Effect of Limosilactobacillus reuteri LRE02–Lacticaseibacillus rhamnosus LR04 Combination on Antibiotic-Associated Diarrhea in a Pediatric Population: A National Survey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Questionnaire and Outcomes
- Type 1: Separate hard lumps, like nuts (difficult to pass and can be black);
- Type 2: Sausage-shaped, but lumpy;
- Type 3: Like a sausage but with cracks on its surface (can be black);
- Type 4: Like a sausage or snake, smooth and soft (average stool);
- Type 5: Soft blobs with clear cut edges;
- Type 6: Fluffy pieces with ragged edges, a mushy stool (diarrhea);
- Type 7: Watery, no solid pieces, entirely liquid (diarrhea).
2.3. Statistical Analysis
3. Results
3.1. Overall Data
3.2. Data Analysis after Antibiotic Stratification
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Szajewska, H.; Canani, R.B.; Guarino, A.; Hojsak, I.; Indrio, F.; Kolaček, S.; Orel, R.; Shamir, R.; Vandenplas, Y.; Van Goudoever, J.B.; et al. Probiotics for the Prevention of Antibiotic-Associated Diarrhea in Children. J. Pediatr. Gastroenterol. Nutr. 2016, 62, 495–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beaugerie, L.; Petit, J.-C. Antibiotic-associated diarrhoea. Best Pract. Res. Clin. Gastroenterol. 2004, 18, 337–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldenberg, J.Z.; Yap, C.; Lytvyn, L.; Lo, C.K.-F.; Beardsley, J.; Mertz, M.; Johnston, B.C. Probiotics for the prevention of Clostridium difficile-associated diarrhea in adults and children. Cochrane Database Syst. Rev. 2017, 2017, CD006095. [Google Scholar] [CrossRef] [PubMed]
- Wiström, J.; Norrby, S.R.; Myhre, E.B.; Eriksson, S.; Granström, G.; Lagergren, L.; Englund, G.; Nord, C.E.; Svenungsson, B. Frequency of antibiotic-associated diarrhoea in 2462 antibiotic-treated hospitalized patients: A prospective study. J. Antimicrob. Chemother. 2001, 47, 43–50. [Google Scholar] [CrossRef]
- McFarland, L. Epidemiology, Risk Factors and Treatments for Antibiotic–Associated Diarrhea. Dig. Dis. 1998, 16, 292–307. [Google Scholar] [CrossRef]
- Bartlett, J.G.; Chang, T.W.; Gurwith, M.; Gorbach, S.L.; Onderdonk, A.B. Antibiotic-Associated Pseudomembranous Colitis Due to Toxin-Producing Clostridia. N. Engl. J. Med. 1978, 298, 531–534. [Google Scholar] [CrossRef]
- Bignardi, G. Risk factors for Clostridium difficile infection. J. Hosp. Infect. 1998, 40, 1–15. [Google Scholar] [CrossRef]
- McFarland, L.V.; Ozen, M.; Dinleyici, E.C.; Goh, S. Comparison of pediatric and adult antibiotic-associated diarrhea andClostridium difficileinfections. World J. Gastroenterol. 2016, 22, 3078–3104. [Google Scholar] [CrossRef]
- Turck, D.; Bernet, J.-P.; Marx, J.; Kempf, H.; Giard, P.; Walbaum, O.; Lacombe, A.; Rembert, F.; Toursel, F.; Bernasconi, P.; et al. Incidence and Risk Factors of Oral Antibiotic-Associated Diarrhea in an Outpatient Pediatric Population. J. Pediatr. Gastroenterol. Nutr. 2003, 37, 22–26. [Google Scholar] [CrossRef]
- Mantegazza, C.; Molinari, P.; D’Auria, E.; Sonnino, M.; Morelli, L.; Zuccotti, G.V. Probiotics and antibiotic-associated diarrhea in children: A review and new evidence on Lactobacillus rhamnosus GG during and after antibiotic treatment. Pharmacol. Res. 2017, 128, 63–72. [Google Scholar] [CrossRef]
