Ganglionated Plexi Ablation for the Treatment of Atrial Fibrillation
Abstract
:1. Introduction
2. Cardiac Autonomic Nervous System
Role of the ANS in the Pathogenesis of AF
3. Ganglionated Plexi
Anatomical Location of GPs
4. GP Ablation for AF
4.1. GP Localization and Its Importance for Effective Ablation
4.2. Technical Procedures for GP Ablation
4.3. GP Ablation for Non-AF Cardiovascular Conditions
5. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Safaei, N.; Montazerghaem, H.; Azarfarin, R.; Alizadehasl, A.; Alikhah, H. Radiofrequency ablation for treatment of atrial fibrillation. BioImpacts 2011, 1, 171–177. [Google Scholar]
- De Bakker, J.M.T.; Ho, S.Y.; Hocini, M. Basic and clinical electrophysiology of pulmonary vein ectopy. Cardiovasc. Res. 2002, 54, 287–294. [Google Scholar] [CrossRef]
- Wang, T.J.; Parise, H.; Levy, D.; D’Agostino, R.B.; Wolf, P.A.; Vasan, R.S.; Benjamin, E.J. Obesity and the risk of new-onset atrial fibrillation. J. Am. Med. Assoc. 2004, 292, 2471–2477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, M.H. Concepts in Disease Progression of Atrial Fibrillation and Implications for Medical Management. J. Innov. Card. Rhythm Manag. 2012, 3, 697–712. [Google Scholar]
- Morillo, C.A.; Banerjee, A.; Perel, P.; Wood, D.; Jouven, X. Atrial fibrillation: The current epidemic. J. Geriatr. Cardiol. 2017, 14, 195–203. [Google Scholar] [PubMed]
- Fuster, V.; Rydén, L.E.; Cannom, D.S.; Crijns, H.J.; Curtis, A.B.; Ellenbogen, K.A.; Halperin, J.L.; Kay, G.N.; Le Huezey, J.Y.; Lowe, J.E.; et al. 2011 ACCF/AHA/HRS focused updates incorporated into the ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidel. Circulation 2011, 123, e269–e367. [Google Scholar] [CrossRef]
- Nattel, S. New ideas about atrial fibrillation 50 years on. Nature 2002, 415, 219–226. [Google Scholar] [CrossRef]
- Patten, M.; Pecha, S.; Aydin, A. Atrial fibrillation in hypertrophic cardiomyopathy: Diagnosis and considerations for management. J. Atr. Fibrillation 2018, 10, 1556. [Google Scholar] [CrossRef]
- Allessie, M.A.; Boyden, P.A.; Camm, A.J.; Kléber, A.G.; Lab, M.J.; Legato, M.J.; Rosen, M.R.; Schwartz, P.J.; Spooner, P.M.; Van Wagoner, D.R.; et al. Pathophysiology and prevention of atrial fibrillation. Circulation 2001, 103, 769–777. [Google Scholar] [CrossRef] [Green Version]
- Kourliouros, A.; Savelieva, I.; Kiotsekoglou, A.; Jahangiri, M.; Camm, J. Current concepts in the pathogenesis of atrial fibrillation. Am. Heart J. 2009, 157, 243–252. [Google Scholar] [CrossRef]
- Calkins, H.; Hindricks, G.; Cappato, R.; Kim, Y.H.; Saad, E.B.; Aguinaga, L.; Akar, J.G.; Badhwar, V.; Brugada, J.; Camm, J.; et al. 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation. Heart Rhythm 2017, 14, e275–e444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schauerte, P.; Scherlag, B.J.; Patterson, E.; Scherlag, M.A.; Matsudaria, K.; Nakagawa, H.; Lazzara, R.; Jackman, W.M. Focal atrial fibrillation: Experimental evidence for a pathophysiologic role of the autonomic nervous system. J. Cardiovasc. Electrophysiol. 2001, 12, 592–599. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.J.; Choi, E.K.; Tan, A.Y.; Lin, S.F.; Fishbein, M.C.; Chen, L.S.; Chen, P.S. Neural mechanisms of atrial arrhythmias. Nat. Rev. Cardiol. 2012, 9, 30–39. [Google Scholar] [CrossRef]
- Shen, M.J.; Shinohara, T.; Park, H.-W.; Frick, K.; Ice, D.S.; Choi, E.-K.; Han, S.; Maruyama, M.; Sharma, R.; Shen, C.; et al. Continuous Low-Level Vagus Nerve Stimulation Reduces Stellate Ganglion Nerve Activity and Paroxysmal Atrial Tachyarrhythmias in Ambulatory Canines. Circulation 2011, 123, 2204–2212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leiria, T.L.L.; Glavinovic, T.; Armour, J.A.; Cardinal, R.; de Lima, G.G.; Kus, T. Longterm effects of cardiac mediastinal nerve cryoablation on neural inducibility of atrial fibrillation in canines. Auton. Neurosci. Basic Clin. 2011, 161, 68–74. [Google Scholar] [CrossRef]
- Hu, F.; Zheng, L.; Liang, E.; Ding, L.; Wu, L.; Chen, G.; Fan, X.; Yao, Y. Right anterior ganglionated plexus: The primary target of cardioneuroablation? Heart Rhythm 2019, 16, 1545–1551. [Google Scholar] [CrossRef]
- Choi, E.K.; Zhao, Y.; Everett, T.H.; Chen, P.S. Ganglionated plexi as neuromodulation targets for atrial fibrillation. J. Cardiovasc. Electrophysiol. 2017, 28, 1485–1491. [Google Scholar] [CrossRef] [Green Version]
- Hasan, W. Autonomic cardiac innervation: Development and adult plasticity. Organogenesis 2013, 9, 176–193. [Google Scholar] [CrossRef] [Green Version]
- Kapa, S.; Venkatachalam, K.L.; Asirvatham, S.J. The Autonomic Nervous System in Cardiac Electrophysiology. Cardiol. Rev. 2010, 18, 275–284. [Google Scholar] [CrossRef]
- Gordan, R.; Gwathmey, J.K.; Xie, L.-H. Autonomic and endocrine control of cardiovascular function. World J. Cardiol. 2015, 7, 204. [Google Scholar] [CrossRef]
- Savelieva, I.; Kakouros, N.; Kourliouros, A.; Camm, A.J. Upstream Therapies for Management of Atrial Fibrillation: Review of Clinical Evidence and Implications for European Society of Cardiology Guidelines. Part II: Secondary Prevention. Eurospace 2011, 13, 610–625. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Scherlag, B.J.; Edwards, J.; Jackman, W.M.; Lazzara, R.; Po, S.S. Gradients of Atrial Refractoriness and Inducibility of Atrial Fibrillation due to Stimulation of Ganglionated Plexi. J. Cardiovasc. Electrophysiol. 2007, 18, 83–90. [Google Scholar] [CrossRef]
- Po, S.S.; Scherlag, B.J.; Yamanashi, W.S.; Edwards, J.; Zhou, J.; Wu, R.; Geng, N.; Lazzara, R.; Jackman, W.M. Experimental model for paroxysmal atrial fibrillation arising at the pulmonary vein-atrial junctions. Heart Rhythm 2006, 3, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Markides, V.; Schilling, R.J. Atrial fibrillation: Classification, pathophysiology, mechanism and drug treatment. Heart 2003, 89, 939–943. [Google Scholar] [CrossRef] [PubMed]
- Bettoni, M.; Zimmermann, M. Autonomic tone variations before the onset of paroxysmal atrial fibrillation. Circulation 2002, 105, 2753–2759. [Google Scholar] [CrossRef] [Green Version]
- Patterson, E.; Po, S.S.; Scherlag, B.J.; Lazzara, R. Triggered firing in pulmonary veins initiated by in vitro autonomic nerve stimulation. Heart Rhythm 2005, 2, 624–631. [Google Scholar] [CrossRef]
