Methodological Considerations for Neuroimaging in Deep Brain Stimulation of the Subthalamic Nucleus in Parkinson’s Disease Patients
Abstract
:1. Introduction
2. Using MRI to Target the STN in PD for DBS
3. Field Strength
4. Current Procedures for Intra- and Post-Operative Verification with Microelectrode Recordings
5. SAR Limitations
6. Shimming and Magnetic Field Corrections
7. Sequence Types and Contrasts
7.1. T1
7.2. T2
7.3. T2* and Susceptibility-Based Contrasts
7.4. Multi-Contrast MRI
8. Voxel Sizes
9. Motion Correction
10. Registration and Image Fusion
11. Quantitative Maps
12. Complications Unrelated to Pre-Operative Planning
13. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Van Oostrom, S.H.; Gijsen, R.; Stirbu, I.; Korevaar, J.C.; Schellevis, F.G.; Picavet, H.S.J.; Hoeymans, N. Time trends in prevalence of chronic diseases and multimorbidity not only due to Aging: Data from general practices and health Surveys. PLoS ONE 2016, 11, e0160264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossi, A.; Berger, K.; Chen, H.; Leslie, D.L.; Mailman, R.B.; Huang, X. Projection of the prevalence of Parkinson’s disease in the coming decades: Revisited. Mov. Disord. 2018, 33, 156–159. [Google Scholar] [CrossRef] [PubMed]
- Sveinbjornsdottir, S. The clinical symptoms of Parkinson’s disease. J. Neurochem. 2016, 139, 318–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, A.H.; Lees, A.J. Dopamine dysregulation syndrome in Parkinson’s disease. Curr. Opin. Neurol. 2004, 17, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Olanow, C.W.; Obeso, J.A.; Stocchi, F. Continuous dopamine-receptor treatment of Parkinson’s disease: Scientific rationale and clinical implications. Lancet Neurol. 2006, 5, 677–687. [Google Scholar] [CrossRef]
- Lang, A.E.; Obeso, J.A. Challenges in Parkinson’s disease: Restoration of the nigrostriatal dopamine system is not enough. Lancet Neurol. 2004, 3, 309–316. [Google Scholar] [CrossRef]
- Ahlskog, J.E.; Muenter, M.D. Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov. Disord. 2001, 16, 448–458. [Google Scholar] [CrossRef]
- Holloway, R.; Shoulson, I.; Kieburtz, K. Pramipexole vs. Levodopa as initial treatment for Parkinson disease: A randomized controlled trial. J. Am. Med. Assoc. 2000, 284, 1931–1938. [Google Scholar] [CrossRef] [Green Version]
- Ahlskog, J.E. Medical Treatment of later-stage motor problems of Parkinson disease. Mayo. Clin. Proc. 1999, 74, 1239–1254. [Google Scholar] [CrossRef] [Green Version]
- Odekerken, V.J.; Boel, J.A.; Schmand, B.A.; De Haan, R.J.; Figee, M.; Munckhof, P.V.D.; Schuurman, P.R.; De Bie, R.M.; For the NSTAPS study group; Bour, L. GPi vs. STN deep brain stimulation for Parkinson disease. Neurology 2016, 86, 755–761. [Google Scholar] [CrossRef]
- Benabid, A.L.; Chabardes, S.; Mitrofanis, J.; Pollak, P. Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson’s disease. Lancet Neurol. 2009, 8, 67–81. [Google Scholar] [CrossRef]
- Limousin, P.; Krack, P.; Pollak, P.; Benazzouz, A.; Ardouin, C.; Hoffmann, D.; Benabid, A.L. Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N. Engl. J. Med. 2002, 339, 1105–1111. [Google Scholar] [CrossRef] [PubMed]
- Limousin, P.; Pollak, P.; Benazzouz, A.; Hoffmann, D.; Le Bas, J.F.; Perret, J.; Benabid, A.L.; Broussolle, E. Effect on parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet 1995, 345, 91–95. [Google Scholar] [CrossRef]
- De Hollander, G.; Keuken, M.C.; Bazin, P.L.; Weiss, M.; Neumann, J.; Reimann, K.; Wähnert, M.; Turner, R.; Forstmann, B.U.; Schäfer, A. A gradual increase of iron toward the medial-inferior tip of the subthalamic nucleus. Hum. Brain Mapp. 2014, 35, 4440–4449. [Google Scholar] [CrossRef] [PubMed]
- Alkemade, A.; De Hollander, G.; Miletic, S.; Keuken, M.C.; Balesar, R.; De Boer, O.; Swaab, D.F.; Forstmann, B.U. The functional microscopic neuroanatomy of the human subthalamic nucleus. Brain Struct. Funct. 2019, 224, 3213–3227. [Google Scholar] [CrossRef] [Green Version]
- Chiken, S.; Nambu, A. Mechanism of deep brain stimulation. Neuroscientist 2016, 22, 313–322. [Google Scholar] [CrossRef]
- Stefani, A.; Cerroni, R.; Mazzone, P.; Liguori, C.; Di Giovanni, G.; Pierantozzi, M.; Galati, S. Mechanisms of action underlying the efficacy of deep brain stimulation of the subthalamic nucleus in Parkinson’s disease: Central role of disease severity. Eur. J. Neurosci. 2018, 49, 805–816. [Google Scholar] [CrossRef] [PubMed]
- Petsko, G.A. The coming epidemic of neurologic disorders: What science is—And should be—Doing about it. Daedalus 2012, 141, 98–107. [Google Scholar] [CrossRef]
- Bosco, D.A.; Lavoie, M.J.; Petsko, G.A.; Ringe, D. Proteostasis and movement disorders: Parkinson’s disease and amyotrophic lateral sclerosis. Cold Spring Harb. Perspect. Biol. 2011, 3, a007500. [Google Scholar] [CrossRef] [Green Version]
- Weaver, F.M.; Follett, K.; Stern, M.; Hur, K.; Harris, C.; Marks, W.J.; Rothlind, J.; Sagher, O.; Reda, D.; Moy, C.S.; et al. Bilateral deep brain stimulation vs. best medical therapy for patients with advanced parkinson disease. A randomized controlled Trial. JAMA 2009, 301, 63–73. [Google Scholar] [CrossRef] [Green Version]
- Obeso, J.A.; Olanow, C.W.; Rodriguez-Oroz, M.C.; Krack, P.; Kumar, R.; Lang, A.E. Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. N. Engl. J. Med. 2001, 345, 956–963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deuschl, G.; Schade-Brittinger, C.; Krack, P.; Volkmann, J.; Schafer, H.; Bötzel, K.; Daniels, C.; Deutschländer, A.; Dillmann, U.; Eisner, W.; et al. A randomized trial of deep-brain stimulation for Parkinson’s disease. N. Engl. J. Med. 2006, 355, 896–908. [Google Scholar] [CrossRef] [Green Version]
- Cyron, D. Mental side effects of deep brain stimulation (DBS) for movement disorders: The futility of denial. Front. Integr. Neurosci. 2016, 10, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forstmann, B.U.; Isaacs, B.R.; Temel, Y. Ultra high field MRI-guided deep brain stimulation. Trends Biotechnol. 2017, 35, 904–907. [Google Scholar] [CrossRef] [PubMed]
- Temel, Y.; Blokland, A.; Steinbusch, H.W.M.; Visser-Vandewalle, V. The functional role of the subthalamic nucleus in cognitive and limbic circuits. Prog Neurobiol. 2005, 76, 393–413. [Google Scholar] [CrossRef] [PubMed]
- Rolston, J.D.; Englot, D.J.; Starr, P.A.; Larson, P.S. An unexpectedly high rate of revisions and removals in deep brain stimulation surgery: Analysis of multiple databases. Park Relat Disord. 2016, 33, 72–77. [Google Scholar] [CrossRef] [Green Version]
- Hartmann, C.J.; Fliegen, S.; Groiss, S.J.; Wojtecki, L.; Schnitzler, A. An update on best practice of deep brain stimulation in Parkinson’s disease. Ther Adv Neurol Disord. 2019, 12, 175628641983809. [Google Scholar] [CrossRef]
- Fenoy, A.J.; Simpson, R.K. Risks of common complications in deep brain stimulation surgery: Management and avoidance—Clinical article. J Neurosurg. 2014, 120, 132–139. [Google Scholar] [CrossRef]
- DIS Open Data. Available online: https://www.opendisdata.nl/ (accessed on 24 February 2020).
