 (7–90) | 51 (5–81) | 47 (5–78) | 0.87 | 5.2 (3.0–11.0) | 5.7 (3.8–10.7) | 4.9 (2.9–8.3) | 0.20 |
Follicle-stimulating hormone ≥ 34 U/L, yes, % 3 | 64.0 | 65.2 | 63.6 | 0.95 | 3.8 | 5.8 | 1.8 | 0.43 |
Luteinizing hormone, U/L | 32 (8–55) | 28 (6–56) | 32 (8–58) | 0.95 | 5.0 (3.4–8.3) | 5.1 (3.6–8.5) | 5.1 (3.4–6.9) | 0.52 |
Urine markers: | ||||||||
Urinary creatinine excretion, mmol/24 h | 8.6 (7.3–10.1) | 9.6 (8.0–11.3) | 10.1 (9.0–11.3) | <0.001 | 12.3 (10.3–14.5) | 13.1 (11.0–15.4) | 13.6 (11.4–15.7) | 0.008 |
Urine total protein, g/24 h | 0.14 (0.02–0.47) | 0.15 (0.02–0.29) | 0.15 (0.02–0.29) | 0.67 | 0.24 (0.02–0.52) | 0.25 (0.02–0.59) | 0.21 (0.02–0.34) | 0.29 |
Medication use: | ||||||||
Proliferation inhibitors, yes, % | 81.5 | 84.9 | 83.7 | 0.69 | 79.8 | 86.8 | 80.0 | 0.98 |
Coumarin derivatives, yes, % | 14.1 | 9.7 | 7.6 | 0.15 | 16.7 | 11.4 | 7.8 | 0.04 |
Calcineurin inhibitors, yes, % | 54.3 | 51.6 | 66.3 | 0.10 | 48.2 | 55.3 | 80.0 | <0.001 |
Sirolimus, yes, % | 1.2 | 4.5 | 0.0 | 0.55 | 4.6 | 0.9 | 1.0 | 0.07 |
Antihypertensive drugs, yes, % | 87.0 | 81.7 | 89.1 | 0.67 | 88.6 | 92.1 | 91.3 | 0.48 |
Statins, yes, % | 48.9 | 55.9 | 51.1 | 0.57 | 53.1 | 60.5 | 43.5 | 0.14 |
Diabetes, yes, % | 28.3 | 23.7 | 26.1 | 0.74 | 27.2 | 22.8 | 20.0 | 0.20 |
Antidiabetics, yes, % | 21.7 | 15.1 | 13.0 | 0.11 | 17.5 | 15.8 | 12.2 | 0.26 |
Metformin, yes, % | 3.3 | 4.3 | 4.3 | 0.71 | 7.9 | 2.6 | 3.5 | 0.11 |
Insulin therapy, yes, % | 17.4 | 10.8 | 7.6 | 0.04 | 10.5 | 7.9 | 6.1 | 0.22 |
Prednisolone, yes, % | 97.8 | 98.9 | 98.9 | 0.54 | 100.0 | 97.4 | 100.0 | 1.00 |
Prednisolone, cumulative dose, g 4 | 23 (10–37) | 19 (6–40) | 11 (4–25) | 0.01 | 23 (14–42) | 23 (10–46) | 10 (4–28) | <0.001 |
Female RTR (N = 277) | Male RTR (N = 343) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Age Adjusted | Age and eGFR Adjusted | Backward (adj. R2 = 0.14) | Age Adjusted | Age and eGFR Adjusted | Backward (adj. R2 = 0.28) | |||||||
Variable | Stand. β | p-Value | Stand. β | p-Value | Stand. β | p-Value | Stand. β | p-Value | Stand. β | p-Value | Stand. β | p-Value |
Age, y | −0.16 | 0.007 | −0.17 | 0.006 | −0.32 | <0.001 | −0.35 | <0.001 | −0.27 | <0.001 | ||
eGFR, mL/min per 1.73 m² | −0.05 | 0.37 | −0.05 | 0.37 | −0.18 | 0.001 | −0.18 | 0.001 | −0.19 | 0.001 | ||
Body weight, kg | 0.12 | 0.05 | 0.11 | 0.06 | 0.01 | 0.87 | −0.01 | 0.88 | ||||