- Zaza, A.; Malfatto, G.; Schwartz, P.J. Effects on atrial repolarization of the interaction between K+ channel blockers and muscarinic receptor stimulation. J. Pharmacol. Exp. Ther. 1995, 273, 1095–1104. [Google Scholar]
- Krapivinsky, G.; Gordon, E.A.; Wickman, K.; Velimirović, B.; Krapivinsky, L.; Clapham, D.E. The G-protein-gated atrial K+ channel IKAch is a heteromultimer of two inwardly rectifying K+-channel proteins. Nature 1995, 374, 135–141. [Google Scholar] [CrossRef]
- Krummen, D.E.; Bayer, J.D.; Ho, J.; Ho, G.; Smetak, M.R.; Clopton, P.; Trayanova, N.A.; Narayan, S.M. Mechanisms of human atrial fibrillation initiation clinical and computational studies of repolarization restitution and activation latency. Circ. Arrhythm. Electrophysiol. 2012, 5, 1149–1159. [Google Scholar] [CrossRef] [Green Version]
- Roney, C.H.; Siong Ng, F.; Debney, M.T.; Eichhorn, C.; Nachiappan, A.; Chowdhury, R.A.; Qureshi, N.A.; Cantwell, C.D.; Tweedy, J.H.; Niederer, S.A.; et al. Determinants of new wavefront locations in cholinergic atrial fibrillation. Europace 2018, 20, iii3–iii15. [Google Scholar] [CrossRef]
- Quan, K.J.; Lee, J.H.; Geha, A.S.; Biblo, L.A.; Hare, G.F.; Mackall, J.A.; Carlson, M.D. Characterization of Sinoatrial Parasympathetic Innervation in Humans. J. Cardiovasc. Electrophysiol. 1999, 10, 1060–1065. [Google Scholar] [CrossRef] [PubMed]
- Kurotobi, T.; Shimada, Y.; Kino, N.; Ito, K.; Tonomura, D.; Yano, K.; Tanaka, C.; Yoshida, M.; Tsuchida, T.; Fukumoto, H. Features of intrinsic ganglionated plexi in both atria after extensive pulmonary isolation and their clinical significance after catheter ablation in patients with atrial fibrillation. Heart Rhythm 2015, 12, 470–476. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, M.; Zhou, S.; Tan, A.Y.; Song, J.; Gholmieh, G.; Fishbein, M.C.; Luo, H.; Siegel, R.J.; Karagueuzian, H.S.; Chen, L.S.; et al. Left Stellate Ganglion and Vagal Nerve Activity and Cardiac Arrhythmias in Ambulatory Dogs with Pacing-Induced Congestive Heart Failure. J. Am. Coll. Cardiol. 2007, 50, 335–343. [Google Scholar] [CrossRef] [Green Version]
- Krul, S.P.J.; Meijborg, V.M.F.; Berger, W.R.; Linnenbank, A.C.; Driessen, A.H.G.; Van Boven, W.J.; Wilde, A.A.M.; De Bakker, J.M.; Coronel, R.; De Groot, J.R. Disparate response of high-frequency ganglionic plexus stimulation on sinus node function and atrial propagation in patients with atrial fibrillation. Heart Rhythm 2014, 11, 1743–1751. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Scherlag, B.J.; Sha, Y.; Li, S.; Sharma, T.; Nakagawa, H.; Jackman, W.M.; Lazzara, R.; Jiang, H.; Po, S.S. Interactions between atrial electrical remodeling and autonomic remodeling: How to break the vicious cycle. Heart Rhythm 2012, 9, 804–809. [Google Scholar] [CrossRef]
- Wijffels, M.C.E.F.; Kirchhof, C.J.H.J.; Dorland, R.; Allessie, M.A. Atrial fibrillation begets atrial fibrillation: A study in awake chronically instrumented goats. Circulation 1995, 92, 1954–1968. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Scherlag, B.J.; Lin, J.; Niu, G.; Fung, K.M.; Zhao, L.; Ghias, M.; Jackman, W.M.; Lazzara, R.; Jiang, H.; et al. Atrial fibrillation begets atrial fibrillation: Autonomic mechanism for atrial electrical remodeling induced by short-term rapid atrial pacing. Circ. Arrhythm. Electrophysiol. 2008, 1, 184–192. [Google Scholar] [CrossRef] [Green Version]
- Hanna, P.; Shivkumar, K. Targeting the Cardiac Ganglionated Plexi for Atrial Fibrillation: Modulate or Destroy? JACC Clin. Electrophysiol. 2018, 4, 1359–1361. [Google Scholar] [CrossRef]
- Armour, J.A.; Murphy, D.A.; Yuan, B.X.; Macdonald, S.; Hopkins, D.A. Gross and microscopic anatomy of the human intrinsic cardiac nervous system. Anat. Rec. 1997, 247, 289–298. [Google Scholar] [CrossRef]
- Pauza, D.H.; Pauziene, N.; Pakeltyte, G.; Stropus, R. Comparative quantitative study of the intrinsic cardiac ganglia and neurons in the rat, guinea pig, dog and human as revealed by histochemical staining for acetylcholinesterase. Ann. Anat. 2002, 184, 125–136. [Google Scholar] [CrossRef]
- Pauza, D.H.; Skripka, V.; Pauziene, N.; Stropus, R. Morphology, distribution, and variability of the epicardiac neural ganglionated subplexuses in the human heart. Anat. Rec. 2000, 259, 353–382. [Google Scholar] [CrossRef]
- Mesiano Maifrino, L.B.; Liberti, E.A.; Castelucci, P.; Rodrigues de Souza, R. NADPH-diaphorase positive cardiac neurons in the atria of mice. A morphoquantitative study. BMC Neurosci. 2006, 7, 10. [Google Scholar] [CrossRef] [Green Version]
- Jurgaitienė, R.; Paužienė, N.; Aželis, V.; Žurauskas, E. Morphometric study of age-related changes in the human intracardiac ganglia. Medicina 2004, 40, 574–581. [Google Scholar]
- Po, S.S.; Nakagawa, H.; Jackman, W.M. Localization of left atrial ganglionated plexi in patients with atrial fibrillation: Techniques and technology. J. Cardiovasc. Electrophysiol. 2009, 20, 1186–1189. [Google Scholar] [CrossRef]
- D’Avila, A.; Scanavacca, M.; Sosa, E.; Ruskin, J.N.; Reddy, V.Y. Pericardial anatomy for the interventional electrophysiologist. J. Cardiovasc. Electrophysiol. 2003, 14, 422–430. [Google Scholar] [CrossRef]
- Abbara, S.; Desai, J.C.; Cury, R.C.; Butler, J.; Nieman, K.; Reddy, V. Mapping epicardial fat with multi-detector computed tomography to facilitate percutaneous transepicardial arrhythmia ablation. Eur. J. Radiol. 2006, 57, 417–422. [Google Scholar] [CrossRef]
- Randall, W.C.; Ardell, J.L. Selective parasympathectomy of automatic and conductile tissues of the canine heart. Am. J. Physiol.-Heart Circ. Physiol. 1985, 248, H61–H68. [Google Scholar] [CrossRef]
- Ardell, J.L.; Randall, W.C. Selective vagal innervation of sinoatrial and atrioventricular nodes in canine heart. Am. J. Physiol.-Heart Circ. Physiol. 1986, 251, H764–H773. [Google Scholar] [CrossRef]
- Chiou, C.W.; Eble, J.N.; Zipes, D.P. Efferent vagal innervation of the canine atria and sinus and atrioventricular nodes: The third fat pad. Circulation 1997, 95, 2573–2584. [Google Scholar] [CrossRef]
