One Year’s Treatment with the Glucagon-Like Peptide 1 Receptor Agonist Liraglutide Decreases Hepatic Fat Content in Women with Nonalcoholic Fatty Liver Disease and Prior Gestational Diabetes Mellitus in a Randomized, Placebo-Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Outcomes
2.2. Participants and Recruitment
2.3. Procedures
2.3.1. Transient Elastography and Ultrasonography
2.3.2. Dual Energy X-ray Absorptiometry
2.3.3. Alcohol Consumption
2.3.4. Biochemical Measurements
2.3.5. Calculation of Indices
2.4. Statistical Methods
3. Results
3.1. Effects of the Intervention
3.1.1. Abdominal Ultrasound, Transient Elastography with CAP, Liver Enzymes, and Inflammation Markers
3.1.2. Body Weight and Body Composition
3.1.3. Plasma Glucose, HbA1c, Insulin, Glucagon, and Insulin Resistance
3.1.4. Heart Rate, Blood Pressure, and Lipids
3.2. Effect of Liraglutide in Participants with and without NAFLD
TE with CAP, Liver Enzymes, and Inflammation Markers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pappachan, J.M.; Antonio, F.A.; Edavalath, M.; Mukherjee, A. Non-alcoholic fatty liver disease: A diabetologist’s perspective. Endocrine 2014, 45, 344–353. [Google Scholar] [CrossRef] [PubMed]
- Targher, G.; Bertolini, L.; Padovani, R.; Rodella, S.; Tessari, R.; Zenari, L.; Day, C.; Arcaro, G. Prevalence of nonalcoholic fatty liver disease and its association with cardiovascular disease among type 2 diabetic patients. Diabetes Care 2007, 30, 1212–1218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byrne, C.D.; Targher, G. European Association for the Study of Obesity (EASO) EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. Diabetologia 2016, 59, 1121–1140. [Google Scholar] [CrossRef] [Green Version]
- Adams, L.A.; Lymp, J.F.; St Sauver, J.; Sanderson, S.O.; Lindor, K.D.; Feldstein, A.; Angulo, P. The natural history of nonalcoholic fatty liver disease: A population-based cohort study. Gastroenterology 2005, 129, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Angulo, P. GI epidemiology: Nonalcoholic fatty liver disease. Aliment. Pharmacol. Ther. 2007, 25, 883–889. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatol. Baltim. Md 2016, 64, 73–84. [Google Scholar] [CrossRef] [Green Version]
- Lonardo, A.; Sookoian, S.; Pirola, C.J.; Targher, G. Non-alcoholic fatty liver disease and risk of cardiovascular disease. Metabolism. 2016, 65, 1136–1150. [Google Scholar] [CrossRef]
- du Plessis, J.; van Pelt, J.; Korf, H.; Mathieu, C.; van der Schueren, B.; Lannoo, M.; Oyen, T.; Topal, B.; Fetter, G.; Nayler, S.; et al. Association of adipose tissue inflammation with histologic severity of nonalcoholic fatty liver disease. Gastroenterology 2015, 149, 635–648.e14. [Google Scholar] [CrossRef] [Green Version]
- Kazankov, K.; Barrera, F.; Møller, H.J.; Rosso, C.; Bugianesi, E.; David, E.; Ibrahim Kamal Jouness, R.; Esmaili, S.; Eslam, M.; McLeod, D.; et al. The macrophage activation marker sCD163 is associated with morphological disease stages in patients with non-alcoholic fatty liver disease. Liver Int. Off. J. Int. Assoc. Study Liver 2016, 36, 1549–1557. [Google Scholar] [CrossRef]
