Relation between Heart Rate Variability and Disease Course in Multiple Sclerosis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Study Population
3.2. Heart Rate Variability and Serum Samples
3.3. Cross-Sectional Analysis
3.4. Longitudinal Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Noseworthy, J.H.; Lucchinetti, C.; Rodriguez, M.; Weinshenker, B.G. Multiple sclerosis. N. Engl. J. Med. 2000, 343, 938–952. [Google Scholar] [CrossRef] [PubMed]
- Weinshenker, B.G.; Bass, B.; Rice, G.P.; Noseworthy, J.; Carriere, W.; Baskerville, J.; Ebers, G.C. The natural history of multiple sclerosis: A geographically based study. I. Clinical course and disability. Brain J. Neurol. 1989, 112, 133–146. [Google Scholar] [CrossRef] [PubMed]
- Gunal, D.I.; Afsar, N.; Tanridag, T.; Aktan, S. Autonomic dysfunction in multiple sclerosis: Correlation with disease-related parameters. Eur. Neurol. 2002, 48, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Adamec, I.; Ozretic, D.; Habek, M. Autonomic dysfunction in multiple sclerosis presenting with postural orthostatic tachycardia. Acta Neurol. Belgica 2013, 113, 337–339. [Google Scholar] [CrossRef] [Green Version]
- Racosta, J.M.; Kimpinski, K.; Morrow, S.A.; Kremenchutzky, M. Autonomic dysfunction in multiple sclerosis. Auton. Neurosci. Basic Clin. 2015, 193, 1–6. [Google Scholar] [CrossRef]
- Tracey, K.J. Physiology and immunology of the cholinergic antiinflammatory pathway. J. Clin. Investig. 2007, 117, 289–296. [Google Scholar] [CrossRef] [Green Version]
- Pavlov, V.A.; Wang, H.; Czura, C.J.; Friedman, S.G.; Tracey, K.J. The cholinergic anti-inflammatory pathway: A missing link in neuroimmunomodulation. Mol. Med. 2003, 9, 125–134. [Google Scholar] [CrossRef] [Green Version]
- Koopman, F.A.; Chavan, S.S.; Miljko, S.; Grazio, S.; Sokolovic, S.; Schuurman, P.R.; Mehta, A.D.; Levine, Y.A.; Faltys, M.; Zitnik, R.; et al. Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. Proc. Natl. Acad. Sci. USA 2016, 113, 8284–8289. [Google Scholar] [CrossRef] [Green Version]
- Bonaz, B.; Sinniger, V.; Pellissier, S. Vagus nerve stimulation: A new promising therapeutic tool in inflammatory bowel disease. J. Intern. Med. 2017, 282, 46–63. [Google Scholar] [CrossRef] [Green Version]
- Tombul, T.; Anlar, O.; Tuncer, M.; Huseyinoglu, N.; Eryonucu, B. Impaired heart rate variability as a marker of cardiovascular autonomic dysfunction in multiple sclerosis. Acta Neurol. Belg. 2011, 111, 116–120. [Google Scholar]
- Kuo, T.B.; Lai, C.J.; Huang, Y.T.; Yang, C.C. Regression analysis between heart rate variability and baroreflex-related vagus nerve activity in rats. J. Cardiovasc. Electrophysiol. 2005, 16, 864–869. [Google Scholar] [CrossRef] [PubMed]
- Mahovic, D.; Lakusic, N. Progressive impairment of autonomic control of heart rate in patients with multiple sclerosis. Arch. Med. Res. 2007, 38, 322–325. [Google Scholar] [CrossRef] [PubMed]