- Lachman, N.; Syed, F.F.; Habib, A.; Kapa, S.; Bisco, S.E.; Venkatachalam, K.L.; Asirvatham, S.J. Correlative anatomy for the electrophysiologist, part II: Cardiac ganglia, phrenic nerve, coronary venous system. J. Cardiovasc. Electrophysiol. 2011, 22, 104–110. [Google Scholar] [CrossRef]
- Kapa, S.; DeSimone, C.V.; Asirvatham, S.J. Innervation of the heart: An invisible grid within a black box. Trends Cardiovasc. Med. 2016, 26, 245–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stavrakis, S.; Po, S. Ganglionated plexi ablation: Physiology and clinical applications. Arrhythm. Electrophysiol. Rev. 2017, 6, 186–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zipes, D.P.; Knope, R.F. Electrical properties of the thoracic veins. Am. J. Cardiol. 1972, 29, 372–376. [Google Scholar] [CrossRef]
- Hou, Y.; Scherlag, B.J.; Lin, J.; Zhang, Y.; Lu, Z.; Truong, K.; Patterson, E.; Lazzara, R.; Jackman, W.M.; Po, S.S. Ganglionated Plexi Modulate Extrinsic Cardiac Autonomic Nerve Input. Effects on Sinus Rate, Atrioventricular Conduction, Refractoriness, and Inducibility of Atrial Fibrillation. J. Am. Coll. Cardiol. 2007, 50, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Scherlag, B.J.; Niu, G.; Lu, Z.; Patterson, E.; Liu, S.; Lazzara, R.; Jackman, W.M.; Po, S.S. Autonomic elements within the ligament of marshall and inferior left ganglionated plexus mediate functions of the atrial neural network. J. Cardiovasc. Electrophysiol. 2009, 20, 318–324. [Google Scholar] [CrossRef]
- Chen, P.S.; Chen, L.S.; Fishbein, M.C.; Lin, S.F.; Nattel, S. Role of the autonomic nervous system in atrial fibrillation: Pathophysiology and therapy. Circ. Res. 2014, 114, 1500–1515. [Google Scholar] [CrossRef] [Green Version]
- Qin, M.; Zhang, Y.; Liu, X.; Jiang, W.F.; Wu, S.H.; Po, S. Atrial Ganglionated Plexus Modification: A Novel Approach to Treat Symptomatic Sinus Bradycardia. JACC Clin. Electrophysiol. 2017, 3, 950–959. [Google Scholar] [CrossRef]
- Jiang, R.-H.; Hu, G.-S.; Liu, Q.; Sheng, X.; Sun, Y.-X.; Yu, L.; Zhang, P.; Zhang, Z.-W.; Chen, S.-Q.; Ye, Y.; et al. Impact of Anatomically Guided Ganglionated Plexus Ablation on Electrical Firing from Isolated Pulmonary Veins. Pacing Clin. Electrophysiol. 2016, 39, 1351–1358. [Google Scholar] [CrossRef]
- Chevalier, P.; Tabib, A.; Meyronnet, D.; Chalabreysse, L.; Restier, L.; Ludman, V.; Aliès, A.; Adeleine, P.; Thivolet, F.; Burri, H.; et al. Quantitative study of nerves of the human left atrium. Heart Rhythm 2005, 2, 518–522. [Google Scholar] [CrossRef]
- Kircher, S.; Sommer, P. Electrophysiological Evaluation of Pulmonary Vein Isolation. J. Atr. Fibrillation 2013, 6, 934. [Google Scholar] [CrossRef]
- Scherlag, B.J.; Yamanashi, W.; Patel, U.; Lazzara, R.; Jackman, W.M. Autonomically induced conversion of pulmonary vein focal firing into atrial fibrillation. J. Am. Coll. Cardiol. 2005, 45, 1878–1886. [Google Scholar] [CrossRef] [PubMed]
- Tan, A.Y.; Li, H.; Wachsmann-Hogiu, S.; Chen, L.S.; Chen, P.S.; Fishbein, M.C. Autonomic Innervation and Segmental Muscular Disconnections at the Human Pulmonary Vein-Atrial Junction. Implications for Catheter Ablation of Atrial-Pulmonary Vein Junction. J. Am. Coll. Cardiol. 2006, 48, 132–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chou, C.C.; Nihei, M.; Zhou, S.; Tan, A.; Kawase, A.; Macias, E.S.; Fishbein, M.C.; Lin, S.F.; Chen, P.S. Intracellular calcium dynamics and anisotropic reentry in isolated canine pulmonary veins and left atrium. Circulation 2005, 111, 2889–2897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stavrakis, S.; Nakagawa, H.; Po, S.S.; Scherlag, B.J.; Lazzara, R.; Jackman, W.M. The role of the autonomic ganglia in atrial fibrillation. JACC Clin. Electrophysiol. 2015, 1, 1–13. [Google Scholar] [CrossRef]
- Lemola, K.; Chartier, D.; Yeh, Y.H.; Dubuc, M.; Cartier, R.; Armour, A.; Ting, M.; Sakabe, M.; Shiroshita-Takeshita, A.; Comtois, P.; et al. Pulmonary vein region ablation in experimental vagal atrial fibrillation: Role of pulmonary veins versus autonomic ganglia. Circulation 2008, 117, 470–477. [Google Scholar] [CrossRef] [Green Version]
- Lachman, N.; Syed, F.F.; Habib, A.; Kapa, S.; Bisco, S.E.; Venkatachalam, K.L.; Asirvatham, S.J. Correlative anatomy for the electrophysiologist, part I: The pericardial space, oblique sinus, transverse sinus. J. Cardiovasc. Electrophysiol. 2010, 21, 1421–1426. [Google Scholar] [CrossRef]
- Rodríguez-Mañero, M.; Schurmann, P.; Valderrábano, M. Ligament and vein of Marshall: A therapeutic opportunity in atrial fibrillation. Heart Rhythm 2016, 13, 593–601. [Google Scholar] [CrossRef] [Green Version]
- Nakagawa, H.; Scherlag, B.J.; Patterson, E.; Ikeda, A.; Lockwood, D.; Jackman, W.M. Pathophysiologic basis of autonomic ganglionated plexus ablation in patients with atrial fibrillation. Heart Rhythm 2009, 6, S26–S34. [Google Scholar] [CrossRef]
- Liu, S.; Yu, X.; Luo, D.; Qin, Z.; Wang, X.; He, W.; Ma, R.; Hu, H.; Xie, J.; He, B.; et al. Ablation of the Ligament of Marshall and Left Stellate Ganglion Similarly Reduces Ventricular Arrhythmias during Acute Myocardial Infarction. Circ. Arrhythm. Electrophysiol. 2018, 11, e005945. [Google Scholar] [CrossRef]
- Hu, T.Y.; Kapa, S.; Cha, Y.M.; Asirvatham, S.J.; Madhavan, M. Swallow-induced syncope: A case report of atrial tachycardia originating from the SVC. Heart Case Rep. 2016, 2, 83–87. [Google Scholar] [CrossRef] [Green Version]
- Padmanabhan, D.; Naksuk, N.; Killu, A.K.; Kapa, S.; Witt, C.; Sugrue, A.; Desimon, C.V.; Madhavan, M.; de Groot, J.R.; O’Brien, B.; et al. Electroporation of epicardial autonomic ganglia: Safety and efficacy in medium-term canine models. J. Cardiovasc. Electrophysiol. 2019, 30, 607–615. [Google Scholar] [CrossRef]
- Lo, L.W.; Scherlag, B.J.; Chang, H.Y.; Lin, Y.J.; Chen, S.A.; Po, S.S. Paradoxical long-term proarrhythmic effects after ablating the head station ganglionated plexi of the vagal innervation to the heart. Heart Rhythm 2013, 10, 751–757. [Google Scholar] [CrossRef]
- Lu, Z.; Scherlag, B.J.; Niu, G.; Lin, J.; Fung, K.M.; Zhao, L.; Yu, L.; Jackman, W.M.; Lazzara, R.; Jiang, H.; et al. Functional properties of the superior Vena Cava (SVC)-aorta ganglionated plexus: Evidence suggesting an autonomic basis for rapid SVC firing. J. Cardiovasc. Electrophysiol. 2010, 21, 1392–1399. [Google Scholar] [CrossRef] [PubMed]