- Kloc, M.; Kosutzka, Z.; Steno, J.; Valkovic, P. Prevalent placement error of deep brain stimulation electrode in movement disorders (technical considerations). Bratislava Med. J. 2017, 118, 647–653. [Google Scholar] [CrossRef] [Green Version]
- Nagy, A.M.; Tolleson, C.M. Rescue procedures after suboptimal deep brain stimulation outcomes in common movement disorders. Brain Sci. 2016, 6, 46. [Google Scholar] [CrossRef] [Green Version]
- Tonge, M.; Kocabicak, E.; Ackermans, L.; Kuijf, M.; Temel, Y. Final electrode position in subthalamic nucleus deep brain stimulation surgery: A comparison of indirect and direct targeting methods. Turk Neurosurg. 2016, 26, 900–903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tu, P.H.; Liu, Z.H.; Chen, C.C.; Lin, W.Y.; Bowes, A.L.; Lu, C.S.; Lee, S.-T. Indirect targeting of subthalamic deep brain stimulation guided by stereotactic computed tomography and microelectrode recordings in patients with Parkinson’s disease. Front Hum Neurosci. 2018, 12, 470. [Google Scholar] [CrossRef] [PubMed]
- Cho, Z.H.; Min, H.K.; Oh, S.H.; Han, J.Y.; Park, C.W.; Chi, J.G.; Kim, Y.B.; Paek, S.H.; Lozano, A.M.; Lee, K.H. Direct visualization of deep brain stimulation targets in Parkinson disease with the use of 7-tesla magnetic resonance imaging. J Neurosurg. 2010, 113, 639–647. [Google Scholar] [CrossRef]
- Machado, A.; Rezai, A.R.; Kopell, B.H.; Gross, R.E.; Sharan, A.D.; Benabid, A.-L. Deep brain stimulation for Parkinson’s disease: Surgical technique and perioperative management. Mov Disord. 2006, 21, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Landi, A.; Grimaldi, M.; Antonini, A.; Parolin, M.; Marina, Z.A. MRI indirect stereotactic targeting for deep brain stimulation in Parkinson’s disease. J. Neurosurg. Sci. 2003, 47, 26–32. [Google Scholar]
- Duchin, Y.; Shamir, R.R.; Patriat, R.; Kim, J.; Vitek, J.L.; Sapiro, G.; Harel, N. Patient-specific anatomical model for deep brain stimulation based on 7 Tesla MRI. Toft M, ed. PLoS ONE 2018, 13, e0201469. [Google Scholar] [CrossRef]
- Rabie, A.; Metman, L.V.; Slavin, K.V. Using “Functional” target coordinates of the subthalamic nucleus to assess the indirect and direct methods of the preoperative planning: Do the anatomical and functional targets coincide? Brain Sci. 2016, 6, 65. [Google Scholar] [CrossRef] [Green Version]
- Starr, P.A. Placement of deep brain stimulators into the subthalamic nucleus or Globus pallidus internus: Technical approach. Stereotact Funct Neurosurg. 2002, 79, 118–145. [Google Scholar] [CrossRef]
- Andrade-Souza, Y.M.; Schwalb, J.M.; Hamani, C.; Eltahawy, H.; Hoque, T.; Saint-Cyr, J.; Lozano, A.M. Comparison of three methods of targeting the subthalamic nucleus for chronic stimulation in Parkinson’s disease. Neurosurgery 2005, 56, 360–368. [Google Scholar] [CrossRef]
- Bejjani, B.P.; Dormont, D.; Pidoux, B.; Yelnik, J.; Damier, P.; Arnulf, I.; Bonnet, A.-M.; Marsault, C.; Agid, Y.; Philippon, J.; et al. Bilateral subthalamic stimulation for Parkinson’s disease by using three-dimensional stereotactic magnetic resonance imaging and electrophysiological guidance. J Neurosurg 2000, 92, 615–625. [Google Scholar] [CrossRef]
- Pallavaram, S.; D’Haese, P.F.; Lake, W.; Konrad, P.E.; Dawant, B.M.; Neimat, J.S. Fully automated targeting using nonrigid image registration matches accuracy and exceeds precision of best manual approaches to subthalamic deep brain stimulation targeting in parkinson disease. Neurosurgery 2015, 76, 756–763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashkan, K.; Blomstedt, P.; Zrinzo, L.; Tisch, S.; Yousry, T.; Limousin-Dowsey, P.; Hariz, M.I. Variability of the subthalamic nucleus: The case for direct MRI guided targeting. Br. J. Neurosurg. 2007, 21, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Isaacs, B.R.; Trutti, A.C.; Pelzer, E.; Tittgemeyer, M.; Temel, Y.; Forstmann, B.U.; Keuken, M.C. Cortico-basal white matter alterations occurring in Parkinson’s disease. PLoS ONE 2019, 14, e0214343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaya, M.O.; Ozturk, S.; Ercan, I.; Gonen, M.; Kocabicak, E.; Erol, F.S. Statistical shape analysis of subthalamic nucleus in patients with Parkinson disease. World Neurosurg. 2019, 126, e835–e841. [Google Scholar] [CrossRef]
- Keuken, M.C.; Bazin, P.L.; Crown, L.; Hootsmans, J.; Laufer, A.; Müller-Axt, C.; Sier, R.; Van Der Putten, E.; Schäfer, A.; Turner, R.; et al. Quantifying inter-individual anatomical variability in the subcortex using 7 T structural MRI. NeuroImage 2014, 94, 40–46. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Jannin, P.; D’Albis, T.; Guizard, N.; Haegelen, C.; Lalys, F.; Verin, M.; Collins, D.L. Investigation of morphometric variability of subthalamic nucleus, red nucleus, and substantia nigra in advanced Parkinson’s disease patients using automatic segmentation and PCA-based analysis. Hum. Brain Mapp. 2014, 35, 4330–4344. [Google Scholar] [CrossRef] [Green Version]
- Welter, M.L.; Schüpbach, M.; Czernecki, V.; Karachi, C.; Fernandez-Vidal, S.; Golmard, J.L.; Serra, G.; Navarro, S.; Welaratne, A.; Hartmann, A.; et al. Optimal target localization for subthalamic stimulation in patients with Parkinson disease. Neurology 2014, 82, 1352–1361. [Google Scholar] [CrossRef] [Green Version]
- Rutt, B.K.; Lee, D.H. The impact of field strength on image quality in MRI. J. Magn. Reson. Imaging 1996, 6, 57–62. [Google Scholar] [CrossRef]
- McRobbie, D.W.; Moore, E.A.; Graves, M.J. Prince MR. MRI From Picture to Proton; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Edelstein, W.A.; Glover, G.H.; Hardy, C.J.; Redington, R.W. The intrinsic signal-to-noise ratio in NMR imaging. Magn. Reson. Med. 1986, 3, 604–618. [Google Scholar] [CrossRef]
- Springer, E.; Dymerska, B.; Cardoso, P.L.; Robinson, S.; Weisstanner, C.; Wiest, R.; Schmitt, B.; Trattnig, S. Comparison of Routine Brain Imaging at 3 T and 7 T. Investig. Radiol. 2016, 51, 469–482. [Google Scholar] [CrossRef] [Green Version]
- U.S. Food and Drug Administration. FDA Clears First 7T Magnetic Resonance Imaging Device. FDA News Release. Available online: https://www.fda.gov/news-events/press-announcements/fda-clears-first-7t-magnetic-resonance-imaging-device (accessed on 3 February 2020).
