Baseline Presence of NAFLD Predicts Weight Loss after Gastric Bypass Surgery for Morbid Obesity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population
2.3. Standard Laboratory Values and NAFLD Scores at Baseline
2.4. Liver Biopsy
2.5. Histopathological Evaluation
2.6. Statistical Analysis
3. Results
3.1. Demographics and Descriptive Analysis
3.2. Baseline AST Platelet Index Identifies NASH in Patients Undergoing Bariatric Surgery
3.3. NAFLD and NASH Led to Inferior Weight Loss after Gastric Bypass Surgery
3.4. Multiple Regression Model for Prediction of %EWL after 6 Months
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Arterburn, D.E.; Maciejewski, M.L.; Tsevat, J. Impact of Morbid Obesity on Medical Expenditures in Adults. Int. J. Obes. (Lond.) 2005, 29, 334–339. [Google Scholar] [CrossRef] [Green Version]
- Scicali, R.; Rosenbaum, D.; Di Pino, A.; Giral, P.; Cluzel, P.; Redheuil, A.; Piro, S.; Rabuazzo, A.M.; Purrello, F.; Bruckert, E.; et al. An Increased Waist-to-Hip Ratio Is a Key Determinant of Atherosclerotic Burden in Overweight Subjects. Acta Diabetol. 2018, 55, 741–749. [Google Scholar] [CrossRef] [PubMed]
- Tsai, A.G.; Wadden, T.A. In the Clinic: Obesity. Ann. Intern. Med. 2013, 159, ITC3-1–ITC3-15. [Google Scholar] [CrossRef] [PubMed]
- Picot, J.; Jones, J.; Colquitt, J.L.; Gospodarevskaya, E.; Loveman, E.; Baxter, L.; Clegg, A.J. The Clinical Effectiveness and Cost-Effectiveness of Bariatric (Weight Loss) Surgery for Obesity: A Systematic Review and Economic Evaluation. Health Technol. Assess. 2009, 13, 1–190, 215–357, iii–iv. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panteliou, E.; Miras, A.D. What Is the Role of Bariatric Surgery in the Management of Obesity? Climacteric 2017, 20, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Vieira, F.T.; Faria, S.L.C.M.; Dutra, E.S.; Ito, M.K.; Reis, C.E.G.; da Costa, T.H.M.; de Carvalho, K.M.B. Perception of Hunger/Satiety and Nutrient Intake in Women Who Regain Weight in the Postoperative Period After Bariatric Surgery. Obes. Surg. 2019, 29, 958–963. [Google Scholar] [CrossRef]
- Sharples, A.J.; Mahawar, K.; Cheruvu, C.V.N. Systematic Review and Retrospective Validation of Prediction Models for Weight Loss after Bariatric Surgery. Surg. Obes. Relat. Dis. 2017, 13, 1914–1920. [Google Scholar] [CrossRef]
- Holsen, L.M.; Davidson, P.; Cerit, H.; Hye, T.; Moondra, P.; Haimovici, F.; Sogg, S.; Shikora, S.; Goldstein, J.M.; Evins, A.E.; et al. Neural Predictors of 12-Month Weight Loss Outcomes Following Bariatric Surgery. Int. J. Obes. (Lond.) 2018, 42, 785–793. [Google Scholar] [CrossRef]
- Stefura, T.; Droś, J.; Kacprzyk, A.; Wierdak, M.; Proczko-Stepaniak, M.; Szymański, M.; Pisarska, M.; Małczak, P.; Rubinkiewicz, M.; Wysocki, M.; et al. Influence of Preoperative Weight Loss on Outcomes of Bariatric Surgery for Patients Under the Enhanced Recovery After Surgery Protocol. Obes. Surg. 2019, 29, 1134–1141. [Google Scholar] [CrossRef] [Green Version]