- Pellman, J.; Sheikh, F. Atrial Fibrillation: Mechanisms, Therapeutics, and Future Directions. In Comprehensive Physiology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; Volume 5, pp. 649–665. [Google Scholar]
- Hohnloser, S.H.; Kuck, K.H.; Lilienthal, J. Rhythm or rate control in atrial fibrillation—Pharmacological intervention in atrial fibrillation (PIAF): A randomised trial. Lancet 2000, 356, 1789–1794. [Google Scholar] [CrossRef]
- Heist, E.K.; Mansour, M.; Ruskin, J.N. Rate control in atrial fibrillation: Targets, methods, resynchronization considerations. Circulation 2011, 124, 2746–2755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scherr, D.; Khairy, P.; Miyazaki, S.; Aurillac-Lavignolle, V.; Pascale, P.; Wilton, S.B.; Ramoul, K.; Komatsu, Y.; Roten, L.; Jadidi, A.; et al. Five-year outcome of catheter ablation of persistent atrial fibrillation using termination of atrial fibrillation as a procedural endpoint. Circ. Arrhythm. Electrophysiol. 2015, 8, 18–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khargi, K.; Hutten, B.A.; Lemke, B.; Deneke, T. Surgical treatment of atrial fibrillation; a systematic review. Eur. J. Cardio-Thorac. Surg. 2005, 27, 258–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cox, J.; Ad, N.; Palazzo, T.; Fitzpatrick, S.; Suyderhoud, J.P.; DeGroot, K.W.; Pirovic, E.A.; Lou, H.G.; Duvall, W.Z.; Kim, Y.D. Current status of the Maze procedure for the treatment of atrial fibrillation. Elsevier 2000, 12, 15–19. [Google Scholar] [CrossRef]
- Kearney, K.; Stephenson, R.; Phan, K.; Chan, W.Y.; Huang, M.Y.; Yan, T.D. A systematic review of surgical ablation versus catheter ablation for atrial fibrillation. Ann. Cardiothorac. Surg. 2014, 3, 15–29. [Google Scholar] [CrossRef]
- Marescaux, J.; Rubino, F. The ZEUS robotic system: Experimental and clinical applications. Surg. Clin. N. Am. 2003, 83, 1305–1315. [Google Scholar] [CrossRef]
- Pappone, C.; Santinelli, V.; Manguso, F.; Vicedomini, G.; Gugliotta, F.; Augello, G.; Mazzone, P.; Tortoriello, V.; Landoni, G.; Zangrillo, A.; et al. Pulmonary Vein Denervation Enhances Long-Term Benefit after Circumferential Ablation for Paroxysmal Atrial Fibrillation. Circulation 2004, 109, 327–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iso, K.; Okumura, Y.; Watanabe, I.; Nagashima, K.; Takahashi, K.; Arai, M.; Watanabe, R.; Wakamatsu, Y.; Otsuka, N.; Yagyu, S.; et al. Is vagal response during left atrial ganglionated plexi stimulation a normal phenomenon? Comparison between patients with and without atrial fibrillation. Circ. Arrhythm. Electrophysiol. 2019, 12, 1–9. [Google Scholar] [CrossRef]
- Zheng, S.; Zeng, Y.; Li, Y.; Han, J.; Zhang, H.; Meng, X. Active ganglionated plexi is a predictor of atrial fibrillation recurrence after minimally invasive surgical ablation. J. Card. Surg. 2014, 29, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Bagge, L.; Blomström, P.; Jidéus, L.; Lönnerholm, S.; Blomström-Lundqvist, C. Left atrial function after epicardial pulmonary vein isolation in patients with atrial fibrillation. J. Interv. Card. Electrophysiol. 2017, 50, 195–201. [Google Scholar] [CrossRef] [Green Version]
- Kondo, Y.; Ueda, M.; Watanabe, M.; Ishimura, M.; Kajiyama, T.; Hashiguchi, N.; Kanaeda, T.; Nakano, M.; Hiranuma, Y.; Ishizaka, T.; et al. Identification of left atrial ganglionated plexi by dense epicardial mapping as ablation targets for the treatment of concomitant atrial fibrillation. PACE—Pacing Clin. Electrophysiol. 2013, 36, 1336–1341. [Google Scholar] [CrossRef]
- Suwalski, G.; Marczewska, M.M.; Kaczejko, K.; Mróz, J.; Gryszko, L.; Cwetsch, A.; Skrobowski, A. Left atrial ganglionated plexi detection is related to heart rate and early recurrence of atrial fibrillation after surgical ablation. Braz. J. Cardiovasc. Surg. 2017, 32, 118–124. [Google Scholar] [CrossRef]
- Al-Atassi, T.; Toeg, H.; Malas, T.; Lam, B.K. Mapping and ablation of autonomic ganglia in prevention of postoperative atrial fibrillation in coronary surgery: Maappafs atrial fibrillation randomized controlled pilot study. Can. J. Cardiol. 2014, 30, 1202–1207. [Google Scholar] [CrossRef]
- Mehall, J.R.; Kohut, R.M.; Schneeberger, E.W.; Taketani, T.; Merrill, W.H.; Wolf, R.K. Intraoperative Epicardial Electrophysiologic Mapping and Isolation of Autonomic Ganglionic Plexi. Ann. Thorac. Surg. 2007, 83, 538–541. [Google Scholar] [CrossRef]
- Hu, F.; Zheng, L.; Liu, S.; Shen, L.; Liang, E.; Ding, L.; Wu, L.; Chen, G.; Fan, X.; Yao, Y. Avoidance of Vagal Response during Circumferential Pulmonary Vein Isolation: Effect of Initiating Isolation From Right Anterior Ganglionated Plexi. Circ. Arrhythm. Electrophysiol. 2019, 12, e007811. [Google Scholar] [CrossRef]
- Hou, Y.; Scherlag, B.J.; Lin, J.; Zhou, J.; Song, J.; Zhang, Y.; Patterson, E.; Lazzara, R.; Jackman, W.M.; Po, S.S. Interactive atrial neural network: Determining the connections between ganglionated plexi. Heart Rhythm 2007, 4, 56–63. [Google Scholar] [CrossRef]
- Xhaet, O.; De Roy, L.; Floria, M.; Deceuninck, O.; Blommaert, D.; Dormal, F.; Ballant, E.; La Meir, M. Integrity of the Ganglionated Plexi Is Essential to Parasympathetic Innervation of the Atrioventricular Node by the Right Vagus Nerve. J. Cardiovasc. Electrophysiol. 2017, 28, 432–437. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.S.; Kasirajan, V.; Ellenbogen, K.A.; Koneru, J.N. Interconnections between Left Atrial Ganglionic Plexi: Insights from Minimally Invasive Maze Procedures and Their Outcomes. PACE—Pacing Clin. Electrophysiol. 2016, 39, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Malcolme-Lawes, L.C.; Lim, P.B.; Wright, I.; Kojodjojo, P.; Koa-Wing, M.; Jamil-Copley, S.; Dehbi, H.M.; Francis, D.P.; Davies, D.W.; Peters, N.S.; et al. Characterization of the left atrial neural network and its impact on autonomic modification procedures. Circ. Arrhythm. Electrophysiol. 2013, 6, 632–640. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, S.I.; Fujii, M.; Watanabe, Y.; Hiromoto, A.; Ishii, Y.; Morota, T.; Nitta, T. Exploration of theoretical ganglionated plexi ablation technique in atrial fibrillation surgery. Ann. Thorac. Surg. 2014, 98, 1598–1604. [Google Scholar] [CrossRef]