- Pohmann, R.; Speck, O.; Scheffler, K. Signal-to-noise ratio and MR tissue parameters in human brain imaging at 3, 7, and 9.4 tesla using current receive coil arrays. Magn. Reson. Med. 2015, 75, 801–809. [Google Scholar] [CrossRef] [PubMed]
- De Zwart, J.A.; Ledden, P.J.; Kellman, P.; Van Gelderen, P.; Duyn, J.H. Design of a SENSE-optimized high-sensitivity MRI receive coil for brain imaging. Magn. Reson. Med. 2002, 47, 1218–1227. [Google Scholar] [CrossRef] [PubMed]
- Turner, R. Gradient coil design: A review of methods. Magn. Reson. Imaging 1993, 11, 903–920. [Google Scholar] [CrossRef]
- Winkler, S.A.; Schmitt, F.; Landes, H.; De Bever, J.; Wade, T.; Alejski, A.; Rutt, B.K. Gradient and shim technologies for Ultra High Field MRI. NeuroImage 2018, 168, 59–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hendriks, A.D.; Luijten, P.R.; Klomp, D.W.J.; Petridou, N. Potential acceleration performance of a 256-channel whole-brain receive array at 7 T. Magn. Reson. Med. 2019, 81, 1659–1670. [Google Scholar] [CrossRef] [Green Version]
- Setsompop, K.; Gagoski, B.A.; Polimeni, J.R.; Witzel, T.; Wedeen, V.J.; Wald, L.L. Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g -factor penalty. Magn. Reson. Med. 2011, 67, 1210–1224. [Google Scholar] [CrossRef] [Green Version]
- Wiggins, G.C.; Polimeni, J.R.; Potthast, A.; Schmitt, M.; Alagappan, V.; Wald, L.L. 96-Channel receive-only head coil for 3 Tesla: Design optimization and evaluation. Magn. Reson. Med. 2009, 62, 754–762. [Google Scholar] [CrossRef] [Green Version]
- De Hollander, G.; Keuken, M.C.; Van Der Zwaag, W.; Forstmann, B.U.; Trampel, R. Comparing functional MRI protocols for small, iron-rich basal ganglia nuclei such as the subthalamic nucleus at 7 T and 3 T. Hum. Brain Mapp. 2017, 38, 3226–3248. [Google Scholar] [CrossRef] [Green Version]
- Forstmann, B.U.; De Hollander, G.; Van Maanen, L.; Alkemade, A.; Keuken, M.C. Towards a mechanistic understanding of the human subcortex. Nat. Rev. Neurosci. 2016, 18, 57–65. [Google Scholar] [CrossRef]
- Duyn, J.H. The future of ultra-high field MRI and fMRI for study of the human brain. NeuroImage 2012, 62, 1241–1248. [Google Scholar] [CrossRef] [Green Version]
- Van Der Zwaag, W.; Schäfer, A.; Marques, J.P.; Turner, R.; Trampel, R. Recent applications of UHF-MRI in the study of human brain function and structure: A review. NMR Biomed. 2015, 29, 1274–1288. [Google Scholar] [CrossRef] [PubMed]
- Van Beek, E.J.R.; Kuhl, C.; Anzai, Y.; Desmond, P.; Ehman, R.L.; Gong, Q.; Gold, G.; Gulani, V.; Hall-Craggs, M.A.; Leiner, T.; et al. Value of MRI in medicine: More than just another test? J. Magn. Reson. Imaging 2018, 49, e14–e25. [Google Scholar] [CrossRef] [PubMed]
- Beisteiner, R.; Robinson, S.; Wurnig, M.; Hilbert, M.; Merksa, K.; Rath, J.; Höllinger, I.; Klinger, N.; Marosi, C.; Trattnig, S.; et al. Clinical fMRI: Evidence for a 7T benefit over 3T. NeuroImage 2011, 57, 1015–1021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, Z.H.; Kim, Y.B.; Han, J.Y.; Min, H.K.; Kim, K.N.; Choi, S.H.; Veklerov, E.; Shepp, L.A. New brain atlas—Mapping the human brain in vivo with 7.0 T MRI and comparison with postmortem histology: Will these images change modern medicine? Int. J. Imaging Syst. Technol. 2008, 18, 2–8. [Google Scholar] [CrossRef]
- Duchin, Y.; Abosch, A.; Yacoub, E.; Sapiro, G.; Harel, N. Feasibility of using ultra-high field (7 T) MRI for clinical surgical targeting. PLoS ONE 2012, 7, e37328. [Google Scholar] [CrossRef] [Green Version]
- Kraff, O.; Fischer, A.; Nagel, A.M.; Mönninghoff, C.; Ladd, M.E. MRI at 7 tesla and above: Demonstrated and potential capabilities. J. Magn. Reson. Imaging 2014, 41, 13–33. [Google Scholar] [CrossRef]
- Plantinga, B.R.; Temel, Y.; Duchin, Y.; Uludag, K.; Patriat, R.; Roebroeck, A.; Kuijf, M.; Jahanshahi, A.; Romenij, B.T.H.; Vitek, J.; et al. Individualized parcellation of the subthalamic nucleus in patients with Parkinson’s disease with 7T MRI. NeuroImage 2018, 168, 403–411. [Google Scholar] [CrossRef] [Green Version]
- Straub, S.; Zaiss, M. Pros and cons of ultra-high-field MRI/MRS for human application. Prog. Nucl. Magn. Reson. Spectrosc. 2018, 109, 1–50. [Google Scholar] [CrossRef]
- Truong, T.-K.; Chakeres, D.W.; Beversdorf, D.Q.; Scharre, D.; Schmalbrock, P. Effects of static and radiofrequency magnetic field inhomogeneity in ultra-high field magnetic resonance imaging. Magn. Reson. Imaging 2006, 24, 103–112. [Google Scholar] [CrossRef]
- Stockmann, J.P.; Witzel, T.; Keil, B.; Polimeni, J.R.; Mareyam, A.; Lapierre, C.; Setsompop, K.; Wald, L.L. A 32-channel combined RF and B0 shim array for 3T brain imaging. Magn. Reson. Med. 2016, 75, 441–451. [Google Scholar] [CrossRef] [Green Version]
- Mao, W.; Smith, M.B.; Collins, C. Exploring the limits of RF shimming for high-field MRI of the human head. Magn. Reson. Med. 2006, 56, 918–922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Available online: https://www.ismrm.org/20/program_files/DP13-02.htm (accessed on 3 February 2020).
- Anderson, W.S.; Lenz, F.A. Surgery Insight: Deep brain stimulation for movement disorders. Nat. Clin. Pr. Neurol. 2006, 2, 310–320. [Google Scholar] [CrossRef] [PubMed]
- Ashkan, K.; Wallace, B.; Bell, B.A.; Benabid, A.L. Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease 1993-2003: Where are we 10 years on? Br. J. Neurosurg. 2004, 18, 19–34. [Google Scholar] [CrossRef] [PubMed]
- Gielen, F.L.H. Deep brain stimulation: Current practice and challenges for the future. In Proceedings of the First International IEEE EMBS Conference on Neural Engineering, Capri Island, Italy, 20–22 March 2003. [Google Scholar] [CrossRef]
- Aviles-Olmos, I.; Kefalopoulou, Z.; Tripoliti, E.; Candelario, J.; Akram, H.; Martinez-Torres, I.; Jahanshahi, M.; Foltynie, T.; Hariz, M.; Zrinzo, L.; et al. Long-term outcome of subthalamic nucleus deep brain stimulation for Parkinson’s disease using an MRI-guided and MRI-verified approach. J. Neurol. Neurosurg. Psychiatry 2014, 85, 1419–1425. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.Y.; Lee, C.C.; Lin, S.H.; Hsin, Y.L.; Lee, T.W.; Yen, P.S.; Chou, Y.C.; Lee, C.W.; Hsieh, W.A.; Su, C.F.; et al. Microelectrode recording can be a good adjunct in magnetic resonance image–directed subthalamic nucleus deep brain stimulation for parkinsonism. Surg. Neurol. 2006, 65, 253–260. [Google Scholar] [CrossRef]
- Patel, N.K.; Heywood, P.; O’Sullivan, K.; Love, S.; Gill, S.S. MRI-directed subthalamic nucleus surgery for Parkinson’s disease. Ster. Funct. Neurosurg. 2002, 78, 132–145. [Google Scholar] [CrossRef]
- Lozano, C.S.; Ranjan, M.; Boutet, A.; Xu, D.S.; Kucharczyk, W.; Fasano, A.; Lozano, A.M. Imaging alone versus microelectrode recording–guided targeting of the STN in patients with Parkinson’s disease. J. Neurosurg. 2019, 130, 1847–1852. [Google Scholar] [CrossRef] [Green Version]
- Frequin, H.L.; Bot, M.; Dilai, J.; Scholten, M.N.; Postma, M.; Bour, L.J.; Contarino, M.F.; De Bie, R.M.; Schuurman, P.R.; Munckhof, P.V.D. Relative contribution of magnetic resonance imaging, microelectrode recordings, and awake test stimulation in final lead placement during deep brain stimulation surgery of the subthalamic nucleus in Parkinson’s disease. Ster. Funct. Neurosurg. 2020, 98, 118–128. [Google Scholar] [CrossRef]
- Ostrem, J.L.; Galifianakis, N.B.; Markun, L.C.; Grace, J.K.; Martin, A.J.; Starr, P.A.; Larson, P.S. Clinical outcomes of PD patients having bilateral STN DBS using high-field interventional MR-imaging for lead placement. Clin. Neurol. Neurosurg. 2013, 115, 708–712. [Google Scholar] [CrossRef] [Green Version]
- McClelland, S. A cost analysis of intraoperative microelectrode recording during subthalamic stimulation for Parkinson’s disease. Mov. Disord. 2011, 26, 1422–1427. [Google Scholar] [CrossRef]
- Habets, J.; Isaacs, B.; Vinke, S.; Kubben, P. Controversies in deep brain stimulation surgery: Micro-electrode recordings. In Evidence for Neurosurgery; Springer: Cham, Switzerland, 2019; pp. 97–109. [Google Scholar] [CrossRef]
- Tykocki, T.; Nauman, P.; Koziara, H.; Mandat, T. Microlesion effect as a predictor of the effectiveness of subthalamic deep brain stimulation for Parkinson’s disease. Ster. Funct. Neurosurg. 2013, 91, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Slotty, P.; Wille, C.; Kinfe, T.M.; Vesper, J. Continuous perioperative apomorphine in deep brain stimulation surgery for Parkinson’s disease. Br. J. Neurosurg. 2013, 28, 378–382. [Google Scholar] [CrossRef] [PubMed]
- Kleiner-Fisman, G.; Herzog, J.; Kleiner-Fisman, G.; Tamma, F.; Lyons, K.E.; Pahwa, R.; Lang, A.E.; Deuschl, G. Subthalamic nucleus deep brain stimulation: Summary and meta-analysis of outcomes. Mov. Disord. 2006, 21 (Suppl. S14), S290–S304. [Google Scholar] [CrossRef]
- Moro, E.; Esselink, R.J.; Xie, J.; Hommel, M.; Benabid, A.L.; Pollak, P. The impact on Parkinson’s disease of electrical parameter settings in STN stimulation. Neurology 2002, 59, 706–713. [Google Scholar] [CrossRef] [PubMed]
- Esselink, R.A.J.; Kuijf, M.L. Organization of Care for Patients Treated by Deep Brain Stimulation. In Fundamentals and Clinics of Deep Brain Stimulation; Springer: Cham, Switzerland, 2020; pp. 161–168. [Google Scholar] [CrossRef]
- Aubignat, M.; Lefranc, M.; Tir, M.; Krystkowiak, P. Deep brain stimulation programming in Parkinson’s disease: Introduction of current issues and perspectives. Rev. Neurol. 2020. [Google Scholar] [CrossRef]
- De Oliveira Godeiro, C.; Moro, E.; Montgomery, E.B. Programming: General aspects. In Fundamentals and Clinics of Deep Brain Stimulation; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Food and Drug Administration. Guidance for the Submission of Premarket Notifications for Magnetic Resonance Diagnostic Devices. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/submission-premarket-notifications-magnetic-resonance-diagnostic-devices (accessed on 3 February 2020).