- Manning, S.; Pucci, A.; Carter, N.C.; Elkalaawy, M.; Querci, G.; Magno, S.; Tamberi, A.; Finer, N.; Fiennes, A.G.; Hashemi, M.; et al. Early Postoperative Weight Loss Predicts Maximal Weight Loss after Sleeve Gastrectomy and Roux-En-Y Gastric Bypass. Surg. Endosc. 2015, 29, 1484–1491. [Google Scholar] [CrossRef] [Green Version]
- Marchisello, S.; Di Pino, A.; Scicali, R.; Urbano, F.; Piro, S.; Purrello, F.; Rabuazzo, A.M. Pathophysiological, Molecular and Therapeutic Issues of Nonalcoholic Fatty Liver Disease: An Overview. Int. J. Mol. Sci. 2019, 20, 1948. [Google Scholar] [CrossRef] [Green Version]
- Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global Epidemiology of Nonalcoholic Fatty Liver Disease-Meta-Analytic Assessment of Prevalence, Incidence, and Outcomes. Hepatology 2016, 64, 73–84. [Google Scholar] [CrossRef] [Green Version]
- Mauro, S.D.; Scamporrino, A.; Petta, S.; Urbano, F.; Filippello, A.; Ragusa, M.; Martino, M.T.D.; Scionti, F.; Grimaudo, S.; Pipitone, R.M.; et al. Serum Coding and Non-Coding RNAs as Biomarkers of NAFLD and Fibrosis Severity. Liver Int. 2019, 39, 1742–1754. [Google Scholar] [CrossRef] [Green Version]
- Lassailly, G.; Caiazzo, R.; Ntandja-Wandji, L.-C.; Gnemmi, V.; Baud, G.; Verkindt, H.; Ningarhari, M.; Louvet, A.; Leteurtre, E.; Raverdy, V.; et al. Bariatric Surgery Provides Long-Term Resolution of Nonalcoholic Steatohepatitis and Regression of Fibrosis. Gastroenterology 2020, 159, 1290–1301. [Google Scholar] [CrossRef]
- Harrison, S.A.; Oliver, D.; Arnold, H.L.; Gogia, S.; Neuschwander-Tetri, B.A. Development and Validation of a Simple NAFLD Clinical Scoring System for Identifying Patients without Advanced Disease. Gut 2008, 57, 1441–1447. [Google Scholar] [CrossRef]
- Wai, C.-T.; Greenson, J.K.; Fontana, R.J.; Kalbfleisch, J.D.; Marrero, J.A.; Conjeevaram, H.S.; Lok, A.S.-F. A Simple Noninvasive Index Can Predict Both Significant Fibrosis and Cirrhosis in Patients with Chronic Hepatitis C. Hepatology 2003, 38, 518–526. [Google Scholar] [CrossRef] [Green Version]
- Sterling, R.K.; Lissen, E.; Clumeck, N.; Sola, R.; Correa, M.C.; Montaner, J.; Sulkowski, M.S.; Torriani, F.J.; Dieterich, D.T.; Thomas, D.L.; et al. Development of a Simple Noninvasive Index to Predict Significant Fibrosis in Patients with HIV/HCV Coinfection. Hepatology 2006, 43, 1317–1325. [Google Scholar] [CrossRef]
- Angulo, P.; Hui, J.M.; Marchesini, G.; Bugianesi, E.; George, J.; Farrell, G.C.; Enders, F.; Saksena, S.; Burt, A.D.; Bida, J.P.; et al. The NAFLD Fibrosis Score: A Noninvasive System That Identifies Liver Fibrosis in Patients with NAFLD. Hepatology 2007, 45, 846–854. [Google Scholar] [CrossRef]
- Kleiner, D.E.; Brunt, E.M.; Van Natta, M.; Behling, C.; Contos, M.J.; Cummings, O.W.; Ferrell, L.D.; Liu, Y.-C.; Torbenson, M.S.; Unalp-Arida, A.; et al. Nonalcoholic Steatohepatitis Clinical Research Network. Design and Validation of a Histological Scoring System for Nonalcoholic Fatty Liver Disease. Hepatology 2005, 41, 1313–1321. [Google Scholar] [CrossRef]
