PromarkerD Predicts Renal Function Decline in Type 2 Diabetes in the Canagliflozin Cardiovascular Assessment Study (CANVAS)
Abstract
:1. Introduction
2. Experimental Section
2.1. Participants
2.2. Clinical Assessment and Renal Outcomes
2.3. Predicting Renal Status Using PromarkerD Scores
2.4. Statistical Analyses
3. Results
3.1. Baseline Participant Characteristics and Renal Outcomes
3.2. Prognostic and Diagnostic PromarkerD test Performance
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Centers for Disease Control and Prevention. National Diabetes Statistics Report: Estimates of Diabetes and Its Burden in the United States. Available online: https://www.cdc.gov/diabetes/pdfs/data/statistics/national-diabetes-statistics-report.pdf (accessed on 2 April 2020).
- Kidney Disease: Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group, M. KDIGO 2012 Clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. Suppl. 2013, 3, 1–150.
- Centers for Disease Control and Prevention. Chronic Kidney Disease in the United States, 2019. Available online: https://www.cdc.gov/kidneydisease/pdf/2019_National-Chronic-Kidney-Disease-Fact-Sheet.pdf (accessed on 2 April 2020).
- Mokdad, A.H.; Ballestros, K.; Echko, M.; Glenn, S.; Olsen, H.E.; Mullany, E.; Lee, A.; Khan, A.R.; Ahmadi, A.; Ferrari, A.J.; et al. The State of US Health, 1990-2016: Burden of Diseases, Injuries, and Risk Factors Among US States. JAMA 2018, 319, 1444–1472. [Google Scholar] [PubMed] [Green Version]
- Naresh, C.N.; Hayen, A.; Weening, A.; Craig, J.C.; Chadban, S.J. Day-to-day variability in spot urine albumin-creatinine ratio. Am. J. Kidney Dis. 2013, 62, 1095–1101. [Google Scholar] [CrossRef] [PubMed]
- Dunkler, D.; Gao, P.; Lee, S.F.; Heinze, G.; Clase, C.M.; Tobe, S.; Teo, K.K.; Gerstein, H.; Mann, J.F.; Oberbauer, R. Risk Prediction for Early CKD in Type 2 Diabetes. Clin. J. Am. Soc. Nephrol. 2015, 10, 1371–1379. [Google Scholar] [CrossRef] [PubMed]
- Mottl, A.K.; Kwon, K.S.; Mauer, M.; Mayer-Davis, E.J.; Hogan, S.L.; Kshirsagar, A.V. Normoalbuminuric diabetic kidney disease in the U.S. population. J. Diabetes Complic. 2013, 27, 123–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, C.H.; Chang, Y.C.; Chuang, L.M. Early detection of diabetic kidney disease: Present limitations and future perspectives. World J. Diabetes 2016, 7, 290–301. [Google Scholar] [CrossRef] [PubMed]
- Bringans, S.D.; Ito, J.; Stoll, T.; Winfield, K.; Phillips, M.; Peters, K.; Davis, W.A.; Davis, T.M.E.; Lipscombe, R.J. Comprehensive mass spectrometry based biomarker discovery and validation platform as applied to diabetic kidney disease. EuPA Open Proteom. 2017, 14, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Peters, K.E.; Davis, W.A.; Ito, J.; Winfield, K.; Stoll, T.; Bringans, S.D.; Lipscombe, R.J.; Davis, T.M.E. Identification of Novel Circulating Biomarkers Predicting Rapid Decline in Renal Function in Type 2 Diabetes: The Fremantle Diabetes Study Phase II. Diabetes Care 2017, 40, 1548–1555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peters, K.E.; Davis, W.A.; Ito, J.; Bringans, S.D.; Lipscombe, R.J.; Davis, T.M.E. Validation of a protein biomarker test for predicting renal decline in type 2 diabetes: The Fremantle Diabetes Study Phase II. J. Diabetes Complic. 2019, 33, 107406. [Google Scholar] [CrossRef] [PubMed]