- Goldenberg, J.Z.; Lytvyn, L.; Steurich, J.; Parkin, P.; Mahant, S.; Johnston, B.C. Probiotics for the prevention of pediatric antibiotic-associated diarrhea. Cochrane Database Syst. Rev. 2015, CD004827. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Goldenberg, J.Z.; Humphrey, C.; Dib, R.E.; Johnston, B.C. Probiotics for the prevention of pediatric antibiotic-associated diarrhea. Cochrane Database Syst. Rev. 2019. [Google Scholar] [CrossRef] [PubMed]
- McFarland, L.V.; Evans, C.T.; Goldstein, E.J.C. Strain-Specificity and Disease-Specificity of Probiotic Efficacy: A Systematic Review and Meta-Analysis. Front. Med. 2018, 5. [Google Scholar] [CrossRef] [PubMed]
- Kolaček, S.; Hojsak, I.; Canani, R.B.; Guarino, A.; Indrio, F.; Orel, R.; Pot, B.; Shamir, R.; Szajewska, H.; Vandenplas, Y.; et al. Commercial Probiotic Products. A Position Paper by the ESPGHAN Working Group for Probiotics and Prebiotics. J. Pediatr. Gastroenterol. Nutr. 2017, 65, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Lewis, S.J.; Heaton, K.W. Stool Form Scale as a Useful Guide to Intestinal Transit Time. Scand. J. Gastroenterol. 1997, 32, 920–924. [Google Scholar] [CrossRef]
- Koh, H.; Lee, M.-J.; Kim, M.-J.; Shin, J.I.; Chung, K.S. Simple diagnostic approach to childhood fecal retention using the Leech score and Bristol stool form scale in medical practice. J. Gastroenterol. Hepatol. 2010, 25, 334–338. [Google Scholar] [CrossRef]
- Mackowiak, P.A. Recycling Metchnikoff: Probiotics, the Intestinal Microbiome and the Quest for Long Life. Front. Public Health 2013, 1. [Google Scholar] [CrossRef]
- Available online: http://www.salute.gov.it/imgs/C_17_pubblicazioni_1016_ulterioriallegati_ulterioreallegato_0_alleg.pdf (accessed on 27 August 2020).
- Baldassarre, M.E. Probiotic Genera/Species Identification Is Insufficient for Evidence-Based Medicine. Am. J. Gastroenterol. 2018, 113, 1561. [Google Scholar] [CrossRef]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.; Harris, H.M.; Mattarelli, P.; O’Toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef]
- Toscano, M.; De Vecchi, E.; Rodighiero, V.; Drago, L. Microbiological and genetic identification of some probiotics proposed for medical use in 2011. J. Chemother. 2013, 25, 156–161. [Google Scholar] [CrossRef]
- Kiousi, D.E.; Karapetsas, A.; Karolidou, K.; Panayiotidis, M.I.; Pappa, A.; Galanis, A. Probiotics in Extraintestinal Diseases: Current Trends and New Directions. Nutrients 2019, 11, 788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilkins, T.; Sequoia, J. Probiotics for Gastrointestinal Conditions: A Summary of the Evidence. Am. Fam. Physician 2017, 96, 170–178. [Google Scholar] [PubMed]
- Szajewska, H.; Ruszczyński, M.; Radzikowski, A. Probiotics in the prevention of antibiotic-associated diarrhea in children: A meta-analysis of randomized controlled trials. J. Pediatr. 2006, 149, 367–372.e1. [Google Scholar] [CrossRef] [PubMed]
- Johnston, B.C.; Supina, A.L.; Vohra, S. Probiotics for pediatric antibiotic-associated diarrhea: A meta-analysis of randomized placebo-controlled trials. Can. Med. Assoc. J. 2006, 175, 377–383. [Google Scholar] [CrossRef] [Green Version]