- Foghsgaard, S.; Andreasen, C.; Vedtofte, L.; Andersen, E.S.; Bahne, E.; Strandberg, C.; Buhl, T.; Holst, J.J.; Svare, J.A.; Clausen, T.D.; et al. Nonalcoholic fatty liver disease is prevalent in women with prior gestational diabetes mellitus and independently associated with insulin resistance and waist circumference. Diabetes Care 2017, 40, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, M.J.; Gaunt, P.; Aithal, G.P.; Barton, D.; Hull, D.; Parker, R.; Hazlehurst, J.M.; Guo, K.; Abouda, G.; Aldersley, M.A.; et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): A multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet Lond. Engl. 2016, 387, 679–690. [Google Scholar] [CrossRef] [Green Version]
- Bouchi, R. Reduction of visceral fat by liraglutide is associated with ameliorations of hepatic steatosis, albuminuria, and micro-inflammation in type 2 diabetic patients with insulin treatment: A randomized control trial. Endocr. J. 2017, 64, 269–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuthbertson, D.J.; Irwin, A.; Gardner, C.J.; Daousi, C.; Purewal, T.; Furlong, N.; Goenka, N.; Thomas, E.L.; Adams, V.L.; Pushpakom, S.P.; et al. Improved glycaemia correlates with liver fat reduction in obese, type 2 diabetes, patients given glucagon-like peptide-1 (GLP-1) receptor agonists. PLoS ONE 2012, 7, e50117. [Google Scholar] [CrossRef] [PubMed]
- Dutour, A.; Abdesselam, I.; Ancel, P.; Kober, F.; Mrad, G.; Darmon, P.; Ronsin, O.; Pradel, V.; Lesavre, N.; Martin, J.C.; et al. Exenatide decreases liver fat content and epicardial adipose tissue in patients with obesity and type 2 diabetes: A prospective randomized clinical trial using magnetic resonance imaging and spectroscopy. Diabetes Obes. Metab. 2016, 18, 882–891. [Google Scholar] [CrossRef]
- Eguchi, Y.; Kitajima, Y.; Hyogo, H.; Takahashi, H.; Kojima, M.; Ono, M.; Araki, N.; Tanaka, K.; Yamaguchi, M.; Matsuda, Y.; et al. Pilot study of liraglutide effects in non-alcoholic steatohepatitis and non-alcoholic fatty liver disease with glucose intolerance in Japanese patients (LEAN-J). Hepatol. Res. Off. J. Jpn. Soc. Hepatol. 2015, 45, 269–278. [Google Scholar] [CrossRef]
- Feng, W. Randomized trial comparing the effects of gliclazide, liraglutide, and metformin on diabetes with non-alcoholic fatty liver disease. J. Diabetes 2017, 9, 800–809. [Google Scholar] [CrossRef] [Green Version]
- Frøssing, S.; Nylander, M.; Chabanova, E.; Frystyk, J.; Holst, J.J.; Kistorp, C.; Skouby, S.O.; Faber, J. Effect of liraglutide on ectopic fat in polycystic ovary syndrome: A randomized clinical trial. Diabetes Obes. Metab. 2017, 1–4. [Google Scholar] [CrossRef]
- García Díaz, E.; Guagnozzi, D.; Gutiérrez, V.; Mendoza, C.; Maza, C.; Larrañaga, Y.; Perdomo, D.; Godoy, T.; Taleb, G. Effect of incretin therapies compared to pioglitazone and gliclazide in non-alcoholic fatty liver disease in diabetic patients not controlled on metformin alone: An observational, pilot study. Endocrinol. Nutr. Organo Soc. Esp. Endocrinol. Nutr. 2016, 63, 194–201. [Google Scholar] [CrossRef]