- Neal, B.; Perkovic, V.; Mahaffey, K.W.; de Zeeuw, D.; Fulcher, G.; Erondu, N.; Shaw, W.; Law, G.; Desai, M.; Matthews, D.R. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N. Engl. J. Med. 2017, 377, 644–657. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Inker, L.A.; Matsushita, K.; Greene, T.; Willis, K.; Lewis, E.; de Zeeuw, D.; Cheung, A.K.; Coresh, J. GFR decline as an end point for clinical trials in CKD: A scientific workshop sponsored by the National Kidney Foundation and the US Food and Drug Administration. Am. J. Kidney Dis. 2014, 64, 821–835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bringans, S.; Peters, K.; Casey, T.; Lipscombe, R.; Thomas, S.; Pennington, S.; Coleman, O.; Ebhardt, H. PromarkerD as an immunoaffinity mass spectrometry assay for diabetic kidney disease (under review at Clinical Proteomics). In Proceedings of the 18th Human Proteome Organization World Congress, Adelaide, Australia, 15–19 September 2019. [Google Scholar]
- Davis, T.M.; Bruce, D.G.; Davis, W.A. Cohort profile: the Fremantle Diabetes Study. Int. J. Epidemiol. 2013, 42, 412–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Calster, B.; Van Hoorde, K.; Vergouwe, Y.; Bobdiwala, S.; Condous, G.; Kirk, E.; Bourne, T.; Steyerberg, E.W. Validation and updating of risk models based on multinomial logistic regression. Diagn. Progn. Res. 2017, 1, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoll, T.; Bringans, S.; Winfield, K.; Casey, T.; Davis, W.; Peters, K.; Davis, T.; Lipscombe, R. Biomarkers associated with pre-diabetes, diabetes and diabetes related conditions. Pub. No.: WO/2012/037603, International Application No.: PCT/AU2011/001212; Granted USA (9,146,243); Australia (2011302050), 29 March 2012.
Characteristic | PBO | CANA | Total |
---|---|---|---|
Number of samples (%) | 1195 (33.5) | 2373 (66.5) | 3568 |
Age (years) | 62.5 ± 7.8 | 62.8 ± 7.9 | 62.7 ± 7.9 |
Female sex, n (%) | 394 (33.0) | 783 (32.9) | 1177 (33.0) |
BMI (kg/m2) | 32.6 ± 6.2 | 32.7 ± 6.1 | 32.7 ± 6.1 |
Diabetes duration (years) * | 12.0 (8.0–17.0) | 13.0 (8.0–18.0) | 12.4 (8.0–18.0) |
Fasting plasma glucose (mmol/L) * | 9.0 (7.5–10.9) | 9.1 (7.6–10.8) | 9.0 (7.6–10.9) |
HbA1c (%) * | 8.0 (7.5–8.7) | 8.0 (7.5–8.7) | 8.0 (7.5–8.7) |
Serum total cholesterol (mmol/L) | 4.4 ± 1.2 | 4.4 ± 1.1 | 4.4 ± 1.2 |
Serum HDL-cholesterol (mmol/L) | 1.19 ± 0.31 | 1.20 ± 0.32 | 1.19 ± 0.32 |
Serum triglycerides (mmol/L) † | 1.7 (1.0–2.9) | 1.7 (1.1–2.8) | 1.7 (1.0–2.9) |
Systolic blood pressure (mmHg) | 137 ± 16 | 136 ± 16 | 137 ± 16 |
Diastolic blood pressure (mmHg) | 78 ± 10 | 77 ± 10 | 78 ± 10 |
Diuretic use, n (%) | 555 (46.4) | 1101 (46.4) | 1656 (46.4) |
History of heart failure, n (%) | 173 (14.5) | 298 (12.6) | 471 (13.2) |
Urine albumin to creatinine ratio (mg/g) * | 11.6 (6.2–37.1) | 11.7 (6.5–34.6) | 11.7 (6.4–35.6) |
eGFR (mL/min/1.73m2) | 76.8 ± 18.9 | 77.1 ± 18.7 | 77.0 ± 18.8 |
eGFR < 60 mL/min/1.73m2, n (%) | 212 (17.7) | 376 (15.8) | 588 (16.5) |
PromarkerD Score (Outcome) | Treatment Arm | Number with Outcome/Total (%) | Odds Ratios (95% CI), p-value | ||