Body length, cm | 0.09 | 0.14 | 0.09 | 0.14 | 0.00 | 0.97 | −0.02 | 0.74 | ||||
SQUASH score | −0.05 | 0.43 | −0.04 | 0.49 | −0.11 | 0.09 | 0.02 | 0.64 | 0.05 | 0.38 | ||
Diabetes mellitus, yes vs. no | −0.13 | 0.04 | −0.13 | 0.03 | −0.13 | 0.04 | −0.12 | 0.02 | −0.14 | 0.008 | −0.13 | 0.009 |
Living donor, yes vs. no | 0.02 | 0.71 | 0.03 | 0.63 | 0.02 | 0.66 | 0.04 | 0.44 | ||||
Graft rejection, yes vs. no | −0.05 | 0.37 | −0.07 | 0.28 | −0.10 | 0.06 | −0.10 | 0.05 | −0.09 | 0.06 | ||
Dialysis before transplantation, yes vs. no | 0.07 | 0.28 | 0.07 | 0.23 | 0.05 | 0.39 | 0.06 | 0.26 | ||||
Time between transplantation and baseline visit, y | −0.14 | 0.02 | −0.14 | 0.02 | −0.15 | 0.003 | −0.15 | 0.004 | ||||
AST, U/L | −0.09 | 0.16 | −0.09 | 0.16 | −0.21 | <0.001 | −0.15 | 0.005 | −0.10 | 0.06 | ||
GGT, U/L | −0.12 | 0.04 | −0.13 | 0.03 | −0.14 | 0.02 | −0.22 | <0.001 | −0.20 | <0.001 | −0.18 | 0.001 |
Albumin, g/L | 0.09 | 0.15 | 0.10 | 0.11 | 0.12 | 0.03 | 0.17 | 0.003 | 0.15 | 0.01 | ||
Triglycerides, mmol/L | −0.06 | 0.36 | −0.07 | 0.23 | −0.11 | 0.10 | 0.09 | 0.08 | 0.06 | 0.26 | ||
HDL cholesterol, mmol/L | −0.08 | 0.20 | −0.07 | 0.27 | −0.14 | 0.03 | −0.09 | 0.08 | −0.05 | 0.32 | ||
hs-CRP, mg/L | −0.10 | 0.09 | −0.10 | 0.09 | −0.15 | 0.01 | −0.04 | 0.49 | −0.06 | 0.22 | ||
Urinary creatinine excretion, mmol/24 h | 0.24 | <0.001 | 0.25 | <0.001 | 0.25 | <0.001 | 0.07 | 0.19 | 0.06 | 0.22 | ||
Coumarin derivatives, yes vs. no | −0.09 | 0.13 | −0.10 | 0.11 | −0.02 | 0.67 | −0.05 | 0.34 | ||||
Calcineurin inhibitors, yes vs. no | 0.15 | 0.01 | 0.15 | 0.02 | 0.16 | 0.01 | 0.20 | <0.001 | 0.16 | 0.003 | 0.18 | 0.001 |
Sirolimus, yes vs. no | −0.07 | 0.23 | −0.07 | 0.23 | −0.06 | 0.24 | −0.05 | 0.30 | ||||
Insulin therapy, yes vs. no | −0.10 | 0.10 | −0.11 | 0.08 | −0.06 | 0.26 | −0.07 | 0.19 | ||||
Prednisolone, cumulative dose, g 2 | −0.12 | 0.05 | −0.12 | 0.05 | −0.13 | 0.01 | −0.13 | 0.01 |
277 Female RTR (56 Events) | 343 Male RTR (77 Events) | |||||
---|---|---|---|---|---|---|
Variable | HR (log2) | 95% CI | p-Value | HR (log2) | 95% CI | p-Value |
Crude model | 0.42 | 0.26–0.66 | <0.001 | 0.74 | 0.52–1.04 | 0.09 |
Model 1 2 | 0.40 | 0.24–0.65 | <0.001 | 0.85 | 0.56–1.29 | 0.44 |
Model 2 3 | 0.47 | 0.27–0.81 | 0.006 | 0.88 | 0.58–1.34 | 0.55 |
Model 3 4 | 0.33 | 0.16–0.64 | 0.001 | 0.88 | 0.54–1.42 | 0.60 |