- Hogan, A.E.; Gaoatswe, G.; Lynch, L.; Corrigan, M.A.; Woods, C.; O’Connell, J.; O’Shea, D. Glucagon-like peptide 1 analogue therapy directly modulates innate immune-mediated inflammation in individuals with type 2 diabetes mellitus. Diabetologia 2014, 57, 781–784. [Google Scholar] [CrossRef]
- Kenny, P.R.; Brady, D.E.; Torres, D.M.; Ragozzino, L.; Chalasani, N.; Harrison, S.A. Exenatide in the treatment of diabetic patients with non-alcoholic steatohepatitis: A case series. Am. J. Gastroenterol. 2010, 105, 2707–2709. [Google Scholar] [CrossRef]
- Marso, S.P.; Daniels, G.H.; Brown-Frandsen, K.; Kristensen, P.; Mann, J.F.E.; Nauck, M.A.; Nissen, S.E.; Pocock, S.; Poulter, N.R.; Ravn, L.S.; et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 2016, 375, 311–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petit, J.-M.; Cercueil, J.-P.; Loffroy, R.; Denimal, D.; Bouillet, B.; Fourmont, C.; Chevallier, O.; Duvillard, L.; Vergès, B. Effect of Liraglutide Therapy on Liver Fat Content in Patients With Inadequately Controlled Type 2 Diabetes: The Lira-NAFLD Study. J. Clin. Endocrinol. Metab. 2017, 102, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Seko, Y.; Sumida, Y.; Tanaka, S.; Mori, K.; Taketani, H.; Ishiba, H.; Hara, T.; Okajima, A.; Umemura, A.; Nishikawa, T.; et al. Effect of 12-week dulaglutide therapy in Japanese patients with biopsy-proven non-alcoholic fatty liver disease and type 2 diabetes mellitus. Hepatol. Res. Off. J. Jpn. Soc. Hepatol. 2017, 47, 1206–1211. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, D.; Toyoda, M.; Kimura, M.; Miyauchi, M.; Yamamoto, N.; Sato, H.; Tanaka, E.; Kuriyama, Y.; Miyatake, H.; Abe, M.; et al. Effects of liraglutide, a human glucagon-like peptide-1 analogue, on body weight, body fat area and body fat-related markers in patients with type 2 diabetes mellitus. Intern. Med. Tokyo Jpn. 2013, 52, 1029–1034. [Google Scholar] [CrossRef] [Green Version]
- Tushuizen, M.E.; Bunck, M.C.; Pouwels, P.J.; van Waesberghe, J.H.T.; Diamant, M.; Heine, R.J. Incretin mimetics as a novel therapeutic option for hepatic steatosis. Liver Int. Off. J. Int. Assoc. Study Liver 2006, 26, 1015–1017. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, M.J.; Hull, D.; Guo, K.; Barton, D.; Hazlehurst, J.M.; Gathercole, L.L.; Nasiri, M.; Yu, J.; Gough, S.C.; Newsome, P.N.; et al. Glucagon-like peptide 1 decreases lipotoxicity in non-alcoholic steatohepatitis. J. Hepatol. 2016, 64, 399–408. [Google Scholar] [CrossRef] [Green Version]
- Foghsgaard, S.; Vedtofte, L.; Mathiesen, E.R.; Svare, J.A.; Gluud, L.L.; Holst, J.J.; Damm, P.; Knop, F.K.; Vilsbøll, T. The effect of a glucagon-like peptide-1 receptor agonist on glucose tolerance in women with previous gestational diabetes mellitus: Protocol for an investigator-initiated, randomised, placebo-controlled, double-blinded, parallel intervention trial. BMJ Open 2013, 3, e003834. [Google Scholar] [CrossRef] [Green Version]