- International Electrochemical Commission. Medical Electrical Equipment: Part 2-33. Particular Requirements for the Safety of Magnetic Resonance Equipment for Medical Diagnosis; IEC—International Electrotechnical Commission: Geneva, Switzerland, 2010. [Google Scholar]
- Vaughan, J.; Garwood, M.; Collins, C.; Liu, W.; DelaBarre, L.; Adriany, G.; Andersen, P.; Merkle, H.; Goebel, R.; Smith, M.; et al. 7T vs. 4T: RF power, homogeneity, and signal-to-noise comparison in head images. Magn. Reson. Med. 2001, 46, 24–30. [Google Scholar] [CrossRef]
- Balchandani, P.; Naidich, T.P. Ultra-high-field MR neuroimaging. Am. J. Neuroradiol. 2015, 36, 1204–1215. [Google Scholar] [CrossRef] [Green Version]
- Bergen, B.V.D.; Berg, C.V.D.; Bartels, L.W.; Lagendijk, J.J.W. 7 T body MRI:B1shimming with simultaneous SAR reduction. Phys. Med. Biol. 2007, 52, 5429–5441. [Google Scholar] [CrossRef]
- Allison, J.; Yanasak, N. What MRI sequences produce the highest specific absorption rate (SAR), and is there something we should be doing to reduce the SAR during standard examinations? Am. J. Roentgenol. 2015, 205, W140. [Google Scholar] [CrossRef]
- Ghadimi, M.; Sapra, A. Magnetic Resonance Imaging (MRI), Contraindications; StatPearls Publishing: Treasure Island, FL, USA, 2019. [Google Scholar]
- Horn, A.; Reich, M.; Vorwerk, J.; Li, N.; Wenzel, G.; Fang, Q.; Schmitz-Hübsch, T.; Nickl, R.; Kupsch, A.; Volkmann, J.; et al. Connectivity Predicts deep brain stimulation outcome in Parkinson disease. Ann. Neurol. 2017, 82, 67–78. [Google Scholar] [CrossRef]
- Schmitz, B.L.; Aschoff, A.J.; Hoffmann, M.H.K.; Grön, G. Advantages and pitfalls in 3T MR brain imaging: A pictorial review. Am. J. Neuroradiol. 2006, 26, 2229–2237. [Google Scholar]
- Marques, J.P.; Simonis, F.; Webb, A.G. Low-field MRI: An MR physics perspective. J. Magn. Reson. Imaging 2019, 49, 1528–1542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bekiesińska-Figatowska, M. Artifacts in magnetic resonance imaging. Pol. J. Radiol. 2015, 80, 93–106. [Google Scholar] [CrossRef] [Green Version]
- Wachowicz, K. Evaluation of active and passive shimming in magnetic resonance imaging. Res. Rep. Nucl. Med. 2014, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Wilson, J.L.; Jenkinson, M.; Jezzard, P. Optimization of static field homogeneity in human brain using diamagnetic passive shims. Magn. Reson. Med. 2002, 48, 906–914. [Google Scholar] [CrossRef]
- Golay, M.J.E. Field homogenizing coils for nuclear spin resonance instrumentation. Rev. Sci. Instruments 1958, 29, 313–315. [Google Scholar] [CrossRef]
- Roméo, F.; Hoult, D.I. Magnet field profiling: Analysis and correcting coil design. Magn. Reson. Med. 1984, 1, 44–65. [Google Scholar] [CrossRef]
- Bitar, R.; Leung, G.; Perng, R.; Tadros, S.; Moody, A.R.; Sarrazin, J.; McGregor, C.; Christakis, M.; Symons, S.; Nelson, A.; et al. MR Pulse sequences: What every radiologist wants to know but is afraid to ask. Radiographics 2006, 26, 513–537. [Google Scholar] [CrossRef]
- Cheng, H.L.M.; Wright, G.A. Rapid high-resolutionT1 mapping by variable flip angles: Accurate and precise measurements in the presence of radiofrequency field inhomogeneity. Magn. Reson. Med. 2006, 55, 566–574. [Google Scholar] [CrossRef]
- Hurley, S.A.; Yarnykh, V.L.; Johnson, K.M.; Field, A.S.; Alexander, A.L.; Samsonov, A. Simultaneous variable flip angle-actual flip angle imaging method for improved accuracy and precision of three-dimensional T1 and B1 measurements. Magn. Reson. Med. 2012, 68, 54–64. [Google Scholar] [CrossRef] [Green Version]
- Yarnykh, V.L. Optimal radiofrequency and gradient spoiling for improved accuracy of T1 and B1 measurements using fast steady-state techniques. Magn. Reson. Med. 2010, 63, 1610–1626. [Google Scholar] [CrossRef]
- Eggenschwiler, F.; Kober, T.; Magill, A.W.; Gruetter, R.; Marques, J.P. SA2RAGE: A new sequence for fast B1+-mapping. Magn. Reson. Med. 2011, 67, 1609–1619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karger, C.P.; Höss, A.; Bendl, R.; Canda, V.; Schad, L. Accuracy of device-specific 2D and 3D image distortion correction algorithms for magnetic resonance imaging of the head provided by a manufacturer. Phys. Med. Biol. 2006, 51, N253–N261. [Google Scholar] [CrossRef] [PubMed]
- Tustison, N.J.; Avants, B.B.; Cook, P.A.; Zheng, Y.; Egan, A.; Yushkevich, P.A.; Gee, J.C. N4ITK: Improved N3 bias correction. IEEE Trans. Med. Imaging 2010, 29, 1310–1320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Brady, M.; Smith, S.M. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 2001, 20, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Sled, J.G.; Zijdenbos, A.; Evans, A. A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans. Med. Imaging 1998, 17, 87–97. [Google Scholar] [CrossRef] [Green Version]
- Ganzetti, M.; Wenderoth, N.; Mantini, D. Quantitative evaluation of intensity inhomogeneity correction methods for structural MR brain images. Neuroinformatics 2016, 14, 5–21. [Google Scholar] [CrossRef] [Green Version]
- Delgado, A.; Van Westen, D.; Nilsson, M.; Knutsson, L.; Sundgren, P.C.; Larsson, E.M.; Delgado, A.F. Diagnostic value of alternative techniques to gadolinium-based contrast agents in MR neuroimaging-a comprehensive overview. Insights Imaging 2019, 10, 84. [Google Scholar] [CrossRef]
- Oliveira, I.S.; Hedgire, S.S.; Li, W.; Ganguli, S.; Prabhakar, A.M. Blood pool contrast agents for venous magnetic resonance imaging. Cardiovasc. Diagn. Ther. 2016, 6, 508–518. [Google Scholar] [CrossRef] [Green Version]
- Bloem, J.L.; Reijnierse, M.; Huizinga, T.W.J.; Van Der Helm-Van Mil, A.H.M. MR signal intensity: Staying on the bright side in MR image interpretation. RMD Open 2018, 4, e000728. [Google Scholar] [CrossRef] [Green Version]
- Vymazal, J.; Hajek, M.; Patronas, N.; Giedd, J.N.; Bulte, J.W.; Baumgarner, C.; Brooks, R.A. The quantitative relation between T1-weighted and T2-weighted MRI of normal gray matter and iron concentration. J. Magn. Reason. Imaging 1995, 5, 554–560. [Google Scholar] [CrossRef]
- Barral, J.K.; Gudmundson, E.; Stikov, N.; Etezadi-Amoli, M.; Stoica, P.; Nishimura, D.G. A robust methodology for in vivo T1 mapping. Magn. Reson. Med. 2010, 64, 1057–1067. [Google Scholar] [CrossRef] [Green Version]
- Beriault, S.; Sadikot, A.F.; Alsubaie, F.; Drouin, S.; Collins, D.L.; Pike, G.B. Neuronavigation using susceptibility-weighted venography: Application to deep brain stimulation and comparison with gadolinium contrast: Technical note. J. Neurosurg. 2014, 121, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Ko, S.B.; Kim, S.H.; Kim, N.E.; Roh, J.K. Visualization of venous systems by time-of-flight magnetic resonance angiography. J. Neuroimaging 2006, 16, 353–356. [Google Scholar] [CrossRef] [PubMed]
- Barnes, S.R.; Haacke, E.M. Susceptibility-weighted imaging: Clinical angiographic applications. Magn. Reson. Imaging Clin. N. Am. 2009, 17, 47–61. [Google Scholar] [CrossRef] [Green Version]