- Lim, P.B.; Malcolme-Lawes, L.C.; Stuber, T.; Wright, I.; Francis, D.P.; Davies, D.W.; Peters, N.S.; Kanagaratnam, P. Intrinsic cardiac autonomic stimulation induces pulmonary vein ectopy and triggers atrial fibrillation in humans. J. Cardiovasc. Electrophysiol. 2011, 22, 638–646. [Google Scholar] [CrossRef] [PubMed]
- Pokushalov, E.; Romanov, A.; Shugayev, P.; Artyomenko, S.; Shirokova, N.; Turov, A.; Katritsis, D.G. Selective ganglionated plexi ablation for paroxysmal atrial fibrillation. Heart Rhythm 2009, 6, 1257–1264. [Google Scholar] [CrossRef]
- Katritsis, D.; Giazitzoglou, E.; Sougiannis, D.; Goumas, N.; Paxinos, G.; Camm, A.J. Anatomic Approach for Ganglionic Plexi Ablation in Patients with Paroxysmal Atrial Fibrillation. Am. J. Cardiol. 2008, 102, 330–334. [Google Scholar] [CrossRef]
- Romanov, A.; Minin, S.; Breault, C.; Pokushalov, E. Visualization and ablation of the autonomic nervous system corresponding to ganglionated plexi guided by D-SPECT 123I-mIBG imaging in patient with paroxysmal atrial fibrillation. Clin. Res. Cardiol. 2017, 106, 76–78. [Google Scholar] [CrossRef]
- Stirrup, J.; Gregg, S.; Baavour, R.; Roth, N.; Breault, C.; Agostini, D.; Ernst, S.; Underwood, S.R. Hybrid solid-state SPECT/CT left atrial innervation imaging for identification of left atrial ganglionated plexi: Technique and validation in patients with atrial fibrillation. J. Nucl. Cardiol. 2019. [Google Scholar] [CrossRef]
- Katritsis, D.; Giazitzoglou, E.; Sougiannis, D.; Voridis, E.; Po, S.S. Complex fractionated atrial electrograms at anatomic sites of ganglionated plexi in atrial fibrillation. Europace 2009, 11, 308–315. [Google Scholar] [CrossRef]
- Pokushalov, E.; Romanov, A.; Artyomenko, S.; Shirokova, N.; Turov, A.; Karaskov, A.; Katritsis, D.G.; Po, S.S. Ganglionated Plexi Ablation Directed by High-Frequency Stimulation and Complex Fractionated Atrial Electrograms for Paroxysmal Atrial Fibrillation. Pacing Clin. Electrophysiol. 2012, 35, 776–784. [Google Scholar] [CrossRef] [PubMed]
- D’Avila, A.; Gutierrez, P.; Scanavacca, M.; Reddy, V.; Lustgarten, D.L.; Sosa, E.; Ramires, J.A.F. Effects of radiofrequency pulses delivered in the vicinity of the coronary arteries: Implications for nonsurgical transthoracic epicardial catheter ablation to treat ventricular tachycardia. PACE—Pacing Clin. Electrophysiol. 2002, 25, 1488–1495. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Okumura, Y.; Watanabe, I.; Nagashima, K.; Sonoda, K.; Sasaki, N.; Kogawa, R.; Iso, K.; Kurokawa, S.; Ohkubo, K.; et al. Anatomical proximity between ganglionated plexi and epicardial adipose tissue in the left atrium: Implication for 3D reconstructed epicardial adipose tissue-based ablation. J. Interv. Card. Electrophysiol. 2016, 47, 203–212. [Google Scholar] [CrossRef] [PubMed]
- White, C.M.; Sander, S.; Coleman, C.I.; Gallagher, R.; Takata, H.; Humphrey, C.; Henyan, N.; Gillespie, E.L.; Kluger, J. Impact of Epicardial Anterior Fat Pad Retention on Postcardiothoracic Surgery Atrial Fibrillation Incidence: The AFIST-III Study. J. Am. Coll. Cardiol. 2007, 49, 298–303. [Google Scholar] [CrossRef] [Green Version]
- Cummings, J.E.; Gill, I.; Akhrass, R.; Dery, M.; Biblo, L.A.; Quan, K.J. Preservation of the anterior fat pad paradoxically decreases the incidence of postoperative atrial fibrillation in humans. J. Am. Coll. Cardiol. 2004, 43, 994–1000. [Google Scholar] [CrossRef] [Green Version]
- Bárta, J.; Brát, R. Assessment of the effect of left atrial cryoablation enhanced by ganglionated plexi ablation in the treatment of atrial fibrillation in patients undergoing open heart surgery. J. Cardiothorac. Surg. 2017, 12, 69. [Google Scholar] [CrossRef]
- Garabelli, P.; Stavrakis, S.; Kenney, J.F.A.; Po, S.S. Effect of 28-mm Cryoballoon Ablation on Major Atrial Ganglionated Plexi. JACC Clin. Electrophysiol. 2018, 4, 831–838. [Google Scholar] [CrossRef]
- Baust, J.M.; Robilotto, A.; Snyder, K.; Van Buskirk, R.; Baust, J.G. Evaluation of a new epicardial cryoablation system for the treatment of Cardiac Tachyarrhythmias. Trends Med. 2018, 18. [Google Scholar] [CrossRef] [Green Version]
- Pokushalov, E.; Romanov, A.; Artyomenko, S.; Turov, A.; Shirokova, N.; Katritsis, D.G. Left atrial ablation at the anatomic areas of ganglionated plexi for paroxysmal atrial fibrillation. PACE—Pacing Clin. Electrophysiol. 2010, 33, 1231–1238. [Google Scholar] [CrossRef]
- Pokushalov, E.; Romanov, A.; Artyomenko, S.; Turov, A.; Shugayev, P.; Shirokova, N.; Katritsis, D.G. Ganglionated plexi ablation for longstanding persistent atrial fibrillation. Europace 2010, 12, 342–346. [Google Scholar] [CrossRef]
- Mikhaylov, E.; Kanidieva, A.; Sviridova, N.; Abramov, M.; Gureev, S.; Szili-Torok, T.; Lebedev, D. Outcome of anatomic ganglionated plexi ablation to treat paroxysmal atrial fibrillation: A 3-year follow-up study. Europace 2011, 13, 362–370. [Google Scholar] [CrossRef]
- Pantos, I.; Katritsis, G.; Zografos, T.; Camm, A.J.; Katritsis, D.G. Temporal stability of atrial electrogram fractionation in patients with paroxysmal atrial fibrillation. Am. J. Cardiol. 2013, 111, 863–868. [Google Scholar] [CrossRef]
- Driessen, A.H.G.; Berger, W.R.; Krul, S.P.J.; van den Berg, N.W.E.; Neefs, J.; Piersma, F.R.; Yin, D.R.C.P.; de Jong, J.S.S.G.; van Boven, W.J.P.; de Groot, J.R. Ganglion Plexus Ablation in Advanced Atrial Fibrillation: The AFACT Study. J. Am. Coll. Cardiol. 2016, 68, 1155–1165. [Google Scholar] [CrossRef]
- Katritsis, D.G.; Giazitzoglou, E.; Zografos, T.; Pokushalov, E.; Po, S.S.; Camm, A.J. Rapid pulmonary vein isolation combined with autonomic ganglia modification: A randomized study. Heart Rhythm 2011, 8, 672–678. [Google Scholar] [CrossRef]
- Edgerton, J.R.; McClelland, J.H.; Duke, D.; Gerdisch, M.W.; Steinberg, B.M.; Bronleewe, S.H.; Prince, S.L.; Herbert, M.A.; Hoffman, S.; Mack, M.J. Minimally invasive surgical ablation of atrial fibrillation: Six-month results. J. Thorac. Cardiovasc. Surg. 2009, 138, 109–114. [Google Scholar] [CrossRef] [Green Version]
- Scherlag, B.J.; Nakagawa, H.; Jackman, W.M.; Yamanashi, W.S.; Patterson, E.; Po, S.; Lazzara, R. Electrical stimulation to identify neural elements on the heart: Their role in atrial fibrillation. J. Interv. Card. Electrophysiol. 2005, 13, 37–42. [Google Scholar] [CrossRef]