- Teitelbaum, J.E.; Walker, W.A. Nutritional Impact of Pre- and Probiotics as Protective Gastrointestinal Organisms. Annu. Rev. Nutr. 2002, 22, 107–138. [Google Scholar] [CrossRef]
- Marchesi, J.R.; Adams, D.H.; Fava, F.; Hermes, G.D.A.; Hirschfield, G.M.; Hold, G.; Quraishi, M.N.; Kinross, J.; Smidt, H.; Tuohy, K.M.; et al. The gut microbiota and host health: A new clinical frontier. Gut 2016, 65, 330. [Google Scholar] [CrossRef] [Green Version]
- Korpela, K.; Zijlmans, M.A.C.; Kuitunen, M.; Kukkonen, K.; Savilahti, E.; Salonen, A.; De Weerth, C.; De Vos, W.M. Childhood BMI in relation to microbiota in infancy and lifetime antibiotic use. Microbiome 2017, 5, 26. [Google Scholar] [CrossRef] [Green Version]
- Salvatore, S.; Baldassarre, M.E.; Di Mauro, A.; Laforgia, N.; Tafuri, S.; Bianchi, F.P.; Dattoli, E.; Morando, L.; Pensabene, L.; Meneghin, F.; et al. Neonatal Antibiotics and Prematurity Are Associated with an Increased Risk of Functional Gastrointestinal Disorders in the First Year of Life. J. Pediatr. 2019, 212, 44–51. [Google Scholar] [CrossRef] [Green Version]
- Slykerman, R.F.; Coomarasamy, C.; Wickens, K.; Thompson, J.M.D.; Stanley, T.V.; Barthow, C.; Kang, J.; Crane, J.; Mitchell, E.A. Exposure to antibiotics in the first 24 months of life and neurocognitive outcomes at 11 years of age. Psychopharmacology 2019, 236, 1573–1582. [Google Scholar] [CrossRef]
- Casas, I.A.; Dobrogosz, W.J. Validation of the Probiotic Concept: Lactobacillus reuteri Confers Broad-spectrum Protection against Disease in Humans and Animals. Microb. Ecol. Heal. Dis. 2000, 12, 247–285. [Google Scholar] [CrossRef]
- Mogna, G.; Strozzi, G.P.; Mogna, L. Allergen-free Probiotics. J. Clin. Gastroenterol. 2008, 42, S201–S204. [Google Scholar] [CrossRef]
- Del Piano, M.; Carmagnola, S.; Ballarè, M.; Sartori, M.; Orsello, M.; Balzarini, M.; Pagliarulo, M.; Tari, R.; Anderloni, A.; Strozzi, G.P.; et al. Is microencapsulation the future of probiotic preparations? The increased efficacy of gastro-protected probiotics. Gut Microbes 2011, 2, 120–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piano, M.D.; Carmagnola, S.; Ballaré, M.; Balzarini, M.; Montino, F.; Pagliarulo, M.; Anderloni, A.; Orsello, M.; Tari, R.; Sforza, F.; et al. Comparison of the Kinetics of Intestinal Colonization by Associating 5 Probiotic Bacteria Assumed Either in a Microencapsulated or in a Traditional, Uncoated Form. J. Clin. Gastroenterol. 2012, 46, S85–S92. [Google Scholar] [CrossRef] [PubMed]
- Del Piano, M.; Carmagnola, S.; Andorno, S.; Pagliarulo, M.; Tari, R.; Mogna, L.; Strozzi, G.P.; Sforza, F.; Capurso, L. Evaluation of the Intestinal Colonization by Microencapsulated Probiotic Bacteria in Comparison With the Same Uncoated Strains. J. Clin. Gastroenterol. 2010, 44, S42–S46. [Google Scholar] [CrossRef] [PubMed]
- Johnston, B.C.; Goldenberg, J.Z.; Parkin, P.C. Probiotics and the Prevention of Antibiotic-Associated Diarrhea in Infants and Children. JAMA 2016, 316, 1484–1485. [Google Scholar] [CrossRef]
- Available online: http://www.salute.gov.it/imgs/C_17_pubblicazioni_2894_allegato.pdf (accessed on 27 August 2020).