- Dormont, D.; Ricciardi, K.G.; Tandé, D.; Parain, K.; Menuel, C.; Galanaud, D.; Navarro, S.; Cornu, P.; Agid, Y.; Yelnik, J. Is the subthalamic nucleus hypointense on T2-weighted images? A correlation study using MR imaging and stereotactic atlas data. Am. J. Neuroradiol. 2004, 25, 1516–1523. [Google Scholar]
- Aquino, D.; Bizzi, A.; Grisoli, M.; Garavaglia, B.; Bruzzone, M.G.; Nardocci, N.; Savoiardo, M.; Chiapparini, L. Age-related iron deposition in the basal ganglia: Quantitative analysis in healthy subjects. Radiology 2009, 252, 165–172. [Google Scholar] [CrossRef]
- Drayer, B.P. Basal ganglia: Significance of signal hypointensity on T2-weighted MR images. Radiology 1989, 173, 311–312. [Google Scholar] [CrossRef]
- Keuken, M.C.; Isaacs, B.R.; Trampel, R.; Van Der Zwaag, W.; Forstmann, B.U. Visualizing the human subcortex using ultra-high field magnetic resonance imaging. Brain Topogr. 2018, 31, 513–545. [Google Scholar] [CrossRef] [Green Version]
- Marques, J.P.; Norris, D.G. How to choose the right MR sequence for your research question at 7 T and above? NeuroImage 2018, 168, 119–140. [Google Scholar] [CrossRef]
- Chavhan, G.B.; Babyn, P.S.; Jankharia, B.; Cheng, H.-L.M.; Shroff, M. Steady-state MR imaging sequences: Physics, classification, and clinical applications. Radiographics 2008, 28, 1147–1160. [Google Scholar] [CrossRef] [PubMed]
- Hargreaves, B. Rapid gradient-echo imaging. J. Magn. Reson. Imaging 2012, 36, 1300–1313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, M.Y.; Chen, T.W.; Zhang, X.M.; Huang, X.H. GRE T2∗-weighted MRI: Principles and clinical applications. BioMed Res. Int. 2014, 2014, 312142. [Google Scholar] [CrossRef] [Green Version]
- Chavhan, G.B.; Babyn, P.S.; Thomas, B.; Shroff, M.M.; Haacke, E.M. Principles, techniques, and applications of T2*-based MR imaging and its special applications. Radiographics 2009, 29, 1433–1449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haacke, E.M.; Tkach, J.A.; Parrish, T.B. Reduction of T2* dephasing in gradient field-echo imaging. Radiology 1989, 170, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Pyatigorskaya, N.; Gallea, C.; Garcia-Lorenzo, D.; Vidailhet, M.; Lehéricy, S. A review of the use of magnetic resonance imaging in Parkinson’s disease. Ther. Adv. Neurol. Disord. 2013, 7, 206–220. [Google Scholar] [CrossRef] [Green Version]
- Kosta, P.; Argyropoulou, M.I.; Markoula, S.; Konitsiotis, S. MRI evaluation of the basal ganglia size and iron content in patients with Parkinson’s disease. J. Neurol. 2006, 253, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Keuken, M.C.; Bazin, P.-L.; Schäfer, A.; Neumann, J.; Turner, R.; Forstmann, B.U. Ultra-high 7T MRI of structural age-related changes of the subthalamic nucleus. J. Neurosci. 2013, 33, 4896–4900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abosch, A.; Yacoub, E.; Ugurbil, K.; Harel, N. An assessment of current brain targets for deep brain stimulation surgery with susceptibility-weighted imaging at 7 tesla. Neurosurgery 2010, 67, 1745–1756. [Google Scholar] [CrossRef] [Green Version]
- Haacke, E.M.; Mittal, S.; Wu, Z.; Neelavalli, J.; Cheng, Y.C. Susceptibility-weighted imaging: Technical aspects and clinical applications, part 1. Am. J. Neuroradiol. 2008, 30, 19–30. [Google Scholar] [CrossRef] [Green Version]
- Ishimori, Y.; Monma, M.; Kohno, Y. Artifact reduction of susceptibility-weighted imaging using a short-echo phase mask. Acta Radiol. 2009, 50, 1027–1034. [Google Scholar] [CrossRef]
- Rauscher, A.; Sedlacik, J.; Barth, M.; Mentzel, H.-J.; Reichenbach, J.R. Magnetic susceptibility-weighted MR phase imaging of the human brain. Am. J. Neuroradiol. 2005, 26, 736–742. [Google Scholar] [PubMed]
- Elolf, E.; Bockermann, V.; Gringel, T.; Knauth, M.; Dechent, P.; Helms, G. Improved visibility of the subthalamic nucleus on high-resolution stereotactic MR imaging by added susceptibility (T2*) contrast using multiple gradient echoes. Am. J. Neuroradiol. 2007, 28, 1093–1094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bot, M.; Verhagen, O.; Caan, M.; Potters, W.; Dilai, J.; Odekerken, V.; Dijk, J.; De Bie, R.; Schuurman, R.; Munckhof, P.V.D. Defining the dorsal STN border using 7.0-Tesla MRI: A comparison to microelectrode recordings and lower field strength MRI. Brain Stimul. 2019, 97, 587. [Google Scholar] [CrossRef]
- O’Gorman, R.; Shmueli, K.; Ashkan, K.; Samuel, M.; Lythgoe, D.J.; Shahidiani, A.; Wastling, S.J.; Footman, M.; Selway, R.P.; Jarosz, J. Optimal MRI methods for direct stereotactic targeting of the subthalamic nucleus and globus pallidus. Eur. Radiol. 2011, 21, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Keuken, M.C.; Schäfer, A.; Forstmann, B.U. Can we rely on susceptibility-weighted imaging (SWI) for subthalamic nucleus identification in deep brain stimulation surgery? Neurosurgery 2016, 79, e945–e946. [Google Scholar] [CrossRef]
- Bot, M.; Bour, L.; De Bie, R.; Contarino, M.F.; Schuurman, R.; Munckhof, P.V.D. Can we rely on susceptibility-weighted imaging (SWI) for subthalamic nucleus identification in deep brain stimulation surgery? Neurosurgery 2016, 78, 353–359. [Google Scholar] [CrossRef]
- Bus, S.; Munckhof, P.V.D.; Bot, M.; Pal, G.; Ouyang, B.; Sani, S.; Metman, L.V. Borders of STN determined by MRI versus the electrophysiological STN. A comparison using intraoperative CT. Acta Neurochir. 2018, 160, 373–383. [Google Scholar] [CrossRef] [Green Version]
- Vertinsky, A.; Coenen, V.; Lang, D.J.; Kolind, S.; Honey, C.; Li, D.; Rauscher, A. Localization of the subthalamic nucleus: Optimization with susceptibility-weighted phase MR imaging. Am. J. Neuroradiol. 2009, 30, 1717–1724. [Google Scholar] [CrossRef]
- Eckstein, K.; Dymerska, B.; Bachrata, B.; Bogner, W.; Poljanc, K.; Trattnig, S.; Robinson, S. Computationally efficient combination of multi-channel phase data from multi-echo acquisitions (ASPIRE). Magn. Reson. Med. 2018, 79, 2996–3006. [Google Scholar] [CrossRef]
- Weiskopf, N.; Mohammadi, S.; Lutti, A.; Callaghan, M.F. Advances in MRI-based computational neuroanatomy: From morphometry to in-vivo histology. Curr. Opin. Neurol. 2015, 28, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Shin, W.; Shin, T.; Oh, S.-H.; Lowe, M.J. CNR improvement of MP2RAGE from slice encoding directional acceleration. Magn. Reson. Imaging 2016, 34, 779–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsialios, P.; Thrippleton, M.; Pernet, C. Evaluation of MRI sequences for quantitative T1 brain mapping. bioRxiv 2017, 931, 195859. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Cleary, J.O.; Glarin, R.; Kolbe, S.C.; Ordidge, R.J.; Moffat, B.A.; Pike, G.B. Extracting more for less: Multi-echo MP2RAGE for simultaneous T1-weighted imaging, T1 mapping, R2∗ mapping, SWI, and QSM from a single acquisition. Magn. Reson. Med. 2020, 83, 1178–1191. [Google Scholar] [CrossRef] [PubMed]
- Choi, U.S.; Kawaguchi, H.; Matsuoka, Y.; Kober, T.; Kida, I. Brain tissue segmentation based on MP2RAGE multi-contrast images in 7 T MRI. PLoS ONE 2019, 14, e0210803. [Google Scholar] [CrossRef] [Green Version]