---|---|---|---|---|---|
Continuous | Risk Category (Mod vs. Low) | Risk Category (High vs. Low) | |||
Prognostic * (Incident CKD) | PBO | 274/982 (27.9%) | 1.85 (1.67–2.06) 2.0 × 10−31 | 4.04 (2.75–5.93) 1.1 × 10−12 | 10.78 (7.21–16.12) 5.0 × 10−31 |
PBO + CANA | 926/2976 (31.1%) | 2.02 (1.90–2.15) 2.3 × 10−109 | 5.29 (4.22–6.64) 2.8 × 10−47 | 13.52 (10.69–17.11) 1.3 × 10−104 | |
Prognostic * (Decline ≥30%) | PBO | 187/1179 (15.9%) | 0.98 (0.85–1.13) 0.76 | 0.64 (0.23–1.74) 0.38 | N/A † |
PBO + CANA | 564/3525 (16.0%) | 1.13 (1.04–1.24) 5.0 × 10−3 | 1.73 (0.96–3.12) 0.068 | N/A † | |
Diagnostic (Baseline CKD) | PBO + CANA | 1351/3551 (38.0%) | 1.02 (1.01–1.02) 4.3 × 10−14 | 1.52 (1.28–1.80) 1.0 × 10−6 | 2.94 (2.19–3.95) 9.9 × 10−13 |
Participants | PromarkerD Scores | ||||
---|---|---|---|---|---|
Prognostic (Incident CKD) | Prognostic (Decline ≥30%) | Diagnostic (Baseline CKD) | |||
PBO | PBO + CANA | PBO | PBO + CANA | PBO + CANA | |
Number of Subjects | 982 | 2976 | 1179 | 3525 | 3551 |
Observed outcomes (%) | 274 (27.9%) | 926 (31.1%) | 187 (15.9%) | 564 (16.0%) | 1351 (38.0%) |
AUC (95%CI) | 0.79 (0.76–0.82) | 0.81 (0.80–0.83) | 0.49 (0.45–0.54) | 0.54 (0.52–0.57) | 0.58 (0.56–0.60) |
At max YI cut-off: | (7.1%) | (5.9%) | (5.6%) | (2.8%) | (38.9%) |
Sensitivity (%) | 69.3 | 73.2 | 16.6 | 45.9 | 61.2 |
Specificity (%) | 76.7 | 76.8 | 90.0 | 62.4 | 50.0 |
PPV (%) | 53.5 | 58.8 | 23.8 | 18.9 | 42.9 |
NPV (%) | 86.6 | 86.4 | 85.1 | 85.8 | 67.7 |
At moderate-risk cut-off *: | |||||
Sensitivity (%) | 59.1 | 60.6 | 2.7 | 2.7 | 81.4 |
Specificity (%) | 81.8 | 84.6 | 98.3 | 98.4 | 26.9 |
PPV (%) | 55.7 | 64.0 | 22.7 | 24.6 | 40.6 |
NPV (%) | 83.8 | 82.6 | 84.3 | 84.2 | 70.2 |
At high-risk cut-off *: | |||||
Sensitivity (%) | 35.8 | 37.7 | N/A† | N/A † | 9.7 |
Specificity (%) | 93.4 | 94.0 | 95.2 | ||
PPV (%) | 67.6 | 73.9 | 55.5 | ||
NPV (%) | 79.0 | 77.0 | 63.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peters, K.E.; Xu, J.; Bringans, S.D.; Davis, W.A.; Davis, T.M.E.; Hansen, M.K.; Lipscombe, R.J. PromarkerD Predicts Renal Function Decline in Type 2 Diabetes in the Canagliflozin Cardiovascular Assessment Study (CANVAS). J. Clin. Med. 2020, 9, 3212. https://doi.org/10.3390/jcm9103212
Peters KE, Xu J, Bringans SD, Davis WA, Davis TME, Hansen MK, Lipscombe RJ. PromarkerD Predicts Renal Function Decline in Type 2 Diabetes in the Canagliflozin Cardiovascular Assessment Study (CANVAS). Journal of Clinical Medicine. 2020; 9(10):3212. https://doi.org/10.3390/jcm9103212
Chicago/Turabian StylePeters, Kirsten E., Jialin Xu, Scott D. Bringans, Wendy A. Davis, Timothy M.E. Davis, Michael K. Hansen, and Richard J. Lipscombe. 2020. "PromarkerD Predicts Renal Function Decline in Type 2 Diabetes in the Canagliflozin Cardiovascular Assessment Study (CANVAS)" Journal of Clinical Medicine 9, no. 10: 3212. https://doi.org/10.3390/jcm9103212
APA StylePeters, K. E., Xu, J., Bringans, S. D., Davis, W. A., Davis, T. M. E., Hansen, M. K., & Lipscombe, R. J. (2020). PromarkerD Predicts Renal Function Decline in Type 2 Diabetes in the Canagliflozin Cardiovascular Assessment Study (CANVAS). Journal of Clinical Medicine, 9(10), 3212. https://doi.org/10.3390/jcm9103212