- Damla, O.; Altug, C.; Pinar, K.K.; Alper, K.; Dilek, I.G.; Kadriye, A. Heart rate variability analysis in patients with multiple sclerosis. Mult. Scler. Relat. Disord. 2018, 24, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Studer, V.; Rocchi, C.; Motta, C.; Lauretti, B.; Perugini, J.; Brambilla, L.; Pareja-Gutierrez, L.; Camera, G.; Barbieri, F.R.; Marfia, G.A.; et al. Heart rate variability is differentially altered in multiple sclerosis: Implications for acute, worsening and progressive disability. Mult. Scler. J. Exp. Transl. Clin. 2017, 3, 2055217317701317. [Google Scholar] [CrossRef] [PubMed]
- Adamec, I.; Crnosija, L.; Junakovic, A.; Krbot Skoric, M.; Habek, M. Progressive multiple sclerosis patients have a higher burden of autonomic dysfunction compared to relapsing remitting phenotype. Clin. Neurophysiol. 2018, 129, 1588–1594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beckers, F.; Verheyden, B.; Aubert, A.E. Aging and nonlinear heart rate control in a healthy population. Am. J. Physiol. Heart Circ. Physiol. 2006, 290, H2560–H2570. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J. Effect of age and sex on heart rate variability in healthy subjects. J. Manip. Physiol. Ther. 2007, 30, 374–379. [Google Scholar] [CrossRef]
- Ramshur, J.T. Design, Evaluation, and Application of Heart Rate Variability Analysis Software (HRVAS). Master’s Thesis, The University of Memphis, Memphis, TN, USA, 2010. [Google Scholar]
- Malik, M.; Bigger, J.T.; Camm, A.J.; Kleiger, R.E.; Malliani, A.; Moss, A.J.; Schwartz, P.J. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur. Heart J. 1996, 17, 354–381. [Google Scholar] [CrossRef] [Green Version]
- De Couck, M.; Cserjesi, R.; Caers, R.; Zijlstra, W.P.; Widjaja, D.; Wolf, N.; Luminet, O.; Ellrich, J.; Gidron, Y. Effects of short and prolonged transcutaneous vagus nerve stimulation on heart rate variability in healthy subjects. Auton. Neurosci. 2017, 203, 88–96. [Google Scholar] [CrossRef]
- Alonso, A.; Huang, X.; Mosley, T.H.; Heiss, G.; Chen, H. Heart rate variability and the risk of Parkinson disease: The Atherosclerosis Risk in Communities study. Ann. Neurol. 2015, 77, 877–883. [Google Scholar] [CrossRef] [Green Version]
- Gidron, Y.; Deschepper, R.; De Couck, M.; Thayer, J.F.; Velkeniers, B. The Vagus Nerve Can Predict and Possibly Modulate Non-Communicable Chronic Diseases: Introducing a Neuroimmunological Paradigm to Public Health. J. Clin. Med. 2018, 7, 371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soilu-Hanninen, M.; Koskinen, J.O.; Laaksonen, M.; Hanninen, A.; Lilius, E.M.; Waris, M. High sensitivity measurement of CRP and disease progression in multiple sclerosis. Neurology 2005, 65, 153–155. [Google Scholar] [CrossRef] [PubMed]
- Kuhle, J.; Kropshofer, H.; Haering, D.A.; Kundu, U.; Meinert, R.; Barro, C.; Dahlke, F.; Tomic, D.; Leppert, D.; Kappos, L. Blood neurofilament light chain as a biomarker of MS disease activity and treatment response. Neurology 2019, 92, e1007–e1015. [Google Scholar] [CrossRef] [PubMed]