- Kerl, H.U.; Gerigk, L.; Pechlivanis, I.; Al-Zghloul, M.; Groden, C.; Nolte, I. The subthalamic nucleus at 3.0 Tesla: Choice of optimal sequence and orientation for deep brain stimulation using a standard installation protocol: Clinical article. J. Neurosurg. 2012, 117, 1155–1165. [Google Scholar] [CrossRef]
- Marques, J.P.; Kober, T.; Krueger, G.; Van Der Zwaag, W.; Van De Moortele, P.F.; Gruetter, R. MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. NeuroImage 2010, 49, 1271–1281. [Google Scholar] [CrossRef] [Green Version]
- Metere, R.; Kober, T.; Möller, H.E.; Schäfer, A. Simultaneous quantitative MRI mapping of T1, T2* and magnetic susceptibility with multi-echo MP2RAGE. PLoS ONE 2017, 12, e0169265. [Google Scholar] [CrossRef]
- Bazin, P.L.; Alkemade, A.; Van Der Zwaag, W.; Caan, M.; Mulder, M.; Forstmann, B.U. Denoising high-field multi-dimensional MRI with local complex PCA. Front. Neurosci. 2019, 13, 1066. [Google Scholar] [CrossRef]
- Visser, E.; Keuken, M.C.; Douaud, G.; Gaura, V.; Bachoud-Lévi, A.C.; Rémy, P.; Forstmann, B.U.; Jenkinson, M. Automatic segmentation of the striatum and globus pallidus using MIST: Multimodal image segmentation tool. NeuroImage 2016, 125, 479–497. [Google Scholar] [CrossRef] [Green Version]
- Visser, E.; Keuken, M.C.; Forstmann, B.U.; Jenkinson, M. Automated segmentation of the substantia nigra, subthalamic nucleus and red nucleus in 7 T data at young and old age. NeuroImage 2016, 139, 324–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isaacs, B.R.; Mulder, M.J.; Groot, J.; Van Berendonk, N.; Lute, N.; Bazin, P.L.; Forstmann, B. 3 versus 7 Tesla MRI for parcellations of subcortical brain structures. bioRxiv 2020. under review. [Google Scholar]
- Somasundaram, K.; Kalavathi, P. Analysis of imaging artifacts in MR brain images. Orient J. Comput. Sci. Technol. 2012, 5, 135–141. [Google Scholar]
- Mulder, M.J.; Keuken, M.C.; Bazin, P.L.; Alkemade, A.; Forstmann, B.U. Size and shape matter: The impact of voxel geometry on the identification of small nuclei. PLoS ONE 2019, 14, e0215382. [Google Scholar] [CrossRef]
- Van Reeth, E.; Tham, I.W.K.; Tan, C.H.; Poh, C.L. Super-resolution in magnetic resonance imaging: A review. Concepts Magn. Reson. Part. A 2012, 40A, 306–325. [Google Scholar] [CrossRef]
- Chen, S.Y.; Tsai, S.T.; Li, S.H. Controversial issues in deep brain stimulation in Parkinson’s disease. Towar. New Ther. Park. Dis. 2011, 2, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Mirzadeh, Z.; Chapple, K.M.; Lambert, M.; Shill, H.A.; Moguel-Cobos, G.; Tröster, A.I.; Dhall, R.; Ponce, F.A. Clinical outcomes following awake and asleep deep brain stimulation for Parkinson disease. J. Neurosurg. 2018, 130, 109–120. [Google Scholar] [CrossRef] [Green Version]
- Hardaway, F.A.; Raslan, A.M.; Burchiel, K.J. Deep brain stimulation-related infections: Analysis of rates, timing, and Seasonality. Neurosurgery 2017, 83, 540–547. [Google Scholar] [CrossRef]
- Pouratian, N. Stereotactic and Functional Neurosurgery: Principles and Applications; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Aman, J.E.; Johnson, L.; Sanabria, D.E.; Wang, J.; Patriat, R.; Hill, M.; Marshall, E.; MacKinnon, C.D.; Cooper, S.E.; Schrock, L.E.; et al. Directional deep brain stimulation leads reveal spatially distinct oscillatory activity in the globus pallidus internus of Parkinson’s disease patients. Neurobiol. Dis. 2020, 139, 104819. [Google Scholar] [CrossRef]
- Tinkhauser, G.; Pogosyan, A.; Debove, I.; Nowacki, A.; Shah, S.A.; Seidel, K.; Tan, H.; Brittain, J.S.; Petermann, K.; Di Biase, L.; et al. Directional local field potentials: A tool to optimize deep brain stimulation. Mov. Disord. 2017, 33, 159–164. [Google Scholar] [CrossRef]
- Anderson, D.N.; Anderson, C.; Lanka, N.; Sharma, R.; Butson, C.R.; Baker, B.W.; Dorval, A.D. The μDBS: Multiresolution, directional deep brain stimulation for improved targeting of small diameter fibers. Front. Neurosci. 2019, 13, 1152. [Google Scholar] [CrossRef] [PubMed]
- Budrys, T.; Veikutis, V.; Lukosevicius, S.; Gleizniene, R.; Monastyreckiene, E.; Kulakienė, I. Artifacts in magnetic resonance imaging: How it can really affect diagnostic image quality and confuse clinical diagnosis? J. Vibroengineering 2018, 20, 1202–1213. [Google Scholar] [CrossRef] [Green Version]
- Brau, A. New Parallel Imaging Method Enhances Imaging Speed and Accuracy. A GE Healthc MR Publ. 2007, 36–38. [Google Scholar]
- Deshmane, A.; Gulani, V.; Griswold, M.A.; Seiberlich, N. Parallel MR imaging. J. Magn. Reson. Imaging 2012, 36, 55–72. [Google Scholar] [CrossRef] [Green Version]
- Brau, A.C.; Beatty, P.J.; Skare, S.; Bammer, R. Comparison of reconstruction accuracy and efficiency among autocalibrating data-driven parallel imaging methods. Magn. Reson. Med. 2008, 59, 382–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blaimer, M.; Breuer, F.; Mueller, M.; Heidemann, R.; Griswold, M.A.; Jakob, P. SMASH, SENSE, PILS, GRAPPA. How to Choose the Optimal Method. Top. Magn. Reson. Imaging 2004, 15, 223–236. [Google Scholar] [CrossRef] [PubMed]
- Griswold, M.A.; Fromm, M.; Heidemann, R.; Nittka, M.; Jellus, V.; Wang, J.; Kiefer, B.; Haase, A. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn. Reson. Med. 2002, 47, 1202–1210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaitsev, M.; MacLaren, J.; Herbst, M. Motion artifacts in MRI: A complex problem with many partial solutions. J. Magn. Reson. Imaging 2015, 42, 887–901. [Google Scholar] [CrossRef]
- Havsteen, I.; Ohlhues, A.; Madsen, K.H.; Nybing, J.D.; Christensen, H.; Christensen, A. Are movement artifacts in magnetic resonance imaging a real problem? A narrative review. Front. Neurol. 2017, 8, 232. [Google Scholar] [CrossRef]
- Noël, P.; Bammer, R.; Reinhold, C.; Haider, M.A. Parallel imaging artifacts in body magnetic resonance imaging. Can. Assoc. Radiol. J. 2009, 60, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Godenschweger, F.; Kägebein, U.; Stucht, D.; Yarach, U.; Sciarra, A.; Yakupov, R.; Lüsebrink, F.; Schulze, P.; Speck, O. Motion correction in MRI of the brain. Phys. Med. Biol. 2016, 61, R32–R56. [Google Scholar] [CrossRef] [PubMed]
- Callaghan, M.F.; Ejosephs, O.; Eherbst, M.; Ezaitsev, M.; Etodd, N.; Eweiskopf, N. An evaluation of prospective motion correction (PMC) for high resolution quantitative MRI. Front. Neuroscience 2015, 9, 97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacLaren, J.; Herbst, M.; Speck, O.; Zaitsev, M. Prospective motion correction in brain imaging: A review. Magn. Reson. Med. 2012, 69, 621–636. [Google Scholar] [CrossRef] [PubMed]
- Wadghiri, Y.Z.; Johnson, G.; Turnbull, D.H. Sensitivity and performance time in MRI dephasing artifact reduction methods. Magn. Reson. Med. 2001, 45, 470–476. [Google Scholar] [CrossRef]
- Duerk, J.L.; Simonetti, O.P. Theoretical aspects of motion sensitivity and compensation in echo-planar imaging. J. Magn. Reson. Imaging 1991, 1, 643–650. [Google Scholar] [CrossRef]
- Felmlee, J.P.; Ehman, R.L.; Riederer, S.J.; Korin, H.W. Adaptive motion compensation in MRI: Accuracy of motion measurement. Magn. Reson. Med. 1991, 18, 207–213. [Google Scholar] [CrossRef]