- Eddowes, P.J.; Sasso, M.; Allison, M.; Tsochatzis, E.; Anstee, Q.M.; Sheridan, D.; Guha, I.N.; Cobbold, J.F.; Deeks, J.J.; Paradis, V.; et al. Accuracy of FibroScan Controlled Attenuation Parameter and Liver Stiffness Measurement in Assessing Steatosis and Fibrosis in Patients With Non-alcoholic Fatty Liver Disease. Gastroenterology 2019. [Google Scholar] [CrossRef] [Green Version]
- Wewer Albrechtsen, N.J.; Hartmann, B.; Veedfald, S.; Windeløv, J.A.; Plamboeck, A.; Bojsen-Møller, K.N.; Idorn, T.; Feldt-Rasmussen, B.; Knop, F.K.; Vilsbøll, T.; et al. Hyperglucagonaemia analysed by glucagon sandwich ELISA: Nonspecific interference or truly elevated levels? Diabetologia 2014, 57, 1919–1926. [Google Scholar] [CrossRef] [Green Version]
- Møller, H.J.; Aerts, H.; Grønbaek, H.; Peterslund, N.A.; Hyltoft Petersen, P.; Hornung, N.; Rejnmark, L.; Jabbarpour, E.; Moestrup, S.K. Soluble CD163: A marker molecule for monocyte/macrophage activity in disease. Scand. J. Clin. Lab. Investig. Suppl. 2002, 237, 29–33. [Google Scholar] [CrossRef]
- Rødgaard-Hansen, S.; Rafique, A.; Christensen, P.A.; Maniecki, M.B.; Sandahl, T.D.; Nexø, E.; Møller, H.J. A soluble form of the macrophage-related mannose receptor (MR/CD206) is present in human serum and elevated in critical illness. Clin. Chem. Lab. Med. 2014, 52, 453–461. [Google Scholar] [CrossRef] [PubMed]
- Bagger, J.I.; Knop, F.K.; Lund, A.; Vestergaard, H.; Holst, J.J.; Vilsbøll, T. Impaired regulation of the incretin effect in patients with type 2 diabetes. J. Clin. Endocrinol. Metab. 2011, 96, 737–745. [Google Scholar] [CrossRef] [PubMed]
- Foghsgaard, S.; Vedtofte, L.; Andreasen, C.; Andersen, E.S.; Bahne, E.; Bagger, J.I.; Svare, J.A.; Holst, J.J.; Clausen, T.D.; Mathiesen, E.R.; et al. Women with prior gestational diabetes mellitus and prediabetes are characterised by a decreased incretin effect. Diabetologia 2017, 60, 1344–1353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foghsgaard, S.; Vedtofte, L.; Bahne, E.; Andreasen, C.; Mathiesen, E.R.; Svare, J.A.; Christiansen, L.; Holst, J.J.; Clausen, T.D.; Damm, P.; et al. Treatment with the glucagon-like peptide-1 receptor agonist liraglutide improves glycemic control in women with prior gestational diabetes mellitus: A randomized, placebo-controlled trial. Diabetes 2016, 65. [Google Scholar] [CrossRef] [Green Version]
- de Lédinghen, V.; Vergniol, J.; Foucher, J.; Merrouche, W.; le Bail, B. Non-invasive diagnosis of liver steatosis using controlled attenuation parameter (CAP) and transient elastography. Liver Int. Off. J. Int. Assoc. Study Liver 2012, 32, 911–918. [Google Scholar] [CrossRef] [PubMed]
- Myers, R.P.; Pollett, A.; Kirsch, R.; Pomier-Layrargues, G.; Beaton, M.; Levstik, M.; Duarte-Rojo, A.; Wong, D.; Crotty, P.; Elkashab, M. Controlled Attenuation Parameter (CAP): A noninvasive method for the detection of hepatic steatosis based on transient elastography. Liver Int. Off. J. Int. Assoc. Study Liver 2012, 32, 902–910. [Google Scholar] [CrossRef] [PubMed]