- Aeschbacher, S.; Schoen, T.; Dorig, L.; Kreuzmann, R.; Neuhauser, C.; Schmidt-Trucksäss, A.; Probst-Hensch, N.M.; Risch, M.; Risch, L.; Conen, D. Heart rate, heart rate variability and inflammatory biomarkers among young and healthy adults. Ann. Med. 2017, 49, 32–41. [Google Scholar] [CrossRef]
- Polman, C.H.; Reingold, S.C.; Banwell, B.; Clanet, M.; Cohen, J.A.; Filippi, M.; Fujihara, K.; Havrdova, E.; Hutchinson, M.; Kappos, L.; et al. Diagnostic criteria for multiple sclerosis: 2010 Revisions to the McDonald criteria. Ann. Neurol. 2011, 69, 292–302. [Google Scholar] [CrossRef] [Green Version]
- Lublin, F.D.; Reingold, S.C.; Cohen, J.A.; Cutter, G.R.; Sørensen, P.S.; Thompson, A.J.; Wolinsky, J.S.; Balcer, L.J.; Banwell, B.; Barkhof, F.; et al. Defining the clinical course of multiple sclerosis: The 2013 revisions. Neurology 2014, 83, 278–286. [Google Scholar] [CrossRef] [Green Version]
- Calabrese, M.; Favaretto, A.; Poretto, V.; Romualdi, C.; Rinaldi, F.; Mattisi, I.; Morra, A.; Perini, P.; Gallo, P. Low degree of cortical pathology is associated with benign course of multiple sclerosis. Mult. Scler. 2013, 19, 904–911. [Google Scholar] [CrossRef]
- Hertzog, M.A. Considerations in determining sample size for pilot studies. Res. Nurs. Health 2008, 31, 180–191. [Google Scholar] [CrossRef]
- Manouchehrinia, A.; Westerlind, H.; Kingwell, E.; Zhu, F.; Carruthers, R.; Ramanujam, R.; Ban, M.; Glaser, A.; Sawcer, S.; Tremlett, H.; et al. Age Related Multiple Sclerosis Severity Score: Disability ranked by age. Mult. Scler. 2017, 23, 1938–1946. [Google Scholar] [CrossRef] [Green Version]
- Yperzeele, L.; van Hooff, R.J.; De Smedt, A.; Nagles, G.; Hubloue, I.; De Keyser, J.; Brouns, R. Feasibility, Reliability and Predictive Value Of In-Ambulance Heart Rate Variability Registration. PLoS ONE 2016, 11, e0154834. [Google Scholar] [CrossRef] [Green Version]
- Vatcheva, K.P.; Lee, M.; McCormick, J.B.; Rahbar, M.H. Multicollinearity in Regression Analyses Conducted in Epidemiologic Studies. Epidemiology 2016, 6, 227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwartz, M.; London, A.; Shechter, R. Boosting T-cell immunity as a therapeutic approach for neurodegenerative conditions: The role of innate immunity. Neuroscience 2009, 158, 1133–1142. [Google Scholar] [CrossRef] [PubMed]
- Huston, J.M.; Tracey, K.J. The pulse of inflammation: Heart rate variability, the cholinergic anti-inflammatory pathway and implications for therapy. J. Intern. Med. 2011, 269, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Morishita, K.; Coimbra, R.; Langness, S.; Eliceiri, B.P.; Costantini, T.W. Neuroenteric axis modulates the balance of regulatory T cells and T-helper 17 cells in the mesenteric lymph node following trauma/hemorrhagic shock. Am. J. Physiol. Gastrointest. Liver Physiol. 2015, 309, G202–G208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nickerson, M.; Marrie, R.A. The multiple sclerosis relapse experience: Patient-reported outcomes from the North American Research Committee on Multiple Sclerosis (NARCOMS) Registry. BMC Neurol. 2013, 13, 119. [Google Scholar] [CrossRef] [Green Version]