- Mirzadeh, Z.; Chapple, K.; Lambert, M.; Dhall, R.; Ponce, F.A. Validation of CT-MRI fusion for intraoperative assessment of stereotactic accuracy in DBS surgery. Mov. Disord. 2014, 29, 1788–1795. [Google Scholar] [CrossRef]
- Geevarghese, R.; O’Gorman, R.; Lumsden, D.E.; Samuel, M.; Ashkan, K. Registration accuracy of CT/MRI fusion for localisation of deep brain stimulation electrode position: An imaging study and systematic review. Ster. Funct. Neurosurg. 2016, 94, 159–163. [Google Scholar] [CrossRef] [Green Version]
- Nandish, S.; Prabhu, K.G.; Rajagopal, K.V. Multiresolution image registration for multimodal brain images and fusion for better neurosurgical planning. Biomed. J. 2017, 40, 329–338. [Google Scholar] [CrossRef]
- Doltra, A.; Stawowy, P.; Dietrich, T.; Schneeweis, C.; Fleck, E.; Kelle, S. Magnetic resonance imaging of cardiovascular fibrosis and inflammation: From clinical practice to animal studies and back cardiovascular MRI view project magnetic resonance imaging of cardiovascular fibrosis and inflammation: From clinical practice to ani. Biomed Res Int. 2013, 2013, 676489. [Google Scholar] [CrossRef]
- Charles Stud, A.; Ramamurthy, N. Interpolation of the histogramed MR brain images for resolution enhancement. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 1253–1256. [Google Scholar] [CrossRef]
- Woods, R.P.; Grafton, S.T.; Holmes, C.J.; Cherry, S.R.; Mazziotta, J.C. Automated image registration: I. general methods and intrasubject, intramodality validation. J. Comput. Assist. Tomogr. 1998, 22, 139–152. [Google Scholar] [CrossRef] [PubMed]
- Glasser, M.F.; Sotiropoulos, S.; Wilson, J.A.; Coalson, T.S.; Fischl, B.; Andersson, J.L.; Xu, J.; Jbabdi, S.; Webster, M.; Polimeni, J.R.; et al. The minimal preprocessing pipelines for the human connectome project. NeuroImage 2013, 80, 105–124. [Google Scholar] [CrossRef] [Green Version]
- Greve, D.N.; Fischl, B. Accurate and robust brain image alignment using boundary-based registration. NeuroImage 2009, 48, 63–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iglesias, J.E.; Sabuncu, M.R. Multi-atlas segmentation of biomedical images: A survey. Med. Image Anal. 2015, 24, 205–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ou, Y.; Sotiras, A.; Paragios, N.; Davatzikos, C. DRAMMS: Deformable registration via attribute matching and mutual-saliency weighting. Med. Image Anal. 2011, 15, 622–639. [Google Scholar] [CrossRef] [PubMed]
- El-Gamal, F.E.Z.A.; Elmogy, M.; Atwan, A. Current trends in medical image registration and fusion. Egypt. Inform. J. 2016, 17, 99–124. [Google Scholar] [CrossRef] [Green Version]
- De Hollander, G.; Keuken, M.C.; Forstmann, B.U. The subcortical cocktail problem; mixed signals from the subthalamic nucleus and substantia nigra. PLoS ONE 2015, 10, e0120572. [Google Scholar] [CrossRef]
- Alkemade, A.; Mulder, M.J.; Groot, J.M.; Isaacs, B.R.; van Berendonk, N.; Lute, N.; Isherwood, S.J.S.; Bazin, P.-L.; Forstmann, B.U. The Amsterdam Ultra-high field adult lifespan database (AHEAD): A freely available multimodal 7 Tesla submillimeter magnetic resonance imaging database. NeuroImage 2002, 221, 117200. [Google Scholar] [CrossRef]
- Lambert, C.; Lutti, A.; Helms, G.; Frackowiak, R.; Ashburner, J. Multiparametric brainstem segmentation using a modified multivariate mixture of Gaussians. NeuroImage Clin. 2013, 2, 684–694. [Google Scholar] [CrossRef] [Green Version]
- Jara, H. Theory of Quantitative Magnetic Resonance Imaging; World Scientific Publishing Co.: New Jersey, NJ, USA, 2013. [Google Scholar]
- Stüber, C.; Morawski, M.; Schäfer, A.; Labadie, C.; Wähnert, M.; Leuze, C.; Streicher, M.; Barapatre, N.; Reimann, K.; Geyer, S.; et al. Myelin and iron concentration in the human brain: A quantitative study of MRI contrast. Neuroimage 2014, 93, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Harkins, K.D.; Xu, J.; Dula, A.N.; Li, K.; Valentine, W.M.; Gochberg, D.F.; Gore, J.C.; Does, M.D. The microstructural correlates of T1 in white matter. Magn Reson Med. 2016, 75, 1341–1345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polders, D. Quantitative MRI of the Human Brain at 7 tesla. Ph.D. Thesis, Utrecht University, Utrecht, The Netherlands, 2012. [Google Scholar]
- Deoni, S.C.; Peters, T.M.; Rutt, B.K. High-resolutionT1 andT2 mapping of the brain in a clinically acceptable time with DESPOT1 and DESPOT2. Magn. Reson. Med. 2005, 53, 237–241. [Google Scholar] [CrossRef] [PubMed]
- Deoni, S.C. High-resolution T1 mapping of the brain at 3T with driven equilibrium single pulse observation of T1 with high-speed incorporation of RF field inhomogeneities (DESPOT1-HIFI). J. Magn. Reson. Imaging 2007, 26, 1106–1111. [Google Scholar] [CrossRef] [PubMed]
- Dekkers, I.A.; De Boer, A.; Sharma, K.; Cox, E.F.; Lamb, H.J.; Buckley, D.L.; Bane, O.; Morris, D.M.; Prasad, P.V.; Semple, S.I.K.; et al. Consensus-based technical recommendations for clinical translation of renal T1 and T2 mapping MRI. Magn. Reson. Mater. Physics Biol. Med. 2020, 33, 163–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keuken, M.C.; Bazin, P.-L.; Backhouse, K.; Beekhuizen, S.; Himmer, L.; Kandola, A.; Lafeber, J.J.; Prochazkova, L.; Trutti, A.C.; Schäfer, A.; et al. Effects of aging on T₁, T₂*, and QSM MRI values in the subcortex. Brain Struct. Funct. 2017, 222, 2487–2505. [Google Scholar] [CrossRef] [Green Version]
- Milford, D.; Rosbach, N.; Bendszus, M.; Heiland, S. Mono-exponential fitting in T2-relaxometry: Relevance of offset and first echo. PLoS ONE 2015, 10, e0145255. [Google Scholar] [CrossRef] [Green Version]
- Schweser, F.; Sommer, K.; Deistung, A.; Reichenbach, J.R. Quantitative susceptibility mapping for investigating subtle susceptibility variations in the human brain. NeuroImage 2012, 62, 2083–2100. [Google Scholar] [CrossRef]
- Cronin, M.J.; Wharton, S.; Al-Radaideh, A.; Constantinescu, C.S.; Evangelou, N.; Bowtell, R.; Gowland, P. A comparison of phase imaging and quantitative susceptibility mapping in the imaging of multiple sclerosis lesions at ultrahigh field. Magn. Reson. Mater. Physics Biol. Med. 2016, 29, 543–557. [Google Scholar] [CrossRef] [Green Version]
- Acosta-Cabronero, J.; Milovic, C.; Mattern, H.; Tejos, C.; Speck, O.; Callaghan, M.F. A robust multi-scale approach to quantitative susceptibility mapping. NeuroImage 2018, 183, 7–24. [Google Scholar] [CrossRef]
- Liu, C.; Li, W.; Tong, K.A.; Yeom, K.W.; Kuzminski, S. Susceptibility-weighted imaging and quantitative susceptibility mapping in the brain. J. Magn. Reson. Imaging 2014, 42, 23–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langkammer, C.; Schweser, F.; Krebs, N.; Deistung, A.; Goessler, W.; Scheurer, E.; Sommer, K.; Reishofer, G.; Yen, K.; Fazekas, F.; et al. Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation study. NeuroImage 2012, 62, 1593–1599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, J.; Bao, L.; Li, X.; Van Zijl, P.C.; Chen, Z. Background field removal for susceptibility mapping of human brain with large susceptibility variations. Magn. Reson. Med. 2019, 81, 2025–2037. [Google Scholar] [CrossRef] [PubMed]