- Pothoulakis, C. Review article: Anti-inflammatory mechanisms of action of Saccharomyces boulardii. Aliment. Pharmacol. Ther. 2009, 30, 826–833. [Google Scholar] [CrossRef]
- Wang, B.; Mao, Y.-K.; Diorio, C.; Pasyk, M.; You Wu, R.; Bienenstock, J.; Kunze, W.A. Luminal administration ex vivo of a live Lactobacillus species moderates mouse jejunal motility within minutes. FASEB J. 2010, 24, 4078–4088. [Google Scholar] [CrossRef]
- Wang, B.; Mao, Y.-K.; Diorio, C.; Wang, L.; Huizinga, J.D.; Bienenstock, J.; Kunze, W. Lactobacillus reuteri ingestion and IKCa channel blockade have similar effects on rat colon motility and myenteric neurones. Neurogastroenterol. Motil. 2010, 22, 98-e33. [Google Scholar]
- Dimidi, E.; Christodoulides, S.; Scott, S.M.; Whelan, K. Mechanisms of Action of Probiotics and the Gastrointestinal Microbiota on Gut Motility and Constipation. Adv. Nutr. 2017, 8, 484–494. [Google Scholar] [CrossRef] [Green Version]
- Guarino, M.P.L.; Altomare, A.; Stasi, E.; Marignani, M.; Severi, C.; Alloni, R.; Dicuonzo, G.; Morelli, L.; Coppola, R.; Cicala, M. Effect of Acute Mucosal Exposure to Lactobacillus rhamnosus GG on Human Colonic Smooth Muscle Cells. J. Clin. Gastroenterol. 2008, 42, S185–S190. [Google Scholar] [CrossRef]
- Wu, R.Y.; Pasyk, M.; Wang, B.; Forsythe, P.; Bienenstock, J.; Mao, Y.-K.; Sharma, P.; Stanisz, A.M.; Kunze, W.A. Spatiotemporal maps reveal regional differences in the effects on gut motility for Lactobacillus reuteri and rhamnosus strains. Neurogastroenterol. Motil. 2013, 25, e205–e214. [Google Scholar] [CrossRef] [PubMed]
Infections | Prevalence; N (%) |
---|---|
Upper Respiratory Tract Infections (URTI) | 6786 (68.1%) |
Lower Respiratory Tract Infections (LRTI) | 1610 (16.2%) |
Urinary Tract Infections (UTI) | 620 (6.2%) |
Otitis (Ot) | 567 (5.7%) |
Gastroenteritis (Ge) | 143 (1.4%) |
Other | 234 (2.4%) |
Infections | Group A; N (%) | Group B; N (%) | p Value |
---|---|---|---|
URTI | 3390 (67.2%) | 3396 (69.1%) | 0.0357 |
LRTI | 788 (15.6%) | 822 (16.7%) | >0.05 |
UTI | 325 (6.4%) | 295 (6%) | >0.05 |
OT | 314 (6.2%) | 253 (5.1%) | 0.0238 |
Ge | 100 (2%) | 43 (0.9%) | 0.0002 |
Other | 131 (2.6%) | 103 (2.1%) | >0.05 |
Total | 5048 | 4912 |
Time | Group A | Group B | p Value | |
---|---|---|---|---|
Bristol Stool Scale | T0 | 4.6 (± 4.4) | 5.4 (± 4.7) | <0.001 |
T1 | 3.7 (± 1.3) | 4.4 (± 1.4) | <0.001 | |
p value | <0.001 | <0.001 | ||
Difference T1-T0 | −0.9 (SD 4.4) | −1.2 (SD 4.8) | 0.007 |
T0 | T1 | ||||||
---|---|---|---|---|---|---|---|
BSS | Group A | Group B | p Value | BSS | Group A | Group B | p Value |
1 | 141 (3.5%) | 84 (2.3%) | 0.001 | 1 | 185 (3.7%) | 127 (2.6%) | 0.002 |
2 | 306 (7.7%) | 235 (6.3%) | 0.023 | 2 | 382 (7.6%) | 309 (6.3%) | 0.012 |
3 | 885 (22.2%) | 539 (14.5%) | <0.001 | 3 | 757 (15.0%) | 457 (9.3%) | <0.001 |
4 | 1229 (30.8%) | 633 (17.1%) | <0.001 | 4 | 1427 (28.3%) | 1013 (20.6%) | <0.001 |