Model 4 5 | 0.38 | 0.23–0.63 | <0.001 | 0.81 | 0.51–1.27 | 0.35 |
Model 5 6 | 0.39 | 0.24–0.65 | <0.001 | 0.87 | 0.57–1.32 | 0.50 |
Model 6 7 | 0.34 | 0.20–0.57 | <0.001 | 0.94 | 0.61–1.45 | 0.78 |
Model 7 8 | 0.36 | 0.21–0.61 | <0.001 | 1.06 | 0.66–1.69 | 0.82 |
Model 8 9 | 0.41 | 0.24–0.69 | 0.001 | 0.85 | 0.55–1.29 | 0.44 |
Multivariable Model 1 | |||
---|---|---|---|
Potential Mediator | Effect 2 | Coefficient (95% CI, bc) 3 | Proportion Mediated 4 |
24 h urinary creatinine excretion | indirect effect (ab path) | −0.11 (−0.18–−0.06) | 39.3% |
direct effect (c’ path) | −0.17 (−0.33–−0.02) | ||
total effect (ab + c’ path) | −0.28 (−0.44–−0.12) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klont, F.; Kieneker, L.M.; Gomes-Neto, A.W.; Stam, S.P.; ten Hacken, N.H.T.; Kema, I.P.; van Beek, A.P.; van den Berg, E.; Horvatovich, P.; Bischoff, R.; et al. Female Specific Association of Low Insulin-Like Growth Factor 1 (IGF1) Levels with Increased Risk of Premature Mortality in Renal Transplant Recipients. J. Clin. Med. 2020, 9, 293. https://doi.org/10.3390/jcm9020293
Klont F, Kieneker LM, Gomes-Neto AW, Stam SP, ten Hacken NHT, Kema IP, van Beek AP, van den Berg E, Horvatovich P, Bischoff R, et al. Female Specific Association of Low Insulin-Like Growth Factor 1 (IGF1) Levels with Increased Risk of Premature Mortality in Renal Transplant Recipients. Journal of Clinical Medicine. 2020; 9(2):293. https://doi.org/10.3390/jcm9020293
Chicago/Turabian StyleKlont, Frank, Lyanne M. Kieneker, Antonio W. Gomes-Neto, Suzanne P. Stam, Nick H. T. ten Hacken, Ido P. Kema, André P. van Beek, Else van den Berg, Péter Horvatovich, Rainer Bischoff, and et al. 2020. "Female Specific Association of Low Insulin-Like Growth Factor 1 (IGF1) Levels with Increased Risk of Premature Mortality in Renal Transplant Recipients" Journal of Clinical Medicine 9, no. 2: 293. https://doi.org/10.3390/jcm9020293
APA StyleKlont, F., Kieneker, L. M., Gomes-Neto, A. W., Stam, S. P., ten Hacken, N. H. T., Kema, I. P., van Beek, A. P., van den Berg, E., Horvatovich, P., Bischoff, R., & Bakker, S. J. L. (2020). Female Specific Association of Low Insulin-Like Growth Factor 1 (IGF1) Levels with Increased Risk of Premature Mortality in Renal Transplant Recipients. Journal of Clinical Medicine, 9(2), 293. https://doi.org/10.3390/jcm9020293