- Hatoum, I.J.; Kaplan, L.M. Advantages of Percent Weight Loss as a Method of Reporting Weight Loss after Roux-En-Y Gastric Bypass. Obesity 2013, 21, 1519–1525. [Google Scholar] [CrossRef] [Green Version]
- Ochner, C.N.; Jochner, M.C.E.; Caruso, E.A.; Teixeira, J.; Pi-Sunyer, F.X. Effect of Preoperative Body Mass Index on Weight Loss after Obesity Surgery. Surg. Obes. Relat. Dis. 2013, 9, 423–427. [Google Scholar] [CrossRef] [Green Version]
- Bedossa, P.; Tordjman, J.; Aron-Wisnewsky, J.; Poitou, C.; Oppert, J.-M.; Torcivia, A.; Bouillot, J.-L.; Paradis, V.; Ratziu, V.; Clément, K. Systematic Review of Bariatric Surgery Liver Biopsies Clarifies the Natural History of Liver Disease in Patients with Severe Obesity. Gut 2017, 66, 1688–1696. [Google Scholar] [CrossRef] [PubMed]
- Alli, V.; Rogers, A.M. Gastric Bypass and Influence on Improvement of NAFLD. Curr. Gastroenterol. Rep. 2017, 19, 25. [Google Scholar] [CrossRef] [PubMed]
- Caiazzo, R.; Lassailly, G.; Leteurtre, E.; Baud, G.; Verkindt, H.; Raverdy, V.; Buob, D.; Pigeyre, M.; Mathurin, P.; Pattou, F. Roux-En-Y Gastric Bypass versus Adjustable Gastric Banding to Reduce Nonalcoholic Fatty Liver Disease: A 5-Year Controlled Longitudinal Study. Ann. Surg. 2014, 260, 893–898, discussion 898–899. [Google Scholar] [CrossRef] [PubMed]
- Gras-Miralles, B.; Haya, J.R.; Moros, J.M.R.; Goday Arnó, A.; Torra Alsina, S.; Ilzarbe Sánchez, L.; Muñoz Galitó, J.; Ibáñez Zafón, I.-A.; Alonso Romera, M.C.; Parri Bonet, A.; et al. Caloric Intake Capacity as Measured by a Standard Nutrient Drink Test Helps to Predict Weight Loss after Bariatric Surgery. Obes. Surg. 2014, 24, 2138–2144. [Google Scholar] [CrossRef]
- Vassilev, G.; Hasenberg, T.; Krammer, J.; Kienle, P.; Ronellenfitsch, U.; Otto, M. The Phase Angle of the Bioelectrical Impedance Analysis as Predictor of Post-Bariatric Weight Loss Outcome. Obes. Surg. 2017, 27, 665–669. [Google Scholar] [CrossRef]
- Jain, D.; Sill, A.; Averbach, A. Do Patients with Higher Baseline BMI Have Improved Weight Loss with Roux-En-Y Gastric Bypass versus Sleeve Gastrectomy? Surg. Obes. Relat. Dis. 2018, 14, 1304–1309. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines for the Management of Non-Alcoholic Fatty Liver Disease. J. Hepatol. 2016, 64, 1388–1402. [Google Scholar] [CrossRef]
- Katsareli, E.A.; Amerikanou, C.; Rouskas, K.; Dimopoulos, A.; Diamantis, T.; Alexandrou, A.; Griniatsos, J.; Bourgeois, S.; Dermitzakis, E.; Ragoussis, J.; et al. A Genetic Risk Score for the Estimation of Weight Loss after Bariatric Surgery. Obes. Surg. 2020, 30, 1482–1490. [Google Scholar] [CrossRef]
- Steinert, R.E.; Feinle-Bisset, C.; Asarian, L.; Horowitz, M.; Beglinger, C.; Geary, N. Ghrelin, CCK, GLP-1, and PYY(3-36): Secretory Controls and Physiological Roles in Eating and Glycemia in Health, Obesity, and After RYGB. Physiol. Rev. 2017, 97, 411–463. [Google Scholar] [CrossRef] [Green Version]
- Svane, M.S.; Bojsen-Møller, K.N.; Madsbad, S.; Holst, J.J. Updates in Weight Loss Surgery and Gastrointestinal Peptides. Curr. Opin. Endocrinol. Diabetes Obes. 2015, 22, 21–28. [Google Scholar] [CrossRef]