5 | 532 (13.3%) | 480 (12.9%) | 0.626 | 5 | 633 (12.5%) | 919 (18.7%) | <0.001 |
6 | 623 (15.6%) | 1170 (31.5%) | <0.001 | 6 | 127 (2.5%) | 481 (9.8%) | <0.001 |
7 | 279 (7.0%) | 568 (15.3%) | <0.001 | 7 | 26 (0.5%) | 101 (2.1%) | <0.001 |
Antibiotics | N (%) | Group A, N (%) | Group B, N (%) | p Value |
---|---|---|---|---|
Penicillins | 4774 (47.9%) | 2423 (48.0%) | 2351 (47.9%) | >0.05 |
Cephalosporins | 3804 (38.2%) | 1942 (38.5%) | 1862 (37.9%) | >0.05 |
Macrolides | 884 (8.9%) | 419 (8.3%) | 465 (9.5%) | 0.0407 |
Other | 35 (0.4%) | 21 (0.4%) | 14 (0.3%) | >0.05 |
Missing | 463 (4.7%) | 243 (4.8%) | 220 (4.5%) | >0.05 |
Time | Group A | Group B | p Value | |
---|---|---|---|---|
Penicillins | ||||
Bristol Stool Scale | T0 | 4.8 (±4.3) | 5.7 (±5.0) | <0.001 |
T1 | 3.8 (±1.1) | 4.4 (±1.3) | <0.001 | |
Difference T1–T0 | −1.0 (±4.4) | −1.4 (±5.0) | 0.096 | |
Cephalosporins | ||||
Bristol Stool Scale | T0 | 4.3 (±4.0) | 5.0 (±4.3) | <0.001 |
T1 | 3.6 (±1.2) | 3.9 (±1.4) | <0.001 | |
Difference T1–T0 | −0.7 (±4.0) | −1.1 (±4.4) | 0.009 | |
Macrolides | ||||
Bristol Stool Scale | T0 | 5.1 (±6.5) | 5.6 (±5.4) | 0.251 |
T1 | 3.6 (±1.2) | 4.4 (±1.2) | <0.001 | |
Difference T1–T0 | −1.5 (±6.4) | −1.6 (±5.4) | 0.820 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drago, L.; Meroni, G.; Chiaretti, A.; Laforgia, N.; Cucchiara, S.; Baldassarre, M.E.; on behalf of the Surveyflor Group. Effect of Limosilactobacillus reuteri LRE02–Lacticaseibacillus rhamnosus LR04 Combination on Antibiotic-Associated Diarrhea in a Pediatric Population: A National Survey. J. Clin. Med. 2020, 9, 3080. https://doi.org/10.3390/jcm9103080
Drago L, Meroni G, Chiaretti A, Laforgia N, Cucchiara S, Baldassarre ME, on behalf of the Surveyflor Group. Effect of Limosilactobacillus reuteri LRE02–Lacticaseibacillus rhamnosus LR04 Combination on Antibiotic-Associated Diarrhea in a Pediatric Population: A National Survey. Journal of Clinical Medicine. 2020; 9(10):3080. https://doi.org/10.3390/jcm9103080
Chicago/Turabian StyleDrago, Lorenzo, Gabriele Meroni, Antonio Chiaretti, Nicola Laforgia, Salvatore Cucchiara, Maria Elisabetta Baldassarre, and on behalf of the Surveyflor Group. 2020. "Effect of Limosilactobacillus reuteri LRE02–Lacticaseibacillus rhamnosus LR04 Combination on Antibiotic-Associated Diarrhea in a Pediatric Population: A National Survey" Journal of Clinical Medicine 9, no. 10: 3080. https://doi.org/10.3390/jcm9103080
APA StyleDrago, L., Meroni, G., Chiaretti, A., Laforgia, N., Cucchiara, S., Baldassarre, M. E., & on behalf of the Surveyflor Group. (2020). Effect of Limosilactobacillus reuteri LRE02–Lacticaseibacillus rhamnosus LR04 Combination on Antibiotic-Associated Diarrhea in a Pediatric Population: A National Survey. Journal of Clinical Medicine, 9(10), 3080. https://doi.org/10.3390/jcm9103080