- Smits, M.M.; Tonneijck, L.; Muskiet, M.H.A.; Kramer, M.H.H.; Pouwels, P.J.W.; Pieters-van den Bos, I.C.; Hoekstra, T.; Diamant, M.; van Raalte, D.H.; Cahen, D.L. Twelve week liraglutide or sitagliptin does not affect hepatic fat in type 2 diabetes: A randomised placebo-controlled trial. Diabetologia 2016, 59, 2588–2593. [Google Scholar] [CrossRef] [Green Version]
- Tang, A.; Rabasa-Lhoret, R.; Castel, H.; Wartelle-Bladou, C.; Gilbert, G.; Massicotte-Tisluck, K.; Chartrand, G.; Olivié, D.; Julien, A.-S.; de Guise, J.; et al. Effects of insulin glargine and liraglutide therapy on liver fat as measured by magnetic resonance in patients with type 2 diabetes: A randomized trial. Diabetes Care 2015, 38, 1339–1346. [Google Scholar] [CrossRef] [Green Version]
- Kahal, H.; Abouda, G.; Rigby, A.S.; Coady, A.M.; Kilpatrick, E.S.; Atkin, S.L. Glucagon-like peptide-1 analogue, liraglutide, improves liver fibrosis markers in obese women with polycystic ovary syndrome and nonalcoholic fatty liver disease. Clin. Endocrinol. 2014, 81, 523–528. [Google Scholar] [CrossRef]
- Nauck, M.A.; Meier, J.J.; Cavender, M.A.; Abd El Aziz, M.; Drucker, D.J. Cardiovascular actions and clinical outcomes with glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors. Circulation 2017, 136, 849–870. [Google Scholar] [CrossRef]
- Rizzo, M.; Nikolic, D.; Banach, M.; Giglio, R.V.; Patti, A.M.; Di Bartelo, V.; Tamburello, A.; Zabbara, A.; Pecoraro, G.; Montalto, G.; et al. The effects of liraglutide on glucose, inflammatory markers and lipoprotein metabolism: Current knowledge and future perspective. Clin. Lipidol. 2013, 8, 173–181. [Google Scholar] [CrossRef]
- Chen, T.-Y.; Chen, C.-L.; Tsang, L.L.-C.; Huang, T.-L.; Wang, C.-C.; Concejero, A.M.; Lu, C.-H.; Cheng, Y.-F. Correlation between hepatic steatosis, hepatic volume, and spleen volume in live liver donors. Transplant. Proc. 2008, 40, 2481–2483. [Google Scholar] [CrossRef] [PubMed]
- Matikainen, N.; Söderlund, S.; Björnson, E.; Pietiläinen, K.; Hakkarainen, A.; Lundbom, N.; Taskinen, M.; Borén, J. Liraglutide treatment improves postprandial lipid metabolism and cardiometabolic risk factors in humans with adequately controlled type 2 diabetes: A single-centre randomized controlled study. Diabetes Obes. Metab. 2019, 21, 84–94. [Google Scholar] [CrossRef] [PubMed]
Placebo (A) | Liraglutide (B) | p-Value A vs. B | Placebo (C) | Liraglutide (D) | p-Value C vs. D | |
---|---|---|---|---|---|---|
Number (n) | 45 | 37 | 45 | 37 | ||
Age (years) | 38.3 (35.5;41.2) | 38.8 (34.3;40.7) | 0.42 | – | – | – |
Body weight (kg) | 83.9 (76.3;92.6) | 89.0 (75.4;107.2) | 0.14 | −1.4 (−3.0;0.3) | −4.7 (−6.4;−2.9) | <0.01 |
Body mass index (kg/m2) | 30.6 (28.4;33.0) | 32.1 (27.4;36.3) | 0.10 | −0.5 (−1.1;0.1) | −1.7 (−2.3;−1.1) | <0.01 |
Waist circumference (cm) | 104 (101;106) | 104 (99;110) | 0.78 | −2.2 (−4.5;0.1) | −3.4 (−6.0;−0.9) | 0.48 |
Waist:hip ratio | 0.9 (0.9;0.9) | 0.9 (0.9;0.9) | 0.75 | 0.00 (−0.02;0.03) | −0.01 (−0.04;0.02) | 0.57 |