- Fortier, V.; Levesque, I.R. Phase processing for quantitative susceptibility mapping of regions with large susceptibility and lack of signal. Magn. Reson. Med. 2017, 79, 3103–3113. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, T. Quantitative susceptibility mapping (QSM): Decoding MRI data for a tissue magnetic biomarker. Magn. Reson. Med. 2014, 73, 82–101. [Google Scholar] [CrossRef] [Green Version]
- Zhou, N.; Liu, T.; Spincemaille, P.; Wang, Y. Background field removal by solving the Laplacian boundary value problem. NMR Biomed. 2014, 27, 312–319. [Google Scholar] [CrossRef]
- Li, W.; Avram, A.V.; Wu, B.; Xiao, X.; Liu, C. Integrated Laplacian-based phase unwrapping and background phase removal for quantitative susceptibility mapping. NMR Biomed. 2013, 27, 219–227. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Spincemaille, P.; De Rochefort, L.; Kressler, B.; Wang, Y. Calculation of susceptibility through multiple orientation sampling (COSMOS): A method for conditioning the inverse problem from measured magnetic field map to susceptibility source image in MRI. Magn. Reson. Med. 2009, 61, 196–204. [Google Scholar] [CrossRef]
- Schäfer, A.; Forstmann, B.U.; Neumann, J.; Wharton, S.; Mietke, A.; Bowtell, R.; Turner, R. Direct visualization of the subthalamic nucleus and its iron distribution using high-resolution susceptibility mapping. Neuroimage 2012, 46, 2831–2842. [Google Scholar] [CrossRef]
- Schweser, F.; Zivadinov, R. Quantitative susceptibility mapping (QSM) with an extended physical model for MRI frequency contrast in the brain: A proof-of-concept of quantitative susceptibility and residual (QUASAR) mapping. NMR Biomed. 2018, 31, e3999. [Google Scholar] [CrossRef]
- Chatnuntawech, I.; McDaniel, P.; Cauley, S.F.; Gagoski, B.A.; Langkammer, C.; Martin, A.; Grant, P.E.; Wald, L.L.; Setsompop, K.; Adalsteinsson, E.; et al. Single-step quantitative susceptibility mapping with variational penalties. NMR Biomed. 2017, 30, e3570. [Google Scholar] [CrossRef] [PubMed]
- Langkammer, C.; Schweser, F.; Shmueli, K.; Kames, C.; Li, X.; Guo, L.; Milovic, C.; Kim, J.; Wei, H.; Bredies, K.; et al. Quantitative susceptibility mapping: Report from the 2016 reconstruction challenge. Magn. Reson. Med. 2017, 79, 1661–1673. [Google Scholar] [CrossRef] [PubMed]
- Tabelow, K.; Balteau, E.; Ashburner, J.; Callaghan, M.F.; Draganski, B.; Helms, G.; Kherif, F.; Leutritz, T.; Lutti, A.; Phillips, C.; et al. hMRI—A toolbox for quantitative MRI in neuroscience and clinical research. NeuroImage 2019, 194, 191–210. [Google Scholar] [CrossRef]
- Wang, Y.; Spincemaille, P.; Liu, Z.; Dimov, A.; Deh, K.; Li, J.; Zhang, Y.; Yao, Y.; Gillen, K.M.; Wilman, A.H.; et al. Clinical quantitative susceptibility mapping (QSM): Biometal imaging and its emerging roles in patient care. J. Magn. Reson. Imaging 2017, 46, 951–971. [Google Scholar] [CrossRef] [PubMed]
- Fan, A.P.; Bilgic, B.; Gagnon, L.; Witzel, T.; Bhat, H.; Rosen, B.R.; Adalsteinsson, E. Quantitative oxygenation venography from MRI phase. Magn. Reson. Med. 2014, 72, 149–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wharton, S.; Bowtell, R. Effects of white matter microstructure on phase and susceptibility maps. Magn. Reson. Med. 2015, 73, 1258–1269. [Google Scholar] [CrossRef] [Green Version]
- Alkemade, A.; De Hollander, G.; Keuken, M.C.; Schäfer, A.; Ott, D.V.M.; Schwarz, J.; Weise, D.; Kotz, S.A.; Forstmann, B.U. Comparison of T2*-weighted and QSM contrasts in Parkinson’s disease to visualize the STN with MRI. PLoS ONE 2017, 12, e0176130. [Google Scholar] [CrossRef]
- Schweser, F.; Deistung, A.; Lehr, B.W.; Reichenbach, J.R. Differentiation between diamagnetic and paramagnetic cerebral lesions based on magnetic susceptibility mapping. Med. Phys. 2010, 37, 5165–5178. [Google Scholar] [CrossRef]
- Lönnfors-Weitzel, T.; Weitzel, T.; Slotboom, J.; Kiefer, C.; Pollo, C.; Schüpbach, M.; Oertel, M.; Kaelin, A.; Wiest, R. T2-relaxometry predicts outcome of DBS in idiopathic Parkinson’s disease. NeuroImage: Clin. 2016, 12, 832–837. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Lau, J.C.; Hemachandra, D.; Gilmore, G.; Khan, A.; Peters, T.M. Image guidance in deep brain stimulation surgery to treat Parkinson’s disease: A review. arXiv preprint 2020, arXiv:2003.04822. [Google Scholar] [CrossRef]
- Bernstein, J.E.; Kashyap, S.; Ray, K.; Ananda, A.K. Infections in Deep Brain Stimulator Surgery. Cureus 2019, 11, e5440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vedam-Mai, V.; Rodgers, C.; Gureck, A.; Vincent, M.; Ippolito, G.; Elkouzi, A.; Yachnis, A.T.; Foote, K.D.; Okun, M. Deep Brain Stimulation associated gliosis: A post-mortem study. Park. Relat. Disord. 2018, 54, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Park, C.K.; Jung, N.Y.; Kim, M.; Chang, J.W. Analysis of delayed intracerebral hemorrhage associated with deep brain stimulation surgery. World Neurosurg. 2017, 104, 537–544. [Google Scholar] [CrossRef] [PubMed]
- Albano, L.; Rohatgi, P.; Kashanian, A.; Bari, A.; Pouratian, N. Symptomatic pneumocephalus after deep brain stimulation surgery: Report of 2 cases. Ster. Funct. Neurosurg. 2020, 98, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Mao, Z.; Ling, Z.; Pan, L.; Xu, X.; Cui, Z.; Liang, S.; Yu, X. Comparison of efficacy of deep brain stimulation of different targets in Parkinson’s disease: A network meta-analysis. Front. Aging Neurosci. 2019, 11, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, D.; Beecher, G.; Ba, F. Deep brain stimulation in Parkinson’s disease: New and emerging targets for refractory motor and nonmotor symptoms. Park. Dis. 2017, 2017, 5124328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Isaacs, B.R.; Keuken, M.C.; Alkemade, A.; Temel, Y.; Bazin, P.-L.; Forstmann, B.U. Methodological Considerations for Neuroimaging in Deep Brain Stimulation of the Subthalamic Nucleus in Parkinson’s Disease Patients. J. Clin. Med. 2020, 9, 3124. https://doi.org/10.3390/jcm9103124
Isaacs BR, Keuken MC, Alkemade A, Temel Y, Bazin P-L, Forstmann BU. Methodological Considerations for Neuroimaging in Deep Brain Stimulation of the Subthalamic Nucleus in Parkinson’s Disease Patients. Journal of Clinical Medicine. 2020; 9(10):3124. https://doi.org/10.3390/jcm9103124
Chicago/Turabian StyleIsaacs, Bethany R., Max C. Keuken, Anneke Alkemade, Yasin Temel, Pierre-Louis Bazin, and Birte U. Forstmann. 2020. "Methodological Considerations for Neuroimaging in Deep Brain Stimulation of the Subthalamic Nucleus in Parkinson’s Disease Patients" Journal of Clinical Medicine 9, no. 10: 3124. https://doi.org/10.3390/jcm9103124
APA StyleIsaacs, B. R., Keuken, M. C., Alkemade, A., Temel, Y., Bazin, P. -L., & Forstmann, B. U. (2020). Methodological Considerations for Neuroimaging in Deep Brain Stimulation of the Subthalamic Nucleus in Parkinson’s Disease Patients. Journal of Clinical Medicine, 9(10), 3124. https://doi.org/10.3390/jcm9103124