- Onorati, F.; Curcio, A.; Santarpino, G.; Torella, D.; Mastroroberto, P.; Tucci, L.; Indolfi, C.; Renzulli, A. Routine ganglionic plexi ablation during Maze procedure improves hospital and early follow-up results of mitral surgery. J. Thorac. Cardiovasc. Surg. 2008, 136, 408–418. [Google Scholar] [CrossRef] [Green Version]
- Budera, P.; Osmancik, P.; Talavera, D.; Kraupnerova, A.; Fojt, R.; Zdarska, J.; Vanek, T.; Straka, Z. Two-staged hybrid ablation of non-paroxysmal atrial fibrillation: Clinical outcomes and functional improvements after 1 year. Interact. Cardiovasc. Thorac. Surg. 2018, 26, 77–83. [Google Scholar] [CrossRef] [Green Version]
- Kurfirst, V.; Mokráček, A.; Bulava, A.; Čanádyová, J.; Haniš, J.; Pešl, L. Two-staged hybrid treatment of persistent atrial fibrillation: Short-term single-centre results. Interact. Cardiovasc. Thorac. Surg. 2014, 18, 451–456. [Google Scholar] [CrossRef] [Green Version]
- Matsutani, N.; Takase, B.; Ozeki, Y.; Maehara, T.; Lee, R. Minimally Invasive Cardiothoracic Surgery for Atrial Fibrillation. Circ. J. 2008, 72, 434–436. [Google Scholar] [CrossRef] [Green Version]
- Edgerton, J.R.; Jackman, W.M.; Mack, M.J. A New Epicardial Lesion Set for Minimal Access Left Atrial Maze: The Dallas Lesion Set. Ann. Thorac. Surg. 2009, 88, 1655–1657. [Google Scholar] [CrossRef]
- Wang, J.G.; Xin, M.; Han, J.; Li, Y.; Luo, T.G.; Wang, J.; Meng, F.; Meng, X. Ablation in selective patients with long-standing persistent atrial fibrillation: Medium-term results of the Dallas lesion set. Eur. J. Cardio-Thorac. Surg. 2014, 46, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Lockwood, D.; Nakagawa, H.; Peyton, M.D.; Edgerton, J.R.; Scherlag, B.J.; Sivaram, C.A.; Po, S.S.; Beckman, K.J.; Abedin, M.; Jackman, W.M. Linear left atrial lesions in minimally invasive surgical ablation of persistent atrial fibrillation: Techniques for assessing conduction block across surgical lesions. Heart Rhythm 2009, 6, S50–S63. [Google Scholar] [CrossRef] [PubMed]
- Zdarska, J.; Osmancik, P.; Budera, P.; Herman, D.; Prochazkova, R.; Talavera, D.; Straka, Z. The absence of effect of ganglionated plexi ablation on heart rate variability parameters in patients after thoracoscopic ablation for atrial fibrillation. J. Thorac. Dis. 2017, 9, 4997–5007. [Google Scholar] [CrossRef] [Green Version]
- Han, F.T.; Kasirajan, V.; Kowalski, M.; Kiser, R.; Wolfe, L.; Kalahasty, G.; Shepard, R.K.; Wood, M.A.; Ellenbogen, K.A. Results of a minimally invasive surgical pulmonary vein isolation and ganglionic plexi ablation for atrial fibrillation: Single-center experience with 12-month follow-up. Circ. Arrhythm. Electrophysiol. 2009, 2, 370–377. [Google Scholar] [CrossRef] [Green Version]
- Pokushalov, E.; Kozlov, B.; Romanov, A.; Strelnikov, A.; Bayramova, S.; Sergeevichev, D.; Bogachev-Prokophiev, A.; Zheleznev, S.; Shipulin, V.; Lomivorotov, V.V.; et al. Long-Term Suppression of Atrial Fibrillation by Botulinum Toxin Injection into Epicardial Fat Pads in Patients Undergoing Cardiac Surgery: One-Year Follow-Up of a Randomized Pilot Study. Circ. Arrhythm. Electrophysiol. 2015, 8, 1334–1341. [Google Scholar] [CrossRef] [Green Version]
- Romanov, A.; Pokushalov, E.; Ponomarev, D.; Bayramova, S.; Shabanov, V.; Losik, D.; Stenin, I.; Elesin, D.; Mikheenko, I.; Strelnikov, A.; et al. Long-term suppression of atrial fibrillation by botulinum toxin injection into epicardial fat pads in patients undergoing cardiac surgery: Three-year follow-up of a randomized study. Heart Rhythm 2019, 16, 172–177. [Google Scholar] [CrossRef]
- Katritsis, D.G.; Pokushalov, E.; Romanov, A.; Giazitzoglou, E.; Siontis, G.C.M.; Po, S.S.; Camm, A.J.; Ioannidis, J.P.A. Autonomic denervation added to pulmonary vein isolation for paroxysmal atrial fibrillation: A randomized clinical trial. J. Am. Coll. Cardiol. 2013, 62, 2318–2325. [Google Scholar] [CrossRef] [Green Version]
- Goff, Z.D.; Laczay, B.; Yenokyan, G.; Sivasambu, B.; Sinha, S.K.; Marine, J.E.; Ashikaga, H.; Berger, R.D.; Akhtar, T.; Spragg, D.D.; et al. Heart rate increase after pulmonary vein isolation predicts freedom from atrial fibrillation at 1 year. J. Cardiovasc. Electrophysiol. 2019, 30, 2818–2822. [Google Scholar] [CrossRef]
- Vesela, J.; Osmancik, P.; Herman, D.; Prochazkova, R. Changes in heart rate variability in patients with atrial fibrillation after pulmonary vein isolation and ganglionated plexus ablation. Physiol. Res. 2019, 68, 49–57. [Google Scholar] [CrossRef]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.M.; Lee, H.; Janardhan, A.H.; Park, J.; Joung, B.; Pak, H.N.; Lee, M.H.; Kim, S.S.; Hwang, H.J. Prolonged atrial refractoriness predicts the onset of atrial fibrillation: A 12-year follow-up study. Heart Rhythm 2016, 13, 1575–1580. [Google Scholar] [CrossRef]
- Tamargo, J.; Delpón, E. Vagal Stimulation and Atrial Electrical Remodeling. Rev. Española Cardiol. 2009, 62, 729–732. [Google Scholar] [CrossRef]
- Daoud, E.G.; Bogun, F.; Goyal, R.; Harvey, M.; Man, K.C.; Strickberger, S.A.; Morady, F. Effect of Atrial Fibrillation on Atrial Refractoriness in Humans. Circulation 1996, 94, 1600–1606. [Google Scholar] [CrossRef]
- Uhm, J.-S.; Mun, H.-S.; Wi, J.; Shim, J.; Joung, B.; Lee, M.-H.; Pak, H.-N. Prolonged Atrial Effective Refractory Periods in Atrial Fibrillation Patients Associated with Structural Heart Disease or Sinus Node Dysfunction Compared with Lone Atrial Fibrillation. Pacing Clin. Electrophysiol. 2013, 36, 163–171. [Google Scholar] [CrossRef]
- Li, D.; Fareh, S.; Leung, T.K.; Nattel, S. Promotion of Atrial Fibrillation by Heart Failure in Dogs. Circulation 1999, 100, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Sahadevan, J.; Ryu, K.; Matsuo, K.; Khrestian, C.M.; Waldo, A.L. Characterization of Atrial Activation (A-A) Intervals during Atrial Fibrillation Due to a Single Driver: Do They Reflect Atrial Effective Refractory Periods? J. Cardiovasc. Electrophysiol. 2011, 22, 310–315. [Google Scholar] [CrossRef]