Systolic blood pressure (mmHg) | 128 (125;132) | 125 (121;129) | 0.19 | −6.9 (−10.1;−3.7) | −6.4 (−10.0;−2.9) | 0.84 |
Diastolic blood pressure (mmHg) | 82 (79;84) | 80 (78;83) | 0.49 | −8.0 (−10.3;−5.6) | −5.1 (−7.7;−2.5) | 0.11 |
Heart rate (beats/min) | 68 (64;75) | 69 (62;78) | 0.66 | −2.7 (−5.2;−0.2) | 5.5 (2.2;8.9) | <0.01 |
Hemoglobin A1c (mmol/mol) | 31.8 (28.6;34.3) | 33.0 (29.5;36.0) | 0.38 | 0.6 (−0.4;1.5) | −2.0 (−3.3;−0.6) | <0.01 |
Hemoglobin A1c (%) | 5.1 (5.0;5.2) | 5.1 (5.0;5.3) | 0.38 | 0.05 (−0.03;0.13) | −0.18 (−0.30;−0.06) | <0.01 |
Parity (n) | 2.1 (1.9;2.3) | 2.3 (2.0;2.6) | 0.27 | – | – | – |
Time since first GDM pregnancy (years) | 4.9 (4.2;5.7) | 5.2 (4.1;6.2) | 0.69 | – | – | – |
Total cholesterol (mmol/L) | 4.6 (4.4;5.4) | 5.1 (4.4;5.7) | 0.15 | 0.95 (0.91;1.00) | 0.93 (0.89;0.97) | 0.49 |
HDL (mmol/L) | 1.2 (121;1.3) | 1.2 (1.1;1.3) | 0.99 | −0.1 (−0.2;0.0) | −0.1 (−0.1;0.0) | 0.35 |
LDL (mmol/L) | 2.9 (2.4;3.5) | 3.3 (2.4;3.7) | 0.25 | −0.1 (−0.3;0.1) | −0.2 (−0.4;0.0) | 0.51 |
VLDL (mmol/L) | 0.5 (0.3;0.6) | 0.5 (0.4;0.7) | 0.31 | 0.97 (0.86;1.09) | 0.92 (0.80;1.06) | 0.56 |
Triglycerides (mmol/L) | 1.0 (0.9;1.2) | 1.2 (1.0;1.4) | 0.31 | 0.94 (0.84;1.05) | 0.90 (0.78;1.02) | 0.53 |
Android:gynoid fat ratio | 1.1 (1.0;1.2) | 1.1 (1.0;1.2) | 0.99 | −0.03 (−0.05;−0.01) | −0.01 (−0.03;0.00) | 0.81 |
Total fat mass (%) | 43.7 (40.4;47.0) | 45.4 (39.3;50.0) | 0.41 | −1.2 (−2.1;−0.3) | −2.0 (−2.9;−1.1) | 0.23 |
Visceral fat mass (g) | 918 (785;1074) | 977 (778;1225) | 0.66 | 0.89 (0.80;0.99) | 0.84 (0.76;0.92) | 0.41 |
GGT (U/L) | 17.5 (15.7;19.6) | 19.2 (16.3;22.5) | 0.36 | 1.4 (−0.4;3.3) | 1.7 (0.6;2.7) | 0.84 |
ALT (U/L) | 24.6 (20.3;29.0) | 24.7 (22.2;27.1) | 0.98 | 1.17 (1.06;1.31) | 0.99 (0.89;1.00) | 0.05 |
AST (U/L) | 26.5 (24.0;28.9) | 26.4 (24.5;28.2) | 0.94 | 0.99 (0.91;1.06) | 0.93 (0.85;1.07) | 0.27 |
FLI | 61.7 (36.0;86.6) | 69.8 (33.5;80.2) | 0.66 | −4.2 (−17.3;5.8) p = 0.43 | −4.0 (−13.0;0.8) p = 0.37 | 0.52 |
HOMAIR | 1.7 (1.4;1.9) | 2.0 (1.7;2.3) | 0.06 | −0.1 (−0.2;0.1) | 0.0 (−0.2;0.2) | 0.36 |
Transient elastography (kPa) | 4.1 (3.8;4.4) | 4.5 (3.9;5.0) | 0.29 | – | – | – |
CAP (db/m) | 269 (246;284) | 276 (251;303) | 0.46 | 2.3 (−13.1;17.6) | −28.0 (−44.6;−11.4) | <0.01 |
S0 (n) | 37 | 28 | – | – | – | – |
S1 (n) | 4 | 5 | – | – | – | – |
S2 (n) | 0 | 1 | – | – | – | – |
S3 (n) | 4 | 3 | – | – | – | – |
sCD163 (mg/L) | 1.6 (1.5;1.8) | 1.6 (1.5;1.8) | 0.82 | 0.04 (−0.09;0.17) | −0.04 (−0.14;0.06) | 0.62 |
sMR (mg/L) | 0.22 (0.20;0.24) | 0.22 (0.20;0.24) | 0.89 | 0.03 (0.01;0.05) | 0.01 (−0.01;0.03) | 0.34 |
Fasting plasma glucose (mmol/L) | 5.3 (5.2;5.5) | 5.5 (5.3;5.6) | 0.19 | 0.0 (−0.2;0.1) | −0.4 (−0.6;−0.3) | <0.01 |
Fasting serum insulin (pmol/L) | 82.8 (57.4;109.8) | 101.7 (69.4;134.9) | 0.07 | −3.5 (−11.5;4.5) | 3.7 (−8.3;15.7) | 0.23 |
Fasting plasma glucagon (pmol/L) | 5.8 (5.1;6.6) | 6.5 (5.9;7.3) | 0.15 | 0.5 (−0.2;1.2) | 0.4 (−0.6;1.5) | 0.87 |
Alcohol (units/week) | 1.0 (1.0;1.0) | 1.0 (0.5;2.0) | 0.91 | 0.0 (−0.5;0.9) p = 0.18 | 0.0 (−0.8;1.0) p = 0.36 | 0.94 |