- Risson, V.; Ghodge, B.; Bonzani, I.C.; Korn, J.R.; Medin, J.; Saraykar, T.; Sengupta, S.; Saini, D.; Olson, M. Linked Patient-Reported Outcomes Data From Patients With Multiple Sclerosis Recruited on an Open Internet Platform to Health Care Claims Databases Identifies a Representative Population for Real-Life Data Analysis in Multiple Sclerosis. J. Med. Internet Res. 2016, 18, e249. [Google Scholar] [CrossRef] [Green Version]
- Duddy, M.; Lee, M.; Pearson, O.; Nikfekr, E.; Chaudhuri, A.; Percival, F.; Roberts, M. Whitlock C. The UK patient experience of relapse in Multiple Sclerosis treated with first disease modifying therapies. Mult. Scler. Relat. Disord. 2014, 3, 450–456. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Zhao, L.; Cai, Z.; Liu, F.; Li, Y.; Wei, S.; Li, J.; Murray, A. Effect of Ectopic Beats on Heart Rate Variability Indices in Heart Failure Patients. In Proceedings of the IFMBE: World Congress on Medical Physics and Biomedical Engineering, Prague, Czech Republic, 3–8 June 2018; pp. 361–365. [Google Scholar]
- Gidron, Y.; De Couck, M.; De Greve, J. If you have an active vagus nerve, cancer stage may no longer be important. J. Biol. Regul. Homeost. Agents 2014, 28, 195–201. [Google Scholar]
- Gidron, Y.; De Couck, M.; Schallier, D.; De Greve, J.; Van Laethem, J.L.; Marechal, R. The Relationship between a New Biomarker of Vagal Neuroimmunomodulation and Survival in Two Fatal Cancers. J. Immunol. Res. 2018, 2018, 4874193. [Google Scholar] [CrossRef] [Green Version]
Inclusion Criteria for Patients | |
Untreated active relapsing-remitting multiple sclerosis (RRMS_U) | ≥1 clinical relapse 2 years prior to screening or ≥1 active contrast-enhancing lesion on brain MRI in the last year EDSS < 7.0 |
Interferon-treated relapsing-remitting multiple sclerosis (RRMS_I) | ≥3 months of stable treatment with interferon-bèta EDSS < 7.0 |
Untreated benign multiple sclerosis (BMS) | EDSS ≤ 3.0 at least 15 years after first symptoms [28] |
Non-active primary-progressive multiple sclerosis (PPMS) | No clinical relapse within 2 years prior to screening EDSS < 7.0 |
Exclusion Criteria for Patients and Healthy Controls | |
Secondary progressive multiple sclerosis or other diseases of the central nervous system Immunomodulatory drugs other than interferon-bèta at screening Treatment with glatiramer acetate ≤3 months, fingolimod or natalizumab ≤6 months, or systemic corticosteroids ≤2 months prior to screening |
HC (n = 26) | MS (n = 109) | Padj | RRMS_U (n = 30) | RRMS_I (n = 31) | BMS (n = 21) | PPMS (n = 27) | P | Padj | |
---|---|---|---|---|---|---|---|---|---|
Mean age (SD) in years | 49.6 (9.3) | 46.7 (9.3) | >0.1 | 43.3 (10.9) | 44.2 (7.7) | 47.3 (6.4) | 52.7 (8.6) | 0.001 | 0.009 |
Female (%) | 65.4 | 64.2 | >0.1 | 70.0 | 77.4 | 66.7 | 40.7 | 0.025 | >0.1 |
Median EDSS (iqr) | NA | 3.0 (3.0) | NA | 2.0 (2.0) | 3.0 (2.0) | 2.0 (1.0) | 5.5 (2.5) | <0.001 | <0.001 |