- Mao, J.; Yin, X.; Zhang, Y.; Yan, Q.; Dong, J.; Ma, C.; Liu, X. Ablation of epicardial ganglionated plexi increases atrial vulnerability to arrhythmias in dogs. Circ. Arrhythm. Electrophysiol. 2014, 7, 711–717. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, S.I.; Schuessler, R.B.; Lee, A.M.; Aziz, A.; Lall, S.C.; Damiano, R.J. Vagal denervation and reinnervation after ablation of ganglionated plexi. J. Thorac. Cardiovasc. Surg. 2010, 139, 444–452. [Google Scholar] [CrossRef] [Green Version]
- Oh, S.; Zhang, Y.; Bibevski, S.; Marrouche, N.F.; Natale, A.; Mazgalev, T.N. Vagal denervation and atrial fibrillation inducibility: Epicardial fat pad ablation does not have long-term effects. Heart Rhythm 2006, 3, 701–708. [Google Scholar] [CrossRef]
- Puskas, J.; Lin, E.; Bailey, D.; Guyton, R. Thoracoscopic Radiofrequency Pulmonary Vein Isolation and Atrial Appendage Occlusion. Ann. Thorac. Surg. 2007, 83, 1870–1872. [Google Scholar] [CrossRef] [PubMed]
- Gelsomino, S.; Lozekoot, P.; La Meir, M.; Lorusso, R.; Lucà, F.; Rostagno, C.; Renzulli, A.; Parise, O.; Matteucci, F.; Gensini, G.F.; et al. Is ganglionated plexi ablation during Maze IV procedure beneficial for postoperative long-term stable sinus rhythm? Int. J. Cardiol. 2015, 192, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Mamchur, S.E.; Mamchur, I.N.; Khomenko, E.A.; Gorbunova, E.V.; Sizova, I.N.; Odarenko, Y.N. Catheter ablation for atrial fibrillation after an unsuccessful surgical ablation and biological prosthetic mitral valve replacement: A pilot study. J. Chin. Med. Assoc. 2014, 77, 409–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kampaktsis, P.N.; Oikonomou, E.K.; Choi, D.Y.; Cheung, J.W. Efficacy of ganglionated plexi ablation in addition to pulmonary vein isolation for paroxysmal versus persistent atrial fibrillation: A meta-analysis of randomized controlled clinical trials. J. Interv. Card. Electrophysiol. 2017, 50, 253–260. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Z.; Zhang, Y.; Wang, W.; Wang, J.; Gao, M.; Hou, Y. Efficacy of Cardiac Autonomic Denervation for Atrial Fibrillation: A Meta-Analysis. J. Cardiovasc. Electrophysiol. 2012, 23, 592–600. [Google Scholar] [CrossRef] [PubMed]
Author, Year | GP Sites Ablated | Localization of GPs | Additional Intervention | Number of Patients | Control Group | Method of Access | Follow Up Period (Max) | Outcome |
---|---|---|---|---|---|---|---|---|
Iso K et al., 2019 | Ligament of Marshall (LOM,) SL, AR, IL, IR | High frequency stimulation (HFS) | Pulmonary vein isolation (PVI) | 42 | - | Endocardial | N/A | (1) R-R interval was longer in patients with AF. (2) More active GPs were found in patients with AF. |
Garabelli P et al., 2018 | SL, LI, RI, AR | HFS | PVI | 18 | - | Endocardial | 1.8 ± 0.8 years | (1) 48% freedom from AF in GP ablation alone. (2) 74% freedom of AF in in GP ablation + PVI. |
Budera P et al., 2018 | LOM, SL, AR, IL, IR | HFS | PVI (Box lesion) | 38 | - | Epicardial | 12 months | (1) 82% AF free using two-staged hybrid ablation of non-paroxysmal AF. |
Bagge L et al., 2017 | LA GP + LOM (if identified (96%)) | HFS | PVI | 42 | - | Epicardial | 12 months | (1) 76% AF free after 12 months. |
Budera P et al., 2017 | LA GPs | Anatomical | PVI (Box lesion)/cavotricuspid isthmus ablation | 41 | - | Epicardial/endocardial | 507.2 ± 201.1 days | (1) 80% AF free without ADD/re-ablation in 2 staged hybrid procedure after 1.5 years. (2) 65% AF free with ADD/re-ablation at last follow-ups. |
Barta J et al., 2017 | SL, AR, IR, IL, LOM | HFS | Box lesion, R + L PV isolation, lesion of LA isthmus, resection of LAA + connecting lesion of appendage base with LSPV | 35 | 65 | Epicardial | 12 months | (1) GP ablation alone showed 97.5% in NSR with ADD, 50% in NSR without ADD. |
Suwalski G et al., 2017 | SL, AR, IL, IR | HFS | PVI, LAA | 34 | - | Epicardial | 3 months | (1) 85% success of GP detection based on preoperative heart rate. |
Saini A et al., 2017 | SL, AR, IL, IR, LOM | HFS | PVI | 109 | - | Epicardial | 5 years | (1) 79.6% AF free without interventions (ADD, cardioversion, CA). |
Baykaner T et al., 2017 | SL, AR, IL, IR | HFS | N/A | 97 | - | Endocardial | N/A | (1) Sources of AF were found in: 47% at the SLGP site, 34% at ILGP, 14% at ARGP and 19% at IRGP sites. |
Nagamoto Y et al., 2017 | SL, AR, IR, IL | HFS | PVI | 1 | - | Endocardial | Not specified | (1) Inferior GP ablation itself did not eliminate PV potentials. (2) PVI had possibly helped eliminate PV potentials by cumulative effect. |
Xhaet O et al., 2017 | AR, IR, SL | HFS | PVI | 20 | - | Epicardial | N/A | (1) GPs are a mandatory link to the right vagus and AV node. |
Romanov A et al., 2017 | GPs of left atrium | HFS | N/A | 1 | - | Epicardial | 6 months | (1) Using D-SPECTTM SUMO image acquisition created 3D cardiac electro-anatomical mapping system for GP ablation. (2) Patient was AF free with no ADD. |
Takahashi K et al., 2016 | LOM, SL, AR, IL, IR | HFS | PVI | 40 | - | Epicardial | 18.6 months | (1) >80% Complex fractioned atrial electrograms (CFAE) overlay GP sites while 100% of epicardial adipose tissue (EAT) overlay GP sites. |
Sharma P et al., 2016 | 10 sites each side | HSF + anatomical | Mini maze | 67 | - | Epicardial | 4.5 ± 2.3 years | (1) Selective ablation of right GPs first is linked to higher rate of AF recurrence. (2) Lower number of GPs on the left side observed. |
Antoine H.G. et al., 2016 | SL, AR, IL, IR, LOM | HFS | PVI | 117 | 123 | Epicardial | 12 months | (1) GP ablation alone did not reduce the AF occurrence during thoracoscopic surgery (70% vs. 68%). |
Jiang et al., 2016 | SL, AR, IL, IR | Anatomical | PVI | 12 | - | Epicardial | Not specified | (1) Majority of PV firing ceased after targeting GP outside of circumferential line or addition ablation along previous circular lesion. |
Gelsomino S et al., 2015 | SL, AR, IL, IR, LOM + Waterston groove | HSF | PVI (cox maze IV) | 306 | 213 | Epicardial | 7 years | (1) GP ablations with or without cox maze IV showed no significant difference on AF recurrence NSR. |
Sakamoto S et al., 2014 | SL, AR, IL, IR, LOM | HSF + anatomical | Modified cox maze | 30 | - | Endocardial | 3 months | (1) Most active GP sites were located in the Right PV antrum. (2) Anatomic GP ablation showed a greater decrease in sympathetic and parasympathetic tone. |