Placebo | Liraglutide | p-Value | p-Value | p-Value | |||
---|---|---|---|---|---|---|---|
Non-NAFLD (C1) | NAFLD (C2) | Non-NAFLD (D1) | NAFLD (D2) | C1 vs. C2 | D1 vs. D2 | C2 vs. D2 | |
Number (n) | 37 | 8 | 27 | 10 | |||
CAP (db/m) | 2.9 (−13.5;19.2) | −0.6 (−53.5;52.2) | −32.0 (−52.2;−11.8) | −17.3 (−45.0;10.4) | 0.86 | 0.44 | 0.54 |
FLI | −4.4 (−19.0;5.5) p = 0.45 | 0.4 (−13.2;5.3) p = 1.0 | −8.1 (−13.8;−0.1) p = 0.17 | −1.2 (−1.9;2.9) p = 0.97 | 1.0 | 0.13 | 0.96 |
GGT (U/L) | 1.9 (−0.2;4.0) | −0.6 (−6.1;4.8) | 1.2 (−0.1;2.5) | 3.0 (1.2;4.8) | 0.31 | 0.12 | 0.12 |
ALT (U/L) | 1.2 (1.1;1.3) | 0.8 (0.5;1.3) | 1.0 (0.9;1.1) | 1.0 (0.7;1.3) | <0.05 | 0.81 | 0.40 |
AST (U/L) | 1.0 (0.9;1.1) | 0.9 (0.7;1.2) | 0.9 (0.9;1.0) | 0.9 (0.7;1.0) | 0.25 | 0.26 | 0.92 |
sCD163 (mg/L) | 0.0 (−0.1;0.2) | −0.2 (−1.0;0.6) | 0.0 (−0.1;0.1) | −0.3 (−0.5;−0.1) | 0.45 | <0.01 | 0.73 |
sMR (mg/L) | 0.02 (0.00;0.05) | 0.05 (−0.03;0.14) | 0.01 (−0.01;0.03) | 0.01 (−0.01;0.08) | 0.34 | 0.59 | 0.60 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vedtofte, L.; Bahne, E.; Foghsgaard, S.; Bagger, J.I.; Andreasen, C.; Strandberg, C.; Gørtz, P.M.; Holst, J.J.; Grønbæk, H.; Svare, J.A.; et al. One Year’s Treatment with the Glucagon-Like Peptide 1 Receptor Agonist Liraglutide Decreases Hepatic Fat Content in Women with Nonalcoholic Fatty Liver Disease and Prior Gestational Diabetes Mellitus in a Randomized, Placebo-Controlled Trial. J. Clin. Med. 2020, 9, 3213. https://doi.org/10.3390/jcm9103213
Vedtofte L, Bahne E, Foghsgaard S, Bagger JI, Andreasen C, Strandberg C, Gørtz PM, Holst JJ, Grønbæk H, Svare JA, et al. One Year’s Treatment with the Glucagon-Like Peptide 1 Receptor Agonist Liraglutide Decreases Hepatic Fat Content in Women with Nonalcoholic Fatty Liver Disease and Prior Gestational Diabetes Mellitus in a Randomized, Placebo-Controlled Trial. Journal of Clinical Medicine. 2020; 9(10):3213. https://doi.org/10.3390/jcm9103213
Chicago/Turabian StyleVedtofte, Louise, Emilie Bahne, Signe Foghsgaard, Jonatan I. Bagger, Camilla Andreasen, Charlotte Strandberg, Peter M. Gørtz, Jens J. Holst, Henning Grønbæk, Jens A. Svare, and et al. 2020. "One Year’s Treatment with the Glucagon-Like Peptide 1 Receptor Agonist Liraglutide Decreases Hepatic Fat Content in Women with Nonalcoholic Fatty Liver Disease and Prior Gestational Diabetes Mellitus in a Randomized, Placebo-Controlled Trial" Journal of Clinical Medicine 9, no. 10: 3213. https://doi.org/10.3390/jcm9103213
APA StyleVedtofte, L., Bahne, E., Foghsgaard, S., Bagger, J. I., Andreasen, C., Strandberg, C., Gørtz, P. M., Holst, J. J., Grønbæk, H., Svare, J. A., Clausen, T. D., Mathiesen, E. R., Damm, P., Gluud, L. L., Knop, F. K., & Vilsbøll, T. (2020). One Year’s Treatment with the Glucagon-Like Peptide 1 Receptor Agonist Liraglutide Decreases Hepatic Fat Content in Women with Nonalcoholic Fatty Liver Disease and Prior Gestational Diabetes Mellitus in a Randomized, Placebo-Controlled Trial. Journal of Clinical Medicine, 9(10), 3213. https://doi.org/10.3390/jcm9103213