- Alizai, P.H.; Wendl, J.; Roeth, A.A.; Klink, C.D.; Luedde, T.; Steinhoff, I.; Neumann, U.P.; Schmeding, M.; Ulmer, F. Functional Liver Recovery After Bariatric Surgery--a Prospective Cohort Study with the LiMAx Test. Obes. Surg. 2015, 25, 2047–2053. [Google Scholar] [CrossRef] [PubMed]
- Alizai, P.H.; Lurje, I.; Kroh, A.; Schmitz, S.; Luedde, T.; Andruszkow, J.; Neumann, U.P.; Ulmer, F. Noninvasive Evaluation of Liver Function in Morbidly Obese Patients. Gastroenterol. Res. Pract. 2019, 2019, 4307462. [Google Scholar] [CrossRef]
- Murphy, R.; Tsai, P.; Jüllig, M.; Liu, A.; Plank, L.; Booth, M. Differential Changes in Gut Microbiota after Gastric Bypass and Sleeve Gastrectomy Bariatric Surgery Vary According to Diabetes Remission. Obes. Surg. 2017, 27, 917–925. [Google Scholar] [CrossRef] [PubMed]
Characteristic | No NAFLD (n = 13) | NAFL (n = 59) | NASH (n = 71) | p Value |
---|---|---|---|---|
Data at baseline | ||||
Age, y, median (IQR) | 41 (33–49) | 41 (33–52) | 43 (35–50) | 0.204 |
Female sex, n (%) | 11 (84.6) | 46 (78.0) | 57 (80.3) | 0.853 |
Body mass index, kg/m2, median (IQR) | 46.2 (41.1–49.1) | 49.7 (44.8–55.4) | 49.4 (44.6–55.2) | 0.531 |
Obesity-related comorbidities, n (%) | ||||
Arterial hypertension | 5 (38.5) | 35 (59.3) | 49 (69.0) a | 0.094 |
Obstructive sleep apnea syndrome | 6 (46.2) | 45 (76.3) a | 47 (66.2) | 0.089 |
Coronary heart disease | 0 (0.0) | 0 (0.0) | 1 (1.4) | 0.600 |
Type 2 diabetes mellitus | 0 (0.0) | 16 (27.1) a | 34 (47.9) a,b | 0.001 |
Musculoskeletal disorder | 13 (100.0) | 59 (100.0) | 69 (97.2) | 0.358 |
Type of bariatric surgery, n (%) | ||||
One Anastomosis/Mini-Gastric Bypass (OAGB-MGB) | 11 (84.6) | 51 (86.4) | 67 (94.4) | 0.247 |
Duration of bariatric surgery, min, median (IQR) | 70 (62–79.5) | 80 (68–90) | 75 (67–90) | 0.304 |
Duration of postoperative hospitalization, days, median (IQR) | 3 (3–3) | 3 (3–4) | 3 (3–3) | 0.733 |
Characteristic | No NAFLD (n = 13) | NAFL (n = 59) | NASH (n = 71) | p Value |
---|---|---|---|---|
Biomarker scores prior to bariatric surgery, median (IQR) | ||||
BARD score | 3 (1.5–3) | 3 (1–3) | 3 (2–3) | NA |
AST platelet ratio index | 0.24 (0.17–0.31) | 0.25 (0.19–0.31) | 0.30 (0.21–0.52) b | 0.006 |
FIB-4 score | 0.72 (0.59–1.02) | 0.67 (0.49–0.86) | 0.80 (0.59–1.08) | 0.102 |
NAFLD fibrosis score | −0.77 (−1.39–0.26) | −0.87 (−1.59–0.17) | −0.63 (−1.17–0.11) | 0.373 |
Laboratory findings median (IQR) | ||||
White-cell count, × 109/L | 7.3 (6.7–8.7) | 7.7 (6.6–9.1) | 7.9 (6.8–8.7) | 0.784 |
Hemoglobin, g/dL | 13.4 (12.3–14.3) | 14 (13.1–14.7) | 14.0 (13.4–15.1) | 0.172 |
Platelet count, × 109/L | 250 (230–305) | 287 (245–334) | 293 (237–324) | 0.278 |
Serum C-reactive protein, mg/L | 1.2 (0.6–1.7) | 0.8 (0.4–1.4) | 1.2 (0.6–1.6) | 0.214 |
Serum bilirubin, mg/dL, median (IQR) | 0.5 (0.5–0.6) | 0.6 (0.5–0.7) | 0.6 (0.5–0.8) | 0.115 |
Serum albumin, g/dL | 40.3 (39.5–42.9) | 41.6 (40.4–43.4) | 42.2 (40.4–43.8) | 0.141 |