Mamchur S et al., 2014 | GPs of left atrium | Anatomical | PVI (Hybrid) | 10 | - | Epicardial & Endocardial | 12 months | (1) 100% restoration of sinus rhythm with all patients free from arrhythmia in 6–9 months. |
Zheng S et al., 2014 | SL, AR, IL, IR, | HFS | PVI | 89 | - | Epicardial | 60 months | (1) Single-procedure success rate is 56.3% for paroxysmal AF, 27.3% for persistent AF, and 25% for long-term persistent AF. |
Katritsis D et al., 2013 | SL, AR, IL, IR | Anatomic | PVI | 242 | - | Endocardial | 24 months | (1) PVI group 56%, GP 48%, PVI + GP 74% maintained sinus rhythm/free from AF. (2) PVI + GP ablation is best strategy. |
Kondo Y et al., 2013 | SL, AR, IL, IR | HFS | PVI (Maze IV) | 16 | - | Epicardial | 3 months | (1) 81% maintained NSR. (2) For those with active GPs, 92% maintained SR. (3) IRGP is an important pathway between other GPs and the AV node. |
Malcolme-Lawes L et al., 2013 | SL, AR, IL, IR | HFS | PVI (Cryoablation) | 30 | - | Endocardial | N/A | (1) Presence of a LA neural network with a common entry to the AV node via the IRGP. |
Pokushalov E et al., 2013 | SL, AR, IL, IR, LOM | HFS | PVI | 132 | 132 | Endocardial | 36 months | (1) 34% of patients without GP ablation were in sinus rhythm. (2) 49% of patients with GP ablation were in sinus rhythm. |
Kasirajan V et al., 2012 | SL, AR, IL, IR | Not specified | PVI | 118 | - | Epicardial | 12 months | (1) Additional ablation needed in 5% of patients. (2) 80% had freedom from AF after single procedure with no need for antiarrhythmics. |
Santini M et al., 2012 | Left atrial GPs and LOM | PVI | 22 | - | Epicardial | 22 months | (1) Ablation was successful in 73% of patients. (2) Freedom from AF was 91% without ADD. | |
Calo L et al., 2011 | Left & Right atrial GPs | HFSand Anatomic | N/A | 34 | - | Endocardial | 19.7 ± 5.2 months | (1) AF recurred in 29% of patients with anatomic ablation and in 76% of patients with the selective approach. |
Krul S et al., 2011 | SL, AR | HFS | PVI (Hybrid) | 31 | - | Epicardial | 12 months | (1) 86% AF free after 1 year follow up without use of ADD. |
Lim P et al., 2011 | SL, AR, IL, IR | HFS | N/A | 12 | - | Endocardial | N/A | (1) Direct link between activation of the intrinsic cardiac ANS and PV ectopy. |
Katritsis D et al., 2011 | SL, AR, IL, IR | HFS | PVI | 34 | 33 | Endocardial | 5 ± 1.3 months | (1) PVI group had 54.5% recurrence rate and re-ablation rate of 21.2%. (2) PVI + GP group had 26.5% recurrence and 17.6% re-ablation. |
Mikhaylov E et al., 2011 | SL, AR, IL, IR | HFS and Anatomic | PVI | 35 | 35 | Endocardial | 36 months | (1) Freedom from arrhythmia without drugs at 12 months was 54.3% for GP group and 74.3% for CPVI group. (2) Re-ablation was done in 17% of GP group. |
Ware A.L et al., 2011 | GPs of Left and Right atrium, LOM | HFS | PVI (Maze) | 20 | - | Epicardial | 25 months | (1) 89% of patients were free of AF. (2) 79% were in NSR. 3) 11% were in a paced rhythm. |
Lim et al., 2011 | GPs of Left and Right atrium | HFS | N/A | 25 | - | Endocardial | N/A | (1) 16% reduction in AF cycle length was found in PV adjacent to HFS site. (2) 9% reduction at PV-atrial junction. |
Pukushalov E et al., 2010 | SL, AR, IL, IR | No specific mapping | N/A | 56 | - | Endocardial | 12 months | (1) 71% of patients free from AF. |
Pokushalov E et al., 2010 | SL, AR, IL, IR | Anatomic | N/A | 89 | - | Endocardial | 24 ± 3 months | (1) 38.2% freedom from AF after single ablation. |
Pokushlov E et al., 2009 | SL, AR, IL, IR and Active GP areas | Anatomic and HFS | N/A | 80 | - | Endocardial | 12 months | (1) Recurrence of AF was 57.5% in selective and 22.5% in anatomic. |
Po S et al., 2009 | SL, AR, IL, IR | HFS | PVI | 83 | - | Endocardial | 22 months | (1) GP ablation alone decreased incidence of spontaneous PV firing from 65.1% to 14.5%. (2) Freedom from AF after first procedure was 80%. |
Ohkubo K et al., 2008 | SL, AR, IL, IR | HFS | PVI | 21 | - | Endocardial | 8 months | (1) 69% of patients free from AF. |
Danik S et al., 2008 | SL, AR, IL, IR | HFS | PVI | 18 | - | Endocardial | 6 weeks | (1) Early AF recurrence in 22% of patients. |
Onorati F et al., 2008 | Left and Right PVs, LOM | HFS | PVI (Maze) | 31 | 44 | Epicardial | 12 months | (1) Freedom from AF was higher in group with GP ablation (92.9±6.9%) when compared to group without (62.5 ± 6.9%). |
Pokshalov E et al., 2008 | SL, AR, IL, IR | Anatomic | N/A | 58 | - | Endocardial | 7.2 ± 0.4 months | (1) Transient vagal bradycardia was seen in 93% of patients. (2) 86.2% of patients free from AF. |
Matsutani N et al., 2008 | GP around Waterson’s + left side + LOM | N/A | PVI | 17 | - | Epicardial | 16.6 ± 5.7 months | (1) 90% of patients in NSR. (2) 85% weaned from AADs after 3 months. |
Puskas J et al., 2007 | LOM | HFS | PVI | 1 | - | Epicardial | 6 months | (1) No AF revealed at months 1, 3 or 6. (2) Patient reported as no symptomatic AF. |
Sherlag B et al., 2005 | SL, AR, IL, IR | HFS | PVI | 33 | 27 | Endocardial | 10 months | (1) 91% of patients were free from AF in PVI + GP ablation group, PVI alone group was 70%. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avazzadeh, S.; McBride, S.; O’Brien, B.; Coffey, K.; Elahi, A.; O’Halloran, M.; Soo, A.; Quinlan, L.R. Ganglionated Plexi Ablation for the Treatment of Atrial Fibrillation. J. Clin. Med. 2020, 9, 3081. https://doi.org/10.3390/jcm9103081
Avazzadeh S, McBride S, O’Brien B, Coffey K, Elahi A, O’Halloran M, Soo A, Quinlan LR. Ganglionated Plexi Ablation for the Treatment of Atrial Fibrillation. Journal of Clinical Medicine. 2020; 9(10):3081. https://doi.org/10.3390/jcm9103081
Chicago/Turabian StyleAvazzadeh, Sahar, Shauna McBride, Barry O’Brien, Ken Coffey, Adnan Elahi, Martin O’Halloran, Alan Soo, and Leo. R Quinlan. 2020. "Ganglionated Plexi Ablation for the Treatment of Atrial Fibrillation" Journal of Clinical Medicine 9, no. 10: 3081. https://doi.org/10.3390/jcm9103081
APA StyleAvazzadeh, S., McBride, S., O’Brien, B., Coffey, K., Elahi, A., O’Halloran, M., Soo, A., & Quinlan, L. R. (2020). Ganglionated Plexi Ablation for the Treatment of Atrial Fibrillation. Journal of Clinical Medicine, 9(10), 3081. https://doi.org/10.3390/jcm9103081