Median ARMSS (iqr) | NA | 4.7 (4.1) | NA | 4.9 (4.0) | 4.7 (3.8) | 2.3 (1.6) | 6.8 (3.3) | <0.001 | <0.001 |
Median disease duration in years (iqr) | NA | 13.0 (13.0) | NA | 6.0 (12.0) | 11.0 (11.0) | 17.0 (6.0) | 8.0 (12.0) | 0.001 | 0.009 |
Median SDNN at baseline in ms (iqr) | 30.0 (22.1) | 37.7 (25.6) | >0.1 | 37.1 (39.7) | 28.7 (14.7) | 40.6 (22.1) | 27.7 (20.3) | 0.076 | >0.1 |
Median RMSSD at baseline in ms (iqr) | 18.0 (20.2) | 20.8 (19.1) | >0.1 | 28.2 (34.0) | 18.3 (13.2) | 21.2 (17.6) | 16.9 (15.7) | >0.1 | >0.1 |
Median CRP in mg/L (iqr) | 0.9 (2.3) | 1.0 (2.9) | >0.1 | 1.1 (3.2) | 0.8 (2.6) | 0.8 (4.2) | 1.0 (2.7) | >0.1 | >0.1 |
Median NFL in ng/L (iqr) | 10.1 (4.1) | 12.9 (6.9) | >0.1 | 11.8 (6.0) | 10.5 (7.7) | 10.1 (6.0) | 15.8 (9.3) | 0.001 | 0.009 |
HC (n = 10) | MS (n = 87) | Padj | RRMS_U (n = 22) | RRMS_I (n = 30) | BMS (n = 17) | PPMS (n = 18) | Padj | |
---|---|---|---|---|---|---|---|---|
HRV variables at month three | ||||||||
Median SDNN month three (ms) | 33.1 (25.1–36.8) | 29.9 (29.4–42.1) | >0.1 | 35.9 (22.7–68.4) | 27.5 (24.9–32.8) | 34.3 (28.1–53.0) | 28.7 (22.9–38.7) | >0.1 |
Median RMSSD month three in ms (iqr) | 18.3 (7.8) | 19.3 (19.7) | >0.1 | 25.3 (25.1) | 20.3 (18.8) | 16.1 (27.5) | 17.1 (16.2) | 0.08 |
Clinical variables at baseline–month three | ||||||||
Self-reported relapses | NA | 7 | NA | 4 | 2 | 1 | 0 | NA |
Systemic corticoid use | NA | 1 | NA | 1 | 0 | 0 | 0 | NA |
IMD escalation | NA | 7 | NA | 3 | 1 | 3 | 0 | NA |
Clinical variables at month three–month twelve | ||||||||
Self-reported relapses | NA | 9 | NA | 2 | 4 | 3 | 0 | NA |
Systemic corticoid use | NA | 0 | NA | 0 | 0 | 0 | 0 | NA |
IMD escalation | NA | 8 | NA | 5 | 3 | 0 | 0 | NA |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reynders, T.; Gidron, Y.; De Ville, J.; Bjerke, M.; Weets, I.; Van Remoortel, A.; Devolder, L.; D’haeseleer, M.; De Keyser, J.; Nagels, G.; et al. Relation between Heart Rate Variability and Disease Course in Multiple Sclerosis. J. Clin. Med. 2020, 9, 3. https://doi.org/10.3390/jcm9010003
Reynders T, Gidron Y, De Ville J, Bjerke M, Weets I, Van Remoortel A, Devolder L, D’haeseleer M, De Keyser J, Nagels G, et al. Relation between Heart Rate Variability and Disease Course in Multiple Sclerosis. Journal of Clinical Medicine. 2020; 9(1):3. https://doi.org/10.3390/jcm9010003
Chicago/Turabian StyleReynders, Tatjana, Yori Gidron, Jella De Ville, Maria Bjerke, Ilse Weets, Ann Van Remoortel, Lindsay Devolder, Miguel D’haeseleer, Jacques De Keyser, Guy Nagels, and et al. 2020. "Relation between Heart Rate Variability and Disease Course in Multiple Sclerosis" Journal of Clinical Medicine 9, no. 1: 3. https://doi.org/10.3390/jcm9010003
APA StyleReynders, T., Gidron, Y., De Ville, J., Bjerke, M., Weets, I., Van Remoortel, A., Devolder, L., D’haeseleer, M., De Keyser, J., Nagels, G., & D’hooghe, M. B. (2020). Relation between Heart Rate Variability and Disease Course in Multiple Sclerosis. Journal of Clinical Medicine, 9(1), 3. https://doi.org/10.3390/jcm9010003