International normalized ratio | 1.01 (0.97–1.09) | 1.01 (0.98–1.03) | 1.01 (0.98–1.04) | 0.767 |
Serum creatinine, mg/dL | 0.9 (0.8–0.9) | 0.9 (0.8–1.0) | 0.9 (0.8–1.0) | 0.377 |
Characteristic | No NAFLD | NAFL | NASH | p Value |
---|---|---|---|---|
Data at 3 months follow-up | (n = 13) | (n = 56) | (n = 69) | |
Body mass index, kg/m2 | 35.5 (32.9–42.1) | 41.2 (37.7–45.4) a | 40.9 (37.3–46.3) a | 0.057 |
Loss of body mass index, kg/m2 | 8.1 (7.5–9.9) | 7.9 (6.9–9.2) | 8.7 (7.0–9.6) | 0.491 |
Total body weight loss, % | 18.1 (16.4–19.9) | 16.5 (14.2–18.0) a | 16.8 (14.7–19.6) | 0.068 |
Excessive weight loss, % | 44.1 (31.6–51.4) | 33.1 (27.8–39.2) a | 34.3 (28.9–39.9) a | 0.037 |
Data at 6 months follow-up | (n = 12) | (n = 57) | (n = 68) | |
Body mass index, kg/m2 | 31.0 (28.7–36.8) | 36.8 (34.2–41.4) a | 36.1 (33.9–41.4) a | 0.020 |
Loss of body mass index, kg/m2 | 12.0 (11.0–14.5) | 11.6 (10.0–13.5) | 12.3 (10.1–14.3) | 0.492 |
Total body weight loss, % | 27.1 (25.8–29.7) | 23.3 (20.0–26.9) a | 24.4 (21.1–27.2) a | 0.026 |
Excessive weight loss, % | 65.1 (47.7–77.9) | 49.2 (43.6–55.5) a | 50.7 (41.8–59.0) a | 0.008 |
Data at 12 months follow-up | (n = 6) | (n = 39) | (n = 41) | |
Body mass index, kg/m2 | 27.0 (23.9–31.2) | 34.4 (30.4–38.1) a | 32.8 (29.7–37.6) a | 0.040 |
Loss of body mass index, kg/m2 | 16.9 (15.7–21.0) | 15.8 (13.3–20.2) | 16.2 (13.3–20.8) | 0.736 |
Total body weight loss, % | 38.5 (34.9–42.7) | 30.1 (27.4–38.3) | 32.6 (26.4–40.4) a | 0.113 |
Excessive weight loss, % | 88.9 (75.4–107.0) | 61.5 (54.1–75.3) a | 68.1 (53.5–77.4) a | 0.180 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rheinwalt, K.P.; Drebber, U.; Schierwagen, R.; Klein, S.; Neumann, U.P.; Ulmer, T.F.; Plamper, A.; Kroh, A.; Schipper, S.; Odenthal, M.; et al. Baseline Presence of NAFLD Predicts Weight Loss after Gastric Bypass Surgery for Morbid Obesity. J. Clin. Med. 2020, 9, 3430. https://doi.org/10.3390/jcm9113430
Rheinwalt KP, Drebber U, Schierwagen R, Klein S, Neumann UP, Ulmer TF, Plamper A, Kroh A, Schipper S, Odenthal M, et al. Baseline Presence of NAFLD Predicts Weight Loss after Gastric Bypass Surgery for Morbid Obesity. Journal of Clinical Medicine. 2020; 9(11):3430. https://doi.org/10.3390/jcm9113430
Chicago/Turabian StyleRheinwalt, Karl Peter, Uta Drebber, Robert Schierwagen, Sabine Klein, Ulf Peter Neumann, Tom Florian Ulmer, Andreas Plamper, Andreas Kroh, Sandra Schipper, Margarete Odenthal, and et al. 2020. "Baseline Presence of NAFLD Predicts Weight Loss after Gastric Bypass Surgery for Morbid Obesity" Journal of Clinical Medicine 9, no. 11: 3430. https://doi.org/10.3390/jcm9113430
APA StyleRheinwalt, K. P., Drebber, U., Schierwagen, R., Klein, S., Neumann, U. P., Ulmer, T. F., Plamper, A., Kroh, A., Schipper, S., Odenthal, M., Uschner, F. E., Lingohr, P., Trebicka, J., & Brol, M. J. (2020). Baseline Presence of NAFLD Predicts Weight Loss after Gastric Bypass Surgery for Morbid Obesity. Journal of Clinical Medicine, 9(11), 3430. https://doi.org/10.3390